1,574
Views
94
CrossRef citations to date
0
Altmetric
Review Article

Advances in the research of celery, an important Apiaceae vegetable crop

, , , , &
Pages 172-183 | Received 24 Dec 2016, Accepted 09 Mar 2017, Published online: 20 Apr 2017

References

  • Wu XQ, Zhu DL, Zheng XH, et al. A preliminary study on the varieties and utilization of celery in China. China Seed Industry. 1990;2:9–11.
  • Kooti W, Ali-Akbari S, Asadi-Samani M, et al. A review on medicinal plant of Apium graveolens. AHM. 2014;1:48–59.
  • Nagella P, Ahmad A, Kim SJ, et al. Chemical composition, antioxidant activity and larvicidal effects of essential oil from leaves of Apium graveolens. Immunopharmacol Immunotoxicol. 2012;34:205–209.
  • Lori GA, Wolcan SM, Larran S. Fusarium yellows of celery caused by Fusarium oxysporum f. sp. apii in argentina. J Plant Pathol. 2008;90:173–178.
  • Orton TJ, Hulbert SH, Durgan ME, et al. UC1, fusarium yellows-resistant celery breeding line [Cultivar development, Fusarium oxysporum]. Hortscience. 1984;19:594.
  • Quiros CF, D’Antonio V, Greathead AS, et al. UC8-1, UC10-1, and UC26-1: three celery lines resistant to Fusarium yellows. Hort Sci. 1993;28:351–352.
  • Ochoa O, Quiros CF. Apium wild species: novel sources for resistance to late blight in celery. Plant Breed. 1989;102:317–321.
  • Honma S, Lacy ML. Hybridization between pascal celery and parsley. Euphytica. 1980;29:801–805.
  • Zhu X, Gao GX, Wang X. Overview of studies on celery late blight disease. China Veg. 2011;17:104–107.
  • Quiros CF, Douches D, D’Antonio V. Inheritance of annual habit in celery: cosegregation with isozyme and anthocyanin markers. Theor Appl Genet. 1987;74:203–208.
  • Wolf EA, White JM, Stubblefield RS, et al. Florida Slobolt M68’: a spring celery cultivar for Florida. Hort Sci. 1993;28:754–755.
  • Wang WT, Wu F, Gao GX, et al. A new slow-bolting celery cultivar ‘Juventus’. Acta Hortic Sin. 2012;39:1007–1008.
  • Zhang Y, Lu CM, Zhao XB. Preliminary study on celery hybridization. J Changjiang Veg. 1998;11:29–30.
  • Chaubal R, Zanella C, Trimnell MR, et al. Two male-sterile mutants of Zea mays (Poaceae) with an extra cell division in the anther wall. Am J Bot. 2000;87:1193–1201.
  • Kumar V, Apte UB, Bhagwat SG, et al. Phenotypic and molecular characterization of diversified cytoplasmic male sterile lines of rice (Oryza sativa L.). Electron J Plant Breed. 2013;4:1193.
  • Murai K, Tsunewaki K. Photoperiod-sensitive cytoplasmic male sterility in wheat with Aegilops crassa cytoplasm. Euphytica. 1993;67:41–48.
  • Cheng SY, Hou RX, Zhu YY, et al. Identification of cytoplasmic male sterile type of P70-203, a new germplasm of non-heading Chinese cabbage. Genomics Appl Biol. 2009;28:941–945.
  • Quiros CF, Rugama A, Dong YY, et al. Cytological and genetical studies of a male sterile celery. Euphytica. 1986;35:867–875.
  • Gao GX, Jin LZ, Lu ZM, et al. Discovery and botanical characters of celery male sterile material. Tianjin Agric Sci. 2006;12:9–11.
  • Gao GX, Jin LZ, Lu ZM, et al. A new high yield of quality celery hybrid ‘Jinqi No.1’. J Changjiang Veg. 2009;1:3.
  • Gao GX, Jin LZ, Lu ZM, et al. A new early-spring celery hybrid ‘Jinqi 2. Acta Hortic Sin. 2008;35:777.
  • Gao GX, Wang WT, Wu F, et al. Analysis on physiological and biochemical characteristics of cytoplasmic male sterile line and its maintainer line in celery. Tianjin Agric Sci. 2013;19:1–4.
