1,422
Views
26
CrossRef citations to date
0
Altmetric
Review Article

Compositional analysis of lignocellulosic biomass: conventional methodologies and future outlook

, , , &
Pages 199-217 | Received 16 Sep 2016, Accepted 08 Apr 2017, Published online: 08 Jun 2017

References

  • Giger-Reverdin S. Review of the main methods of cell wall estimation: interest and limits for ruminants. Anim Feed Sci Technol. 1995;55:295–334.
  • Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol. 2010;61:263–289.
  • Vanholme R, Demedts B, Morreel K, et al. Lignin biosynthesis and structure. Plant Physiol. 2010;153:895–905.
  • Ahmad M, Taylor CR, Pink D, et al. Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Mol BioSyst. 2010;6:815–821.
  • Barton FE. Chemistry of lignocellulose: methods of analysis and consequences of structure. Anim Feed Sci Technol. 1988;21:279–286.
  • FitzPatrick M, Champagne P, Cunningham MF, et al. A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol. 2010;101:8915–8922.
  • Foyle T, Jennings L, Mulcahy P. Compositional analysis of lignocellulosic materials: evaluation of methods used for sugar analysis of waste paper and straw. Bioresour Technol. 2007;98:3026–3036.
  • Sluiter JB, Ruiz RO, Scarlata CJ, et al. Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem. 2010;58:9043–9053.
  • Henneberg W, Stohmann E. Über das Erhaltungsfutter volljährigen Rindviehs. J Landwirtsch. 1859;3:485–551.
  • Van Soest PJ. Nutritional Ecology of the Ruminant. 2nd ed. Ithaca, NY: Comstock Publishing; 1994.
  • Gorham J. Chemical analysis of Indian corn. N Engl J Med Surg. 1820;4:320–328.
  • Horsford EN. Value of different kinds of vegetable food, based upon the amount of nitrogen. Phil Mag Ser 3. 1846;29:365–397.
  • AOAC. AOAC Official Method 978.10 Official Methods of Analysis of AOAC International. 13th ed. Washington, DC: Association of Official Analytical Chemists; 1980.
  • Jung HJG. Analysis of forage fiber and cell walls in ruminant nutrition. J Nutr. 1997;127:S810–S813.
  • Ralph J. Lignin structure: recent developments. Proceedings of the 6th Brazilian Symposium Chemistry of Lignins and Other Wood Components. Guaratingueta, Brazil, 1999, 97–112.
  • Rzedzicki Z, Sykut-Domanska E, Popielewicz J. Quality of wheat breakfast cereals available on the polish market. Polish J Food Nutr Sci. 2008;58:307–312.
  • Marton J, Adler E. Preface, Dedication. In: Marton J, editor. Lignin structure and reactions. Washington, DC: American Chemical Society; 1996. p. vii–xiii.
  • Klason P. The determination of lignin. In: Brauns FE, editor. The chemistry of lignin. New York, NY: Academi Press; 1952. p. 151.
  • Browning BL. Methods of wood chemistry. New York, NY: Wiley-Interscience; 1967.
  • TAPPI. TAPPI test methods. Acid-insoluble lignin in wood and pulp. Atlanta, GA: Technical Association of the Pulp and Paper Industry; 2006.
  • Sjöström E, Alén R. Analytical methods in wood chemistry, pulping, and papermaking. New York, NY: Springer Verlag; 1999.
  • TAPPI. TAPPI Test Method T222 om-02. Acid-insoluble lignin in wood and pulp. Atlanta, GA: Technical Association of the Pulp and Paper Industry Press; 1988.
  • TAPPI. TAPPI Test Method UM 250. Acid-soluble lignin in wood and pulp. Atlanta, GA: Technical Association of the Pulp and Paper Industry Press; 1985.
  • Giger S. Revue sur les méthodes de dosage de la lignine utilisées en alimentation animale. Ann Zootech. 1985;34:85–122.
  • Sun R, Song X, Sun R, et al. Effect of lignin content on enzymatic hydrolysis of furfural residues. Bioresour. 2011;6:317–328.
  • Robertson JA, I'Anson KJA, Treimo J, et al. Profiling brewers' spent grain for composition and microbial ecology at the site of production. LWT – Food Sci Tech. 2010;43:890–896.
