1,109
Views
62
CrossRef citations to date
0
Altmetric
Review Article

Fermentation at non-conventional conditions in food- and bio-sciences by the application of advanced processing technologies

, , , , , & show all
Pages 122-140 | Received 13 Sep 2016, Accepted 22 Dec 2016, Published online: 20 Apr 2017

References

  • Huang H-W, Lung H-M, Yang BB, et al. Responses of microorganisms to high hydrostatic pressure processing. Food Control. 2014;40:250–259.
  • Lado BH, Yousef AE. Alternative food-preservation technologies: efficacy and mechanisms. Microbes Infect. 2002;4:433–440.
  • Storz G, Hengge R. Bacterial Stress Responses. Washington DC, US: American Society for Microbiology Press; 2000.
  • van de Guchte M, Serror P, Chervaux C, et al. Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek. 2002;82:187–216.
  • De Angelis M, Bini L, Pallini V, et al. The acid-stress response in Lactobacillus sanfranciscensis CB1. Microbiology. 2001;147:1863–1873.
  • Serrazanetti DI, Guerzoni ME, Corsetti A, et al. Metabolic impact and potential exploitation of the stress reactions in lactobacilli. Food Microbiol. 2009;26:700–711.
  • Mills S, Stanton C, Fitzgerald GF, et al. Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again. Microb Cell Fact. 2011;10:S19.
  • Zamfir M, Grosu-Tudor S-S. Stress response of some lactic acid bacteria isolated from Romanian artisan dairy products. World J Microbiol Biotechnol. 2014;30:375–384.
  • Grosse H-H, Bauer E, Berg H. Electrostimulation during fermentation. Bioelectrochem Bioenerg. 1988;20:279–285.
  • Kerns G, Bauer E, Berg H. Electrostimulation of cellulase fermentation by pulsatile electromagnetically induced currents. Bioelectrochem Bioenerg. 1993;32:89–94.
  • McCabe A, Barron N, McHale L, et al. Increased efficiency of substrate utilization by exposure of the thermotolerant yeast strain, Kluyveromyces marxianus IMB3 to electric-field stimulation. Biotechnol Tech. 1995;9:133–136.
  • Fologea D, Vassu-Dimov T, Stoica I, et al. Increase of Saccharomyces cerevisiae plating efficiency after treatment with bipolar electric pulses. Bioelectrochem Bioenerg. 1998;46:285–287.
  • Joo DH, Jeon BY, Park DH. Effects of an electric pulse on variation of bacterial community and metabolite production in kimchi-making culture. Biotechnol Bioproc Eng. 2013;18:909–917.
  • Ohba T, Uemura K, Nabetani H. Moderate pulsed electric field treatment enhances exopolysaccharide production by Lactococcus lactis subspecies cremoris. Process Biochem. 2016;51:1120–1128.
  • Fiedurek J. Influence of a pulsed electric field on the spores and oxygen consumption of Aspergillus niger and its citric acid production. Acta Biotechnol. 1999;19:179–186.
  • Lye HS, Karim AA, Rusul G, et al. Electroporation enhances the ability of lactobacilli to remove cholesterol. J Dairy Sci. 2011;94:4820–4830.
  • Ewe JA, Alias AK. Bioconversion of isoflavones and the probiotic properties of the electroporated parent and subsequent three subcultures of Lactobacillus fermentum BT 8219 in biotin-soymilk. J Microbiol Biotechnol. 2012;22:947–959.
  • Ewe J-A, Wan-Abdullah W-N, Alias AK, et al. Enhanced growth of lactobacilli and bioconversion of isoflavones in biotin-supplemented soymilk by electroporation. Int J Food Sci Nutr. 2012;63:580–596.
  • Yeo S-K, Liong M-T. Effect of electroporation on viability and bioconversion of isoflavones in mannitol-soymilk fermented by lactobacilli and bifidobacteria. J Sci Food Agric. 2013;93:396–409.
  • Guo J, Ma R, Su B, et al. Raising the avermectins production in Streptomyces avermitilis by utilizing nanosecond pulsed electric fields (nsPEFs). Sci Rep. 2016;6:25949.
  • Cho HY, Yousef AE, Sastry SK. Growth kinetics of Lactobacillus acidophilus under ohmic heating. Biotechnol Bioeng. 1996;49:334–340.