  • Williams JG, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990;18:6531–6535.
  • Hadrys H, Balick M, Schierwater B. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol Ecol. 1992;1:55–63.
  • Briard M, Clerc VL, Mausset AE, et al. A comparative study on the use of ISSR, microsatellites and RAPD markers for varietal identification of carrot genotypes. Acta Hort. 2001;546:377–385.
  • Yang X, Quiros C. Identification and classification of celery cultivars with RAPD markers. Theor Appl Genet. 1993;86:205–212.
  • Liu PY, Zhang BH, Zhao H, et al. Analysis of genetic relationship among celery germplasms by RAPD. Agric Biotechnol. 2014;3:10–13.
  • Domblides A, Domblides H, Kharchenko V. Discrimination between celery cultivars with the use of RAPD markers. Proc Latv Acad Sci B Nat Exact Appl Sci. 2009;62:219–222.
  • Ju JF. An analysis of celery genetic diversity by AFLP. Chinese Agric Sci Bull. 2007;23:120–123.
  • Wang WT, Gu Y, Han QH, et al. ISSR analysis of celery germplasm genetic relationships. China Veg. 2011;4:22–27.
  • Huestis GM, McGrath JM, Quiros CF. Development of genetic markers in celery based on restriction fragment length polymorphisms. Theor Appl Genet. 1993;85:889–896.
  • Yang X, Quiros CF. Construction of a genetic linkage map in celery using DNA-based markers. Genome. 1995;38:36–44.
  • Lan QK, Li OJ, Zhang JB, et al. Construction of SSR-based molecular fingerprinting and analysis of genetic diversity for celery varieties from Tianjin. Tianjin Agric Sci. 2012;18:7–11.
  • Morozova O, Marra MA. Applications of next-generation sequencing technologies in functional genomics. Genomics. 2008;92:255–264.
  • Parchman TL, Geist KS, Grahnen JA, et al. Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics. 2010;11:180.
  • Fu N, Wang Q, Shen HL. De novo assembly, gene annotation and marker development using Illumina paired-end transcriptome sequences in celery (Apium graveolens L.). PLoS One. 2013;8:e57686.
  • Li MY, Wang F, Jiang Q, et al. Identification of SSRs and differentially expressed genes in two cultivars of celery (Apium graveolens L.) by deep transcriptome sequencing. Hortic Res. 2014;1:10.
  • Bhatia P, Ashwath N, Senaratna T, et al. Tissue culture studies of tomato (Lycopersicon esculentum). Plant Cell Tissue Organ Cult. 2004;78:1–21.
  • Compton ME, Gray DJ, Gaba VP. Use of tissue culture and biotechnology for the genetic improvement of watermelon. Plant Cell Tissue Organ Cult. 2004;77:231–243.
  • Raju CS, Aslam A, Shajahan A. High-efficiency direct somatic embryogenesis and plant regeneration from leaf base explants of turmeric (Curcuma longa L.). Plant Cell Tiss Organ Cult. 2015;122:79–87.
  • Williams L, Collin HA. Growth and cytology of celery plants derived from tissue cultures. Ann Bot. 1976;40:333–338.
  • Li Y, Shen D, Ni D. Whole plant regeneration from single cell culture of Chinese celery (Apium graveolens L.). J Fudan Univ. 1990;29:380–387.
  • Han QX, Shen HL, Zhu X, et al. Embryonic callus induction and plant high efficient regeneration system from celery (Apium graveolens L.). China Veg. 2006;11:6–9.
  • Wan XS, Wang FD, Xia ZA. Studies on culture conditions and plant regeneration of Apium graveolens protoplast. Plant Physiol Commun. 1988;34:2702–2708.
  • Kim YH, Janick J. Abscisic acid and proline improve desiccation tolerance and increase fatty acid content of celery somatic embryos. Plant Cell Tiss Organ Cult. 1991;4:83–89.
  • You YW, Wang YZ, Li X. The effect of gibberellins (GA3) on the dormancy of celery (Apium graveolens L.) and the effect of TDZ on the proliferation of celery. Acta Agric Boreali Sin. 2007;22:61–63.
  • Huang SY, Chan HS, Wang TT. Induction of somatic embryos of celery by control of gaseous compositions and other physical conditions. Plant Growth Regul. 2006;49:219–227.