  • Xu ZA, Yang XS. Ethanol production from corn stover using soaking pretreatment. Adv Mater Res. 2011;171–172:261–265.
  • Templeton DW, Scarlata CJ, Sluiter J, et al. Biomass Compositional Analysis Method Variability. NREL, 31st Symposium on Biotechnology for Fuels and Chemicals, San Francisco, CA; 2009.
  • Saeman JF, Bubl JL, Harris EE. Quantitative saccharification of wood and cellulose. Madison, WI: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory; 1994.
  • Shaffer PA, Somogyi M. Copper-iodometric reagents for sugar determination. J Biol Chem. 1933;100:695–713.
  • Saeman JF, Bubl JL, Harris EE. Quantitative saccharification of wood and cellulose. Ind Eng Chem Anal Ed.. 1945;17:35–37.
  • Tsubaki S, Ozaki Y, Azuma J. Microwave-assisted autohydrolysis of prunus mume stone for extraction of polysaccharides and phenolic compounds. J Food Sci. 2010;75:C152–C159.
  • Hipsley EH. Dietary “fibre” and pregnancy toxcemia. Int J Food Sci Nutr. 1953;7:168–173.
  • DeVries JW, Prosky L, Li B, et al. A historical perspective on defining dietary fiber. Cereal Foods World. 1999;44:367–369.
  • Saeman JF, Moore WE, Mitchell RL, et al. Techniques for the determination of pulp constituents by quantitative paper chromatography. TAPPI J. 1954;37:336–343.
  • Houghton TP, Stevens DM, Pryfogle PA, et al. The effect of drying temperature on the composition of biomass. Appl Biochem Biotechnol. 2009;153:4–10.
  • Nelson L, Leming JA. Evaluation of monoethanolamine method of cellulose determination for agricultural residues. TAPPI J. 1957;40:846–850.
  • Wise LE, Peterson FC, Harlow WM. The action ethanolamine on woody tissue. Ind Eng Chem Anal Ed. 1939;11:18–19.
  • Reid JD, Nelson GH, Aronovsky SI. Determination of cellulose in fibrous agricultural wastes: a rapid method using monoethanolamine. Ind Eng Chem Anal Ed. 1940;12:255–259.
  • Norman AG, Jenkins SH. A new method for the determination of cellulose, based upon observations on the removal of lignin and other encrusting materials. Biochem J. 1933;27:818–831.
  • Kürschner K, Hoffer A. A new quantitative cellulose determination. Chem Zeit. 1931;55:161–181.
  • Cunningham RL, Detroy RW, Carr ME. Thermal hydropulping of wheat straw. Trans Illinois Acad Sci. 1982;75:283–287.
  • Cunningham RL, Detroy RW, Bagby MO, et al. Modifications of wheat straw to enhance cellulose saccharification by enzymatic hydrolysis. Trans Illinois Acad Sci. 1981;74:67–76.
  • Cunningham RL, Carr ME. Pretreatments of wheat straw for separation into major components. Biotech Bioeng Symp. 1984;14:96–103.
  • Cunningham RL, Carlson KD, Bagby MO. Extracted sweet sorghum substrates as a source of fermentable sugars. Appl Biochem Biotechnol. 1988;17:117–124.
  • Claus I, Kordsachia O, Schröder N, et al. Monoethanolamine (MEA) pulping of beech and spruce wood for production of dissolving pulp. Holzforschung. 2004;58:573–580.
  • Banerjee S, Sen R, Pandey RA, et al. Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass Bioenergy. 2009;33:1680–1686.
  • Tasman JE, Berzins V. The permanganate consumption of pulp materials: I. Development of a basic procedure. TAPPI J. 1957;40:691–695.
  • Tasman JE, Berzins V. The permanganate consumption of pulp materials: III. The relationship of the kappa number to the lignin content of pulp materials. TAPPI J. 1957;40:699–704.
  • Hatfield R, Fukushima RS. Can lignin be accurately measured? Crop Sci. 2005;45:832–839.
  • Fukushima RS, Hatfield RD. Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples. J Agric Food Chem. 2004;52:3713–3720.
  • Van Soest PJ. Use of detergents in the analysis of fibrous feeds. I. Preparation of fiber residues of low nitrogen content. J Assoc Off Anal Chem. 1963;46:825–829.
  • Van Soest PJ. Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. J Assoc Off Anal Chem. 1963;46:829–835.