  • Loghavi L, Sastry SK, Yousef AE. Effect of moderate electric field on the metabolic activity and growth kinetics of Lactobacillus acidophilus. Biotechnol Bioeng. 2007;98:872–881.
  • Loghavi L, Sastry SK, Yousef AE. Effect of moderate electric field frequency on growth kinetics and metabolic activity of Lactobacillus acidophilus. Biotechnol Prog. 2008;24:148–153.
  • Loghavi L, Sastry SK, Yousef AE. Effect of moderate electric field frequency and growth stage on the cell membrane permeability of Lactobacillus acidophilus. Biotechnol Prog. 2009;25:85–94.
  • Castro I, Oliveira C, Domingues L, et al. The effect of the electric field on lag-phase, ethanol and β-galactosidase production of a recombinant S. cerevisiae growing on lactose. Food Bioprocess Technol. 2012;5:3014–3020.
  • Schläfer O, Sievers M, Klotzbücher H, et al. Improvement of biological activity by low energy ultrasound assisted bioreactors. Ultrasonics. 2000;38:711–716.
  • Subhedar PB, Gogate PR. Ultrasound-assisted bioethanol production from waste newspaper. Ultrason Sonochem. 2015;27:37–45.
  • Matsuura K, Hirotsune M, Nunokawa Y, et al. Acceleration of cell growth and ester formation by ultrasonic wave irradiation. J Ferment Bioeng. 1994;77:36–40.
  • Choi EJ, Ahn H, Kim M, et al. Effect of ultrasonication on fermentation kinetics of beer using six-row barley cultivated in Korea. J Inst Brew. 2015;121:510–517.
  • Singh S, Agarwal M, Sarma S, et al. Mechanistic insight into ultrasound induced enhancement of simultaneous saccharification and fermentation of Parthenium hysterophorus for ethanol production. Ultrason Sonochem. 2015;26:249–256.
  • Hu H, Yonezawa Y, Matsuda A, et al. Influences of ultrasound and ohmic heating on growth of Sake yeast. 11th International Congress on Engineering and Food. Athens, Greece; 2011.
  • Sulaiman AZ, Ajit A, Yunus RM, et al. Ultrasound-assisted fermentation enhances bioethanol productivity. Biochem Eng J. 2011;54:141–150.
  • Wang D, Sakakibara M, Kondoh N, et al. Ultrasound-enhanced lactose hydrolysis in milk fermentation with Lactobacillus bulgaricus. J Chem Technol Biotechnol. 1996;65:86–92.
  • Nguyen TMP, Lee YK, Zhou W. Stimulating fermentative activities of bifidobacteria in milk by high intensity ultrasound. Int Dairy J. 2009;19:410–416.
  • Nguyen TMP, Lee YK, Zhou W. Effect of high intensity ultrasound on carbohydrate metabolism of bifidobacteria in milk fermentation. Food Chem. 2012;130:866–874.
  • Zhao Y, Ang WT, Xing J, et al. Applications of ultrasound to enhance mycophenolic acid production. Ultrasound Med Biol. 2012;38:1582–1588.
  • Chuanyun D, Bochu W, Chuanren D, et al. Low ultrasonic stimulates fermentation of riboflavin producing strain Ecemothecium ashbyii. Colloid Surface B. 2003;30:37–41.
  • Chuanyun D, Bochu W, Huan Z, et al. Effect of low frequency ultrasonic stimulation on the secretion of siboflavin produced by Ecemothecium Ashbyii. Colloid Surface B. 2004;34:7–11.
  • Chu J, Li B, Zhang S, et al. On-line ultrasound stimulates the secretion and production of gentamicin by Micromonospora echinospora. Process Biochem. 2000;35:569–572.
  • Herrán NS, López JLC, Pérez JAS, et al. Effects of ultrasound on culture of Aspergillus terreus. J Chem Technol Biotechnol. 2008;83:593–600.
  • Naveena B, Sakthiselvan P, Elaiyaraju P, et al. Ultrasound induced production of thrombinase by marine actinomycetes: Kinetic and optimization studies. Biochem Eng J. 2012;61:34–42.
  • Picard A, Daniel I, Montagnac G, et al. In situ monitoring by quantitative Raman spectroscopy of alcoholic fermentation by Saccharomyces cerevisiae under high pressure. Extremophiles. 2007;11:445–452.