  • Wang HZ, Du LQ, Li AS, et al. Transformation of the calli of Apium graveolens L. mediated by Agrobacterium tumefaciens. J Zhejiang Agric Univ. 1992;18:45–48.
  • Zhen SX, Dong WB, Li XB. Study on genetic transformation of celery callus. J Central China Normal Univ Nat Sci Ed. 1996;30:327–329.
  • Xu ZS, Tan HW, Wang F, et al. CarrotDB: a genomic and transcriptomic database for carrot. Database. 2014;29:1229–1245.
  • Iorizzo M, Ellison S, Senalik D, et al. A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet. 2016;48:657–666.
  • Zhao D, Yan ZM, Zhang SN, et al. Karyotype analysis of main umbelliferous vegetables. Acta Bot Boreali-Occidentalia Sin. 2010;30:1978–1981.
  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.
  • Wei DD, Chen EH, Ding TB, et al. De novo assembly, gene annotation, and marker discovery in stored-product pest Liposcelis entomophila (Enderlein) using transcriptome sequences. PLoS One. 2013;8:e80046.
  • Seo M, Kim K, Yoon J, et al. RNA-seq analysis for detecting quantitative trait-associated genes. Sci Rep. 2016;6:24375.
  • Vilaine F, Palauqui JC, Amselem J, et al. Towards deciphering phloem: a transcriptome analysis of the phloem of Apium graveolens. Plant J. 2003;36:67–81.
  • Jia XL, Wang GL, Xiong F, et al. De novo assembly, transcriptome characterization, lignin accumulation, and anatomic characteristics: novel insights into lignin biosynthesis during celery leaf development. Sci Rep. 2015;5:8259.
  • de Lima JC, Loss-Morais G, Margis R. MicroRNAs play critical roles during plant development and in response to abiotic stresses. Genet Mol Biol. 2012;35:1069–1077.
  • Li X, Bian H, Song D, et al. Flowering time control in ornamental gloxinia (Sinningia speciosa) by manipulation of miR159 expression. Ann Bot. 2013;111:791–799.
  • Sharma D, Tiwari M, Pandey A, et al. MicroRNA858 is a potential regulator of phenylpropanoid pathway and plant development in Arabidopsis. Plant Physiol. 2016;171:944–959.
  • Chen L, Ren Y, Zhang Y, et al. Genome-wide profiling of novel and conserved Populus microRNAs involved in pathogen stress response by deep sequencing. Planta. 2012;235:873–883.
  • Rathjen T, Pais H, Sweetman D, et al. High throughput sequencing of microRNAs in chicken somites. FEBS Lett. 2009;583:1422–1426.
  • Jiang Q, Wang F, Li MY, et al. High-throughput analysis of small RNAs and characterization of novel microRNAs affected by abiotic stress in a local celery cultivar. Sci Hortic. 2014;169:36–43.
  • Li MY, Wang F, Xu ZS, et al. High throughput sequencing of two celery varieties small RNAs identifies microRNAs involved in temperature stress response. BMC Genomics. 2014;15:1–9.
  • Jia XL, Li MY, Jiang Q, et al. High-throughput sequencing of small RNAs and anatomical characteristics associated with leaf development in celery. Sci Rep. 2015;5:11093.
  • Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol. 2002;29:23–39.
  • Dheda K, Huggett JF, Chang JS, et al. The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem. 2005;344:141–143.
  • Rebouças EDL, Costa JJDN, Passos MJ, et al. Real time PCR and importance of housekeepings genes for normalization and quantification of mRNA expression in different tissues. Braz Arch Biol Technol. 2013;56:143–154.
  • Li MY, Wang F, Jiang Q, et al. Validation and comparison of reference genes for qPCR normalization of celery (Apium graveolens) at different development stages. Front Plant Sci. 2016;7:313.
  • Everard JD, Cantini C, Grumet R, et al. Molecular cloning of mannose-6-phosphate reductase and its developmental expression in celery. Plant Physiol. 1997;113:1427–1435.
  • Gao Z, Loescher WH. NADPH supply and mannitol biosynthesis. Characterization, cloning, and regulation of the non-reversible glyceraldehyde-3-phosphate dehydrogenase in celery leaves. Plant Physiol. 2000;124:321–330.