  • Van Soest PJ, Wine RH. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. J Assoc Off Anal Chem. 1967;50:50–55.
  • Goering HK, Van Soest PJ. Forage fiber analyses (apparatus, reagents, procedures, and some applications). Agric Handb. 1970;379:1–20.
  • Van Soest PJ. Nonnutritive residues: a system of analysis for the replacement of crude fiber. J Assoc Off Agric Chem. 1966;49:546–551.
  • Jung HG, Mertens DR, Payne AJ. Correlation of acid detergent lignin and Klason lignin with digestibility of forage dry matter and neutral detergent fiber. J Dairy Sci. 1997;80:1622–1628.
  • Dien BS, Jung HJG, Vogel KP, et al. Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass Bioenergy. 2006;30:880–891.
  • Cherney DJR, Patterson JA, Cherney JH. Use of 2-ethoxyethanol and {alpha}-amylase in the neutral detergent fiber method of feed analysis. J Dairy Sci. 1989;72:3079–3084.
  • Mertens DR, Allen M, Carmany J, et al. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. J AOAC Int. 2002;85:1217–1240.
  • Holechek JL, Vavra M. Comparison of micro-and macro-digestion methods for fiber analysis. J Range Manag. 1982;35:799–801.
  • Chen H, Ferrari C, Angiuli M, et al. Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydr Polym. 2010;82:772–778.
  • Moore WE, Johnson DB. Determination of pentosans in pulp. In: Procedures for the Chemical Analysis of Wood and Wood Products (as Used at the U.S. Forest Products Laboratory). Forest Products Laboratory Forest Service, U.S. Department of Agriculture; 1967.
  • Moore WE, Johnson DB. Determination of wood sugars. In: Procedures for the Chemical Analysis of Wood and Wood Products (as Used at the U.S. Forest Products Laboratory). Forest Products Laboratory Forest Service, U.S. Department of Agriculture; 1967.
  • Fengel D, Wegener G. Hydrolysis of polysaccharides with trifluoroacetic acid and its application to rapid wood and pulp analysis. In: Brown RD, Jurasek L, editors. Hydrolysis of cellulose: mechanisms of enzymatic and acid catalysis: Based on a Symposium Jointly Sponsored by the ACS Cellulose, Paper, and Textile Division, the Institute of Paper Chemistry of TAPPI; 1978 May 17–19; Appleton, WI. Volume 181 of Advances in Chemistry Series No 181. American Chemical Society; 1979. p. 145–158.
  • Morrison IM, Stewart D. Plant cell wall fragments released on solubilisation in trifluoroacetic acid. Phytochemistry. 1998;49:1555–1563.
  • Windeisen E, Strobel C, Wegener G. Chemical changes during the production of thermo-treated beech wood. Wood Sci Technol. 2007;41:523–536.
  • Grohmann K, Himmel M, Rivard C, et al. Chemical-mechanical methods for the enhanced utilization of straw. Biotechnol Bioeng Symp. 1984;14:137–157.
  • Niu K, Chen P, Zhang X, et al. Enhanced enzymatic hydrolysis of rice straw pretreated by alkali assisted with photocatalysis technology. J Chem Technol Biotechnol. 2009;84:1240–1245.
  • Prosky L, Asp NG, Furda I, et al. Determination of total dietary fiber in foods, food products, and total diets: interlaboratory study. J Assoc Off Anal Chem. 1984;67:1044–1052.
  • Prosky L, Asp NG, Furda I, et al. Determination of total dietary fiber in foods and food products: collaborative study. J Assoc Off Anal Chem. 1985;68:677–679.
  • Theander O, Westerlund EA. Studies on dietary fiber. 3. Improved procedures for analysis of dietary fiber. J Agric Food Chem. 1986;34:330–336.
  • Theander O, Westerlund E, Andersson R, et al. Determination of total dietary fiber and its individual components by the uppsala method. In: G.A. Spiller, editor. CRC handbook of dietary fiber in human nutrition. 3rd ed. Boca Raton, FL: CRC Press; 2001. p. 87–110.
  • Marlett JA. Measuring dietary fiber. Anim Feed Sci Technol. 1989;23:1–13.
  • Theander O, Aman P, Westerlund E, et al. Total dietary fiber determined as neutral sugar residues, uronic acid residues, and Klason lignin (the Uppsala method): collaborative study. J AOAC Int. 1995;78:1030–1044.