  • Bothun GD, Knutson BL, Berberich JA, et al. Metabolic selectivity and growth of Clostridium thermocellum in continuous culture under elevated hydrostatic pressure. Appl Microbiol Biotechnol. 2004;65:149–157.
  • Kato N, Sato T, Kato C, et al. Viability and cellulose synthesizing ability of Gluconacetobacter xylinus cells under high-hydrostatic pressure. Extremophiles. 2007;11:693–698.
  • Mota MJ, Lopes RP, Delgadillo I, et al. Probiotic yogurt production under high pressure and the possible use of pressure as an on/off switch to stop/start fermentation. Process Biochem. 2015;50:906–911.
  • Neto R, Mota MJ, Lopes RP, et al. Growth and metabolism of Oenococcus oeni for malolactic fermentation under pressure. Lett Appl Microbiol. 2016;63:426–433.
  • Velizarov S. Electric and magnetic fields in microbial biotechnology: possibilities, limitations, and perspectives. Electro Magnetobiol. 1999;18:185–212.
  • Rowley BA. Electrical current effects on E. coli growth rates. Proc Soc Exp Biol Med. 1972;139:929–934.
  • Hunt RW, Zavalin A, Bhatnagar A, et al. Electromagnetic biostimulation of living cultures for biotechnology, biofuel and bioenergy applications. Int J Mol Sci. 2009;10:4515–4558.
  • Bartlett PN, Pletcher D, Zeng J. Approaches to the integration of electrochemistry and biotechnology: I. Enzyme-modified reticulated vitreous carbon electrodes. J Electrochem Soc. 1997;144:3705–3710.
  • FDA. Kinetics of microbial inactivation for alternative food processing technologies – pulsed electric fields [Online]; 2015. Available at: http://www.fda.gov/Food/FoodScienceResearch/SafePracticesforFoodProc-esses/ucm101246.htm
  • Barba FJ, Parniakov O, Pereira SA, et al. Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res Int. 2015a;77:773–798.
  • Shil P, Bidaye S, Vidyasagar PB. Analysing the effects of surface distribution of pores in cell electroporation for a cell membrane containing cholesterol. J Phys D Appl Phys. 2008;41:055502.
  • Yoon H-S, Son Y-J, Han JS, et al. Comparison of D- and L-lactic acid contents in commercial kimchi and sauerkraut. Food Sci Biotechnol. 2005;14:64–67.
  • Araújo OQF, Oliveira AAC, Torres CCO, et al. Glucose uptake in electrically stimulated cultures of Saccharomyces cerevisiae. Proceedings of European Congress of Chemical Engineering (ECCE-6) 16-20 September 2007; Copenhagen, Denmark; 1-9.
  • Nakanishi K, Tokuda H, Soga T, et al. Effect of electric current on growth and alcohol production by yeast cells. J Ferment Bioeng. 1998;85:250–253.
  • Mattar JR, Turk MF, Nonus M, et al. Stimulation of Saccharomyces cerevisiae cultures by pulsed electric fields. Food Bioprocess Technol. 2014;7:3328–3335.
  • Mattar JR, Turk MF, Nonus M, et al. S. cerevisiae fermentation activity after moderate pulsed electric field pre-treatments. Bioelectrochemistry. 2015;103:92–97.
  • Tanino T, Sato S, Oshige M, et al. Analysis of the stress response of yeast Saccharomyces cerevisiae toward pulsed electric field. J Electrostat. 2012;70:212–216.
  • Vassu T, Fologea D, Csutak O, et al. Secondary effects of electroporation with bipolar electric pulses: electrostimulation. Rom Biotech Lett. 2004;9:1541–1544.
  • Wu J, Nyborg WL. Ultrasound, cavitation bubbles and their interaction with cells. Adv Drug Deliv Rev. 2008;60:1103–1116.
  • Tang W, Liu Q, Wang X, et al. Membrane fluidity altering and enzyme inactivating in sarcoma 180 cells post the exposure to sonoactivated hematoporphyrin in vitro. Ultrasonics. 2008;48:66–73.
  • Yeo S-K, Ong J-S, Liong M-T. Effect of electroporation on bioconversion of isoflavones and probiotic properties of parents and subsequent passages of Bifidobacterium Longum. Appl Biochem Biotechnol. 2014;174:1496–1509.