  • Yamaoka S, Shimono Y, Shirakawa M, et al. Identification and dynamics of Arabidopsis adaptor protein-2 complex and its involvement in floral organ development. Plant Cell. 2013;25:2958–2969.
  • Wang GL, Wang F, Xu ZS, et al. Cloning and expression profile analysis of the AgMu2 gene of adaptor complex from celery. Acta Hortic Sin. 2014;41:1369–1378.
  • Yan J, Yu L, Xu S, et al. Apigenin accumulation and expression analysis of apigenin biosynthesis relative genes in celery. Sci Hortic. 2014;165:218–224.
  • Jia XL, Wang GL, Wang F, et al. Anatomic structure and expression profiles of related genes: novel insights into leaf development in celery. J Plant Growth Regul. 2015;34:519–531.
  • Li Y, Xu ZS, Tan GF, et al. Cloning and expressional response analysis of AgHSFB2 under different temperature treatments in celery. J Nanjing Agric Univ. 2015;38:360–368.
  • Guo WJ, Meetam M, Goldsbrough PB. Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol. 2008;146:1697–1706.
  • Divol F, Vilaine F, Thibivilliers S, et al. Systemic response to aphid infestation by Myzus persicae in the phloem of Apium graveolens. Plant Mol Biol. 2005;57:517–540.
  • Chen YY, Li MY, Li Y, et al. Isolation and characterization of the Agmt2 gene and its response to abiotic and metalstress in Apium graveolens. Sci Hortic. 2015;186:1–6.
  • Li Y, Chen YY, Wang F, et al. Isolation and characterization of the Agvip1 gene and response to abiotic and metal ions stresses in three celery cultivars. Mol Biol Rep. 2014;41:6003–6011.
  • Abebe T, Guenzi AC, Martin B, et al. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol. 2003;131:1748–1755.
  • Zhifang G, Loescher WH. Expression of a celery mannose 6-phosphate reductase in Arabidopsis thaliana, enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimer. Plant Cell Environ. 2003;26:275–283.
  • Song GQ, Sink KC, Ma Y, et al. A novel mannose-based selection system for plant transformation using celery mannose-6-phosphate reductase gene. Plant Cell Rep. 2010;29:163–172.
  • Sickler CM, Edwards GE, Kiirats O, et al. Response of mannitol-producing Arabidopsis thaliana to abiotic stress. Funct Plant Biol. 2007;34:382–391.
  • Chan Z, Grumet R, Loescher W. Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes. J Exp Bot. 2011;62:4787–4803.
  • Noiraud N, Maurousset L, Lemoine R. Identification of a mannitol transporter, AgMAT1, in celery phloem. Plant Cell. 2001;13:695–705.
  • Noiraud N, Delrot S, Lemoine R. The sucrose transporter of celery. Identification and expression during salt stress. Plant Physiol. 2000;122:1447–1456.
  • Katagiri F. A global view of defense gene expression regulation – a highly interconnected signaling network. Curr Opin Plant Biol. 2004;7:506–511.
  • Stoop JMH, Williamson JD, Pharr DM. Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci. 1996;1:139–144.
  • Williamson JD, Stoop JM, Massel MO, et al. Sequence analysis of a mannitol dehydrogenase cDNA from plants reveals a function for the pathogenesis-related protein ELI3. Proc Natl Acad Sci USA. 1995;92:7148–7152.
  • Jennings DB, Daub ME, Pharr DM, et al. Constitutive expression of a celery mannitol dehydrogenase in tobacco enhances resistance to the mannitol-secreting fungal pathogen Alternaria alternata. Plant J. 2002;32:41–49.
  • Divol F, Vilaine F, Thibivilliers S, et al. Involvement of the xyloglucan endotransglycosylase/hydrolases encoded by celery XTH1 and Arabidopsis XTH33 in the phloem response to aphids. Plant Cell Environ. 2007;30:187–201.
  • Pauli G, Bessot JC, Dietemann-Molard A, et al. Celery sensitivity: clinical and immunological correlations with pollen allergy. Clin Allergy. 1985;15:273–279.
  • Jankiewitz A, Aulepp H, Fötisch K, et al. Serological investigation of 30 celery-allergic patients with particular consideration of the thermal stability of IgE-binding celery allergens. Allergo J. 1998;7:87–95.