  • Milne TA, Chum HL, Agblevor F, et al. Standardized analytical methods. Biomass Bioenergy. 1992;2:341–366.
  • Del Río JC, Marques G, Rencoret J, et al. Occurrence of naturally acetylated lignin units. J Agric Food Chem. 2007;55:5461–5468.
  • Hatfield RD, Grabber J, Ralph J, et al. Using the acetyl bromide assay to determine lignin concentrations in herbaceous plants: some cautionary notes. J Agric Food Chem. 1999;47:628–632.
  • Sluiter A, Hames B, Ruiz R, et al. Determination of structural carbohydrates and lignin in biomass. Golden, CO: NREL; 2004.
  • Sluiter J, Sluiter A. Summative Mass Closure Laboratory Analytical Procedure (LAP) Review and Integration. Technical Report NREL/TP-510-48087 (Task No. BB072230). July 2011.
  • ASTM. Standard test method for determination of carbohydrates in biomass by high performance liquid chromatography. West Conshohocken, PA: ASTM; 2001.
  • Wolfrum EJ, Sluiter AD. Improved multivariate calibration models for corn stover feedstock and dilute-acid pretreated corn stover. Cellulose. 2009;16:567–576.
  • U.S. Department of Energy- Energy Efficiency and Renewable Energy Biomass Program. Biomass feedstock composition and property database. NREL; 2006. Available from: http://www1.eere.energy.gov/biomass/printable_versions/feedstock_databases.html
  • Lee SH, Doherty TV, Linhardt RJ, et al. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng. 2009;102:1368–1376.
  • Zhang YHP, Ding SY, Mielenz JR, et al. Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng. 2007;97:214–223.
  • Sannigrahi P, Miller SJ, Ragauskas AJ. Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydr Res. 2010;345:965–970.
  • Humbird D, Mohagheghi A, Dowe N, et al. Economic impact of total solids loading on enzymatic hydrolysis of dilute acid pretreated corn stover. Biotechnol Progress. 2010;26:1245–1251.
  • Xu J, Cheng JJ, Sharma-Shivappa RR, et al. Lime pretreatment of switchgrass at mild temperatures for ethanol production. Bioresour Technol. 2010;101:2900–2903.
  • Shafiei M, Karimi K, Taherzadeh MJ. Pretreatment of spruce and oak by N-methylmorpholine-N-oxide (NMMO) for efficient conversion of their cellulose to ethanol. Bioresour Technol. 2010;101:4914–4918.
  • Brijwani K, Oberoi HS, Vadlani PV. Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem. 2010;45:120–128.
  • Ververis C, Georghiou K, Danielidis D, et al. Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour Technol. 2007;98:296–301.
  • Scarlata CJ, Hyman DA. Development and validation of a fast high pressure liquid chromatography method for the analysis of lignocellulosic biomass hydrolysis and fermentation products. J Chromatogr A. 2010;1217:2082–2087.
  • Templeton DW, Scarlata CJ, Sluiter JB, et al. Compositional analysis of lignocellulosic feedstocks. 2. Method uncertainties. J Agric Food Chem. 2010;58:9054–9062.
  • Alsberg BK, Clare A. Wiki based management of chemometric research projects. J Chemometrics. 2010;24:408–417.
  • Workman J, Koch M, Lavine B, et al. Process analytical chemistry. Anal Chem. 2009;81:4623–4643.
  • Naumann D. FT-infrared and FT-Raman spectroscopy in biomedical research. Appl Spectrosc Rev. 2001;36:239–298.
  • Mackanos MA, Contag CH. Fiber-optic probes enable cancer detection with FTIR spectroscopy. Trends Biotechnol. 2010;28:317–323.
  • Teodor ES, Teodor ED, Virgolici M, et al. Non-destructive analysis of amber artefacts from the prehistoric Cioclovina hoard (Romania). J Archaeol Sci. 2010;10:2386–2396.
  • Yonenobu H, Tsuchikawa S, Oda H. Non-destructive near infrared spectroscopic measurement of antique washi calligraphic scrolls. J Near Infrared Spectrosc. 2003;11:407.