  • Ewe J-A, Wan-Abdullah W-N, Karim Alias A, et al. ACE inhibitory activity and bioconversion of isoflavones by Lactobacillus in soymilk supplemented with B-vitamins. Br Food J. 2011;113:1127–1146.
  • Setchell KDR, Brown NM, Zimmer-Nechemias L, et al. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutr. 2002;76:447–453.
  • Yeo S-K, Liong M-T. Effect of prebiotics on viability and growth characteristics of probiotics in soymilk. J Sci Food Agric. 2010;90:267–275.
  • Knirsch MC, Dos Santos CA, Vicente AAMdOS, et al. Ohmic heating – a review. Trends Food Sci Technol. 2010;21:436–441.
  • Varghese KS, Pandey MC, Radhakrishna K, et al. Technology, applications and modelling of ohmic heating: a review. J Food Sci Technol. 2014;51:2304–2317.
  • Sastry SK, Shynkaryk M, Somavat R. Ohmic and moderate electric field processing: developments and new applications. 11th International Congress on Engineering and Food. Athens, Greece; 2011.
  • Verluyten J, Messens W, De Vuyst L. The curing agent sodium nitrite, used in the production of fermented sausages, is less inhibiting to the bacteriocin-producing meat starter culture Lactobacillus curvatus LTH 1174 under anaerobic conditions. Appl Environ Microbiol. 2003;69:3833–3839.
  • Zimmermann U, Pilwat G, Riemann F. Dielectric breakdown of cell membranes. Biophys J. 1974;14:881–899.
  • Chisti Y. Sonobioreactors: using ultrasound for enhanced microbial productivity. Trends Biotechnol. 2003;21:89–93.
  • Mason TJ, Lorimer JP. Sonochemistry: theory, applications and uses of ultrasound in chemistry. New York, US: Ellis Horwood; 1988.
  • Zinoviadou KG, Galanakis CM, Brnčić M, et al. Fruit juice sonication: implications on food safety and physicochemical and nutritional properties. Food Res Int. 2015;77:743–752.
  • Gogate PR, Kabadi AM. A review of applications of cavitation in biochemical engineering/biotechnology. Biochem Eng J. 2009;44:60–72.
  • Bar R. Ultrasound enhanced bioprocesses: cholesterol oxidation by Rhodococcus erythropolis. Biotechnol Bioeng. 1988;32:655–663.
  • Joyce E, Phull SS, Lorimer JP, et al. The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. Ultrason Sonochem. 2003;10:315–318.
  • Runyan CM, Carmen JC, Beckstead BL, et al. Low-frequency ultrasound increases outer membrane permeability of Pseudomonas aeruginosa. J Gen Appl Microbiol. 2006;52:295–301.
  • Sakakibara M, Wang D, Ikeda K, et al. Effect of ultrasonic irradiation on production of fermented milk with Lactobacillus delbrueckii. Ultrason Sonochem. 1994;1:S107–S110.
  • Wang D, Sakakibara M. Lactose hydrolysis and beta-galactosidase activity in sonicated fermentation with Lactobacillus strains. Ultrason Sonochem. 1997;4:255–261.
  • Wood BE, Aldrich HC, Ingram LO. Ultrasound stimulates ethanol production during the simultaneous saccharification and fermentation of mixed waste office paper. Biotechnol Prog. 1997;13:232–237.
  • Wu H, Hulbert GJ, Mount JR. Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innov Food Sci Emerg. 2000;1:211–218.
  • Zabaneh M, Bar R. Ultrasound-enhanced bioprocess. II: dehydrogenation of hydrocortisone by Arthrobacter simplex. Biotechnol Bioeng. 1991;37:998–1003.
  • Anderson JM. Effects of ultrasonic radiation on growth and fermentation in the yeast, Saccharomyces cerevisiae. Biochim Biophys Acta. 1953;11:122–137.
  • Lanchun S, Bochu W, Zhiming L, et al. The research into the influence of low-intensity ultrasonic on the growth of S. cerevisiae. Colloid Surface B. 2003;30:43–49.
  • Jomdecha C, Prateepasen A. The research of low-ultrasonic energy affects to yeast growthin fermentation process. 12th Asia-Pacific Conference on Nondestructive Testing. Auckland, New Zealand; 5–10; 2006.