  • Gendel SM, Jenkins JA. Allergen sequence databases. Mol Nutr Food Res. 2006;50:633–637.
  • Breiteneder H, Hoffmann-Sommergruber K, O’Riordain G, et al. Molecular characterization of Api g 1, the major allergen of celery (Apium graveolens), and its immumological and structural relationships to a group of 17-kDa tree pollen allergens. Eur J Biochem. 1995;233:484–489.
  • Wangorsch A, Ballmer-Weber BK, Rösch P, et al. Mutational epitope analysis and cross-reactivity of two isoforms of Api g 1, the major celery allergen. Mol Immunol. 2007;44:2518–2527.
  • Gadermaier G, Hauser M, Egger M, et al. Sensitization prevalence, antibody cross-reactivity and immunogenic peptide profile of Api g 2, the non-specific lipid transfer protein 1 of celery. PLoS One. 2011;6:e24150.
  • Vejvar E, Himly M, Briza P, et al. Allergenic relevance of nonspecific lipid transfer proteins 2: identification and characterization of Api g 6 from celery tuber as representative of a novel IgE-binding protein family. Mol Nutr Food Res. 2013;57:2061–2070.
  • Scheurer S, Wangorsch A, Haustein D, et al. Cloning of the minor allergen Api g4 profilin from celery (Apium graveolens) and its cross-reactivity with birch pollen profilin Bet v 2. Clin Exp Allergy. 2000;30:962–971.
  • Bublin M, Radauer C, Wilson IB, et al. Cross-reactive N-glycans of Api g 5, a high molecular weight glycoprotein allergen from celery, are required for immunoglobulin E binding and activation of effector cells from allergic patients. FASEB J. 2003;17:1697–1699.
  • Dewitt AM, Andersson K, Peltre G, et al. Cloning, expression and immunological characterization of full-length timothy grass pollen allergen Phl p 4, a berberine bridge enzyme-like protein with homology to celery allergen Api g 5. Clin Exp Allergy. 2006;36:77–86.
  • Bolwell GP, Bozak K, Zimmerlin A. Plant cytochrome P450. Phytochemistry. 1994;37:1491–1506.
  • Morant M, Bak S, Møller BL, et al. Plant cytochromes p450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol.. 2003;14:151–162.
  • Page V, Schwitzguébel JP. Metabolism of sulphonated anthraquinones in rhubarb, maize and celery: the role of cytochromes P450 and peroxidases. Plant Cell Rep. 2009;28:1725–1735.
  • Larbat R, Hehn A, Hans J, et al. Isolation and functional characterization of CYP71AJ4 encoding for the first P450 monooxygenase of angular furanocoumarin biosynthesis. J Biol Chem. 2009;284:4776–4785.
  • Tian C, Wang F, Jiang Q, et al. Cloning and expression pattern analysis of CELI gene in celery. J Nanjing Agric Univ. 2014;37:39–45.
  • Heyen BJ, Alsheikh MK, Smith EA, et al. The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol. 2002;130:675–687.
  • Nijveldt RJ, van Nood E, van Hoorn DE, et al. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr. 2001;74:418–425.
  • Romanová D, Vachálková A, Cipák L, et al. Study of antioxidant effect of apigenin, luteolin and quercetin by DNA protective method. Neoplasma. 2001;48:104–107.
  • Kim HP, Son KH, Chang HW, et al. Anti-inflammatory plant flavonoids and cellular action mechanisms. J Pharmacol Sci. 2004;96:229–245.
  • Marzocchella L, Fantini M, Benvenuto M, et al. Dietary flavonoids: molecular mechanisms of action as anti-inflammatory agents. Recent Pat Inflamm Allergy Drug Discov. 2011;5:200–220.
  • Popović M, Kaurinović B, Trivić S, et al. Effect of celery (Apium graveolens) extracts on some biochemical parameters of oxidative stress in mice treated with carbon tetrachloride. Phytother Res. 2006;20:531–537.
  • Sugihara N, Arakawa T, Ohnishi M, et al. Anti- and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with alpha-linolenic acid. Free Radic Biol Med. 1999;27:1313–1323.
  • Patil RH, Babu RL, Naveen KM, et al. Apigenin inhibits PMA-induced expression of pro-inflammatory cytokines and AP-1 factors in A549 cells. Mol Cell Biochem. 2015;403:95–106.