  • Chandrapala J, Oliver C, Kentish S, et al. Ultrasonics in food processing – food quality assurance and food safety. Trends Food Sci Technol. 2012;26:88–98.
  • Kobayashi Y, Sakai D, Iwashina T, et al. Low-intensity pulsed ultrasound stimulates cell proliferation, proteoglycan synthesis and expression of growth factor-related genes in human nucleus pulposus cell line. Eur Cell Mater. 2009;17:15–22.
  • Saura R, Terashi H, Lee S, et al. Low intensity pulsed ultrasound exposure increase prostaglandin E2 release in human dermal fibroblasts. Bull Health Sci Kobe. 2003;19:121–128.
  • Takeuchi R, Ryo A, Komitsu N, et al. Low-intensity pulsed ultrasound activates the phosphatidylinositol 3 kinase/Akt pathway and stimulates the growth of chondrocytes in three-dimensional cultures: a basic science study. Arthritis Res Ther. 2008;10:R77.
  • Ashokkumar M, Lee J, Kentish S, et al. Bubbles in an acoustic field: an overview. Ultrason Sonochem. 2007;14:470–475.
  • Guimarães PMR, Teixeira JA, Domingues L. Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol Adv. 2010;28:375–384.
  • Dakubu S. Cell inactivation by ultrasound. Biotechnol Bioeng. 1976;18:465–471.
  • Mett H, Schacher B, Wegmann L. Ultrasonic disintegration of bacteria may lead to irreversible inactivation of beta-lactamase. J Antimicrob Chemother. 1988;22:293–298.
  • Kreft ME, Jelen P. Stability and activity of β-galactosidase in sonicated cultures of Lactobacillus delbrueckii ssp. bulgaricus 11842 as affected by temperature and ionic environments. J Food Sci. 2000;65:1364–1368.
  • Masuzawa N, Ohdaira E. Attempts to shorten the time of lactic fermentation by ultrasonic irradiation. Jpn J Appl Phys. 2002;41:3277–3278.
  • Povey MJW, Mason TJ. Ultrasound in Food Processing. London, UK: Blackie Academic & Professional; 1998.
  • Shimada T, Ohdaira E, Masuzawa N. Effect of ultrasonic frequency on lactic acid fermentation promotion by ultrasonic irradiation. Jpn J Appl Phys. 2004;43:2831–2832.
  • Toba T, Hayasaka I, Taguchi S, et al. A new method for manufacture of lactose-hydrolysed fermented milk. J Sci Food Agric. 1990;52:403–407.
  • López JLC, Pérez JAS, Sevilla JMF, et al. Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. J Biotechnol. 2005;116:61–77.
  • Porcel EMR, López JLC, Pérez JAS, et al. Effects of pellet morphology on broth rheology in fermentations of Aspergillus terreus. Biochem Eng J. 2005;26:139–144.
  • Holden RW. Plasminogen activators: pharmacology and therapy. Radiology. 1990;174:993–1001.
  • Blann AD, Landray MJ, Lip GYH. ABC of antithrombotic therapy: an overview of antithrombotic therapy. BMJ. 2002;325:762–765.
  • Bode C, Runge MS, Smalling RW. The future of thrombolysis in the treatment of acute myocardial infarction. Eur Heart J. 1996;17:55–60.
  • Turpie AGG, Chin BSP, Lip GYH. ABC of antithrombotic therapy: Venous thromboembolism: treatment strategies. BMJ. 2002;325:948–950.
  • Barba FJ, Esteve MJ, Frígola A. High pressure treatment effect on physicochemical and nutritional properties of fluid foods during storage: a review. Compr Rev Food Sci Food Saf. 2012;11:307–322.
  • Barba FJ, Terefe NS, Buckow R, et al. New opportunities and perspectives of high pressure treatment to improve health and safety attributes of foods. A Review. Food Res Int. 2015b;77:725–742.
  • Bartlett DH. Pressure effects on in vivo microbial processes. Biochim Biophys Acta. 2002;1595:367–381.
  • Mota MJ, Lopes RP, Delgadillo I, et al. Microorganisms under high pressure – adaptation, growth and biotechnological potential. Biotechnol Adv. 2013;31:1426–1434.
  • Winter R, Jeworrek C. Effect of pressure on membranes. Soft Matter. 2009;5:3157–3173.
  • Abe F. Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: perspectives from piezophysiology. Biosci Biotechnol Biochem. 2007;71:2347–2357.