  • Chen CY, Peng WH, Tsai KD, et al. Luteolin suppresses inflammation-associated gene expression by blocking NF-kB and AP-1 activation pathway in mouse alveolar macrophages. Life Sci. 2007;81:1602–1614.
  • King JC, Lu QY, Li G, et al. Evidence for activation of mutated p53 by apigenin in human pancreatic cancer. Biochim Biophys Acta. 2012;1823:593–604.
  • Zhang YH, Park YS, Kim TJ, et al. Endothelium-dependent vasorelaxant and antiproliferative effects of apigenin. Gen Pharmacol. 2000;35:341–347.
  • Wan LL, Xia J, Ye D, et al. Effects of quercetin on gene and protein expression of NOX and NOS after myocardial ischemia and reperfusion in rabbit. Cardiovasc Ther. 2009;27:28–33.
  • Regnaultroger C. The potential of botanical essential oils for insect pest control. Integr Pest Manag Rev. 1997;2:25–34.
  • Burt S. Essential oils: their antibacterial properties and potential applications in foods – a review. Int J Food Microbiol. 2004;94:223–253.
  • Helaly AD, Baek JP, Mady E, et al. Phytochemical analysis of some celery accessions. JMAP. 2015;4:1–7.
  • Sowbhagya HB. Chemistry, technology, and nutraceutical functions of celery (Apium graveolens L.): an overview. Crit Rev Food Sci Nutr.. 2014;54:389–398.
  • Sellami IH, Bettaieb I, Bourgou S, et al. Essential oil and aroma composition of leaves, stalks and roots of celery (Apium graveolens var. dulce) from Tunisia. J Essent Oil Res. 2012;24:513–521.
  • Lu ZG, Li W, Wang PJ. Chemical composition and ability of scavenging radical of essential oil and residue from the celery seed. AMR. 2011;183–185:18–21.
  • Li N, Zu YG, Wang W. Antimicrobial and antioxidant effect of celery seed essential oil. China Condiment. 2012;37:28–31.
  • Momin RA, Nair MG. Mosquitocidal, nematicidal, and antifungal compounds from Apium graveolens L. seeds. J Agric Food Chem. 2001;49:142–145.
  • Shad AA, Shah HU, Bakht J, et al. Nutraceutical potential and bioassay of Apium graveolens L. grown in Khyber Pakhtunkhwa-Pakistan. J Med Plants Res. 2011;5:5160–5166.
  • Huang W, Wang GL, Li H, et al. Transcriptional profiling of genes involved in ascorbic acid biosynthesis, recycling, and degradation during three leaf developmental stages in celery. Mol Genet Genomics. 2016;291:2131–2143.
  • Domagała-Światkiewicz I, Gastoł M. Comparative study on mineral content of organic and conventional carrot, celery and red beet juices. Acta Sci Pol Hortorum Cultus. 2012;11:173–183.
  • Dong LH, Zhao FQ. Determination and analysis of the content of trace elements in two celery varieties. J Taishan Med Coll. 2004;25:141–141.
  • Choi WS, Chang SH, Kim JE, et al. Hypolipidemic effects of scoparone and its coumarin analogues in hyperlipidemia rats induced by high fat diet. J Korean Soc Appl Biol Chem. 2013;56:647–653.
  • Yu H, Li JL. Study on the effect of celery on lipid-lowering and health care. Guizhou Med J. 2004;28:560–561.
  • Shehata MMSM, Soltan SSA. The effects of purslane and celery on hypercholesterolemic mice. World J Dairy Food Sci. 2012;7:212–221.
  • Beier RC, Oertli EH. Psoralen and other linear furocoumarins as phytoalexins in celery. Phytochemistry. 1983;22:2595–2597.
  • Zhang J, Li T, Wang J, et al. Analysis of fatty acid in two kinds of celery seed oil by GC/MS. China Oils Fats. 2004;29:70–71.
  • Li AM, Wang YL, Zhao SL, et al. Analysis of nutritional components of several wild celery varieties. Special Wild Econ Anim Plant Res. 1997;3:18–19.
  • Chi CC, Zhai EL, Li CY, et al. Comparative study of hematinic function of celery sodium iron chlorophyllin and other hematinics. Food Sci. 2013;34:289–292.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.