  • Macgregor RB. The interactions of nucleic acids at elevated hydrostatic pressure. Biochim Biophys Acta. 2002;1595:266–276.
  • Niven GW, Miles CA, Mackey BM. The effects of hydrostatic pressure on ribosome conformation in Escherichia coli: an in vivo study using differential scanning calorimetry. Microbiology. 1999;145:419–425.
  • Patterson MF. Microbiology of pressure-treated foods. J Appl Microbiol. 2005;98:1400–1409.
  • Hill C, Cotter PD, Sleator RD, et al. Bacterial stress response in Listeria monocytogenes: jumping the hurdles imposed by minimal processing. Int Dairy J. 2002;12:273–283.
  • Lou Y, Yousef AE. Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors. Appl Environ Microbiol. 1997;63:1252–1255.
  • Wemekamp-Kamphuis HH, Wouters JA, de Leeuw PP, et al. Identification of sigma factor σB-controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e. Appl Environ Microbiol. 2004;70:3457–3466.
  • Welch TJ, Farewell A, Neidhardt FC, et al. Stress response of Escherichia coli to elevated hydrostatic pressure. J Bacteriol. 1993;175:7170–7177.
  • Hörmann S, Scheyhing C, Behr J, et al. Comparative proteome approach to characterize the high-pressure stress response of Lactobacillus sanfranciscensis DSM 20451T. Proteomics. 2006;6:1878–1885.
  • Aertsen A, Meersman F, Hendrickx MEG, et al. Biotechnology under high pressure: applications and implications. Trends Biotechnol. 2009;27:434–441.
  • Béguin P, Aubert J-P. The biological degradation of cellulose. FEMS Microbiol Rev. 1994;13:25–58.
  • Herrero AA, Gomez RF, Roberts MF. 31P NMR studies of Clostridium thermocellum. Mechanism of end product inhibition by ethanol. J Biol Chem. 1985;260:7442–7451.
  • Wiegel J. Formation of ethanol by bacteria. A pledge for the use of extreme thermophilic anaerobic bacteria in industrial ethanol fermentation processes. Experientia. 1980;36:1434–1446.
  • Ross P, Mayer R, Benziman M. Cellulose biosynthesis and function in bacteria. Microbiol Rev. 1991;55:35–58.
  • Nishi Y, Uryu M, Yamanaka S, et al. The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci. 1990;25:2997–3001.
  • Daniel I, Oger P, Winter R. Origins of life and biochemistry under high-pressure conditions. Chem Soc Rev. 2006;35:858–875.
  • Yang N, Huang K, Lyu C, et al. Pulsed electric field technology in the manufacturing processes of wine, beer, and rice wine: a review. Food Control. 2016;61:28–38.
  • Arvanitoyannis IS, Kotsanopoulos KV, Savva AG. Use of ultrasounds in the food industry—methods and effects on quality, safety and organoleptic characteristics of foods: a review. Crit Rev Food Sci Nutr. 2015;57:109–128.
  • Averill BA, Eldredge P. Effects of temperature and pressure on solubility. In: ed. General chemistry: principles, patterns, and applications. Washington (D.C.): Saylor Foundation; 2011.
  • Oey I, Van der Plancken I, Van Loey A, et al. Does high pressure processing influence nutritional aspects of plant based food systems? Trends Food Sci Tech. 2008;19:300–308.
  • Min S, Evrendilek GA, Zhang HQ. Pulsed electric fields: processing system, microbial and enzyme inhibition, and shelf life extension of foods. IEEE Trans Plasma Sci. 2007;35:59–73.
  • Morales-de La Peña M, Elez-Martínez P, Martín-Belloso O. Food preservation by pulsed electric fields: an engineering perspective. Food Eng Rev. 2011;3:94–107.
  • Mason TJ. Sonochemistry and sonoprocessing: the link, the trends and (probably) the future. Ultrason Sonochem. 2003;10:175–179.
  • Bermúdez-Aguirre D, Barbosa-Cánovas GV. An update on high hydrostatic pressure, from the laboratory to industrial applications. Food Eng Rev. 2011;3:44–61.
  • Balasubramaniam VM, Martínez-Monteagudo SI, Gupta R. Principles and application of high pressure-based technologies in the food industry. Annu Rev Food Sci Technol. 2015;6:435–462.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.