  • Dayal BS, MacGregor JF, Taylor PA, et al. Application of feedforward: neural networks and partial least squares regression for modelling kappa number in a continuous Kamyr digester: how multivariate data analysis might help pulping. Pulp Paper Canada. 1994;95:26–32.
  • Antti H, Sjöström M, Wallbäcks L. Multivariate calibration models using NIR spectroscopy on pulp and paper industrial applications. J Chemometrics. 1996;10:591–603.
  • Benito MTJ, Ojeda CB, Rojas FS. Process analytical chemistry: applications of near infrared spectrometry in environmental and food analysis: an overview. Appl Spectrosc Rev. 2008;43:452–484.
  • Müller G, Schöpper C, Vos H, et al. FTIR-ATR spectroscopic analyses of changes in wood properties during particle- and fibreboard production of hard- and softwood trees. BioResources. 2009;4:49–71.
  • Durán N, Angelo R. Infrared microspectroscopy in the pulp and paper-making industry. Appl Spectrosc Rev. 1998;33:219–236.
  • Schulz H, Baranska M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spectrosc. 2007;43:13–25.
  • Naumann A, Peddireddi S, Kües U, et al. Fourier transform infrared microscopy in wood analysis. In: Kües U, editor. Wood production, wood technology, and biotechnical impacts. Göttingen: Universitätsverlag Göttingen; 2007. p. 179–193.
  • Kačuráková M, Wilson RH. Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates. Carbohydr. Polym. 2001;44:291–303.
  • Adapa PK, Karunakaran C, Tabil LG, et al. Qualitative and Quantitative analysis of lignocellulosic biomass using infrared spectroscopy. CSBE/SCGAB Annual Conference. Prince Edward Island: The Canadian Society of Bioengineering; 2009.
  • Gierlinger N, Schwanninger M. Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol. 2006;140:1246–1254.
  • Argyropoulos DS. P-31 NMR in wood chemistry: a review of recent progress. Res Chem Intermed. 1995;21:373–395.
  • Faix O, Böttcher JH. Determination of phenolic hydroxyl group contents in milled wood lignins by FTIR spectroscopy applying partial least-squares (PLS) and principal components regression (PCR). Holzforchung. 1993;47:45–49.
  • Tsuchikawa S. A review of recent near infrared research for wood and paper. Appl Spectrosc Rev. 2007;42:43–71.
  • Muteki K, MacGregor JF. Optimal purchasing of raw materials: a data-driven approach. Aiche J. 2008;54:1554–1559.
  • Muteki K, MacGregor JF, Ueda T. Rapid development of new polymer blends: the optimal selection of materials and blend ratios. Ind Eng Chem Res. 2006;45:4653–4660.
  • MacGregor JF, Yu H, García Muñoz S, et al. Data-based latent variable methods for process analysis, monitoring and control. Comput Chem Eng. 2005;29:1217–1223.
  • Nkansah K, Dawson-Andoh B, Slahor J. Rapid characterization of biomass using near infrared spectroscopy coupled with multivariate data analysis: Part 1 yellow-poplar (Liriodendron tulipifera L.). Bioresour Technol. 2010;101:4570–4576.
  • Sellick CA, Hansen R, Jarvis RM, et al. Rapid monitoring of recombinant antibody production by mammalian cell cultures using fourier transform infrared spectroscopy and chemometrics. Biotechnol Bioeng. 2010;106:432–442.
  • Tuskan G, West D, Bradshaw HD, et al. Two high-throughput techniques for determining wood properties as part of a molecular genetics analysis of hybrid poplar and loblolly pine. ABAB. 1999;77–79:55–65.
  • Malkavaara P, Alén R. A spectroscopic method for determining lignin content of softwood and hardwood kraft pulps. Chemom Intell Lab Syst. 1998;44:287–292.
  • Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst. 2001;58:109–130.
  • Boysworth MK, Booksh KS. Aspects of multivariate calibration applied to near-infrared spectroscopy. In: Burns DA, Ciurczak EW, editor. Handbook of near-infrared analysis. Boca Raton, FL: CRC Press; 2008. p. 209–239.
  • Nomikos P, MacGregor JF. Monitoring batch processes using multiway principal component analysis. Aiche J. 1994;40:1361–1375.
  • Dhanoa MS, Lister S, Sanderson R, et al. The link between multiplicative scatter correction (MSC) and standard normal variate (SNV) transformations of NIR spectra. J Near Infrared Spectrosc. 1994;2:43–47.
  • Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. 1964;36:1627–1639.
  • Krongtaew C, Messner K, Ters T, et al. Characterization of key parameters for biotechnological lignocellulose conversion assessed by FT-NIR spectroscopy. Part II: Quantitative analysis by partial least squares regression. BioResources. 2010;5:2081–2096.
  • Helland IS, Naes T, Isaksson T. Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data. Chemom Intell Lab Syst. 1995;29:233–241.
  • Martens H, Nielsen JP, Engelsen SB. Light scattering and light absorbance separated by extended multiplicative signal correction. application to near-infrared transmission analysis of powder mixtures. Anal Chem. 2003;75:394–404.
  • Martens H, Stark E. Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods for near infrared spectroscopy. J Pharm Biomed Anal. 1991;9:625–635.
  • Wallbacks L, Edlund U, Norden B, et al. Multivariate characterization of pulp using solid-state 13C NMR, FTIR, and NIR. TAPPI J. 1991;74:201–206.
  • Liu L, Ye XP, Womac AR, et al. Variability of biomass chemical composition and rapid analysis using FT-NIR techniques. Carbohydr Polym. 2010;81:820–829.
  • Wold S, Antti H, Lindgren F, et al. Orthogonal signal correction of near-infrared spectra. Chemom Intell Lab Syst. 1998;44:175–185.
  • Hames BR, Thomas SR, Sluiter AD, et al. Rapid biomass analysis. ABAB. 2003;105–108:5–16.
  • Shao J. Linear model selection by cross-validation. J Am Stat Assoc. 1993;88:486–494.
  • Xu QS, Liang YZ. Monte Carlo cross validation. Chemom Intell Lab Syst. 2001;56:1–11.
  • Kalivas JH. Multivariate calibration, an overview. Anal Lett. 2005;38:2259–2279.
  • ASTM. Standard practices for infrared multivariate quantitative analysis. West Conshohocken, PA: ASTM; 2005.
  • ASTM. Standard practice for qualifying spectrometers and spectrophotometers for use in multivariate analyses, calibrated using surrogate mixtures. West Conshohocken, PA: ASTM; 2004.
  • Bro R, Smilde AK. Principal component analysis. Anal Methods. 2014;6:2812–2831.
  • Cournoyer A, Simard JS, Cartilier L, et al. Quality control of multi-component, intact pharmaceutical tablets with three different near-infrared apparatuses. Pharm Dev Technol. 2008;13:333–343.
  • Ilin A, Raiko T. Practical approaches to principal component analysis in the presence of missing values. J Machine Learning Res. 2010;11:1957–2000.
  • Brink M, Mandenius CF, Skoglund A. On-line predictions of the aspen fibre and birch bark content in unbleached hardwood pulp, using NIR spectroscopy and multivariate data analysis. Chemom Intell Lab Syst. 2010;103:53–58.
  • Haffner FB, Mitchell VD, Arundale RA, et al. Compositional analysis of Miscanthus giganteus by near infrared spectroscopy. Cellulose. 2013;20:1629–1637.
  • Hayes DJM. Development of near infrared spectroscopy models for the quantitative prediction of the lignocellulosic components of wet Miscanthus samples. Bioresour Technol. 2012;119:393–405.
  • Everard CD, McDonnell KP, Fagan CC. Prediction of biomass gross calorific values using visible and near infrared spectroscopy. Biomass Bioenergy. 2012;45:203–211.
  • Fong Chong B, Purcell D, O’Shea M. Diffuse reflectance, near-infrared spectroscopic estimation of sugarcane lignocellulose components – effect of sample preparation and calibration approach. Bioenerg Res. 2013;6:153–165.
  • Bussemaker MJ, Zhang D. Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Ind Eng Chem Res. 2013;52:3563–3580.
  • Qiu Z, Aita GM, Walker MS. Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresour Technol. 2012;117:251–256.
  • Kljun A, Benians TA, Goubet F, et al. Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes. Biomacromolecules. 2011;12:4121–4126.
  • Karimi K, Taherzadeh MJ. A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour Technol. 2016;200:1008–1018.
  • Lupoi J, Singh S, Simmons BA, et al. Assessment of lignocellulosic biomass using analytical spectroscopy: an evolution to high-throughput techniques. Bioenerg Res. 2014;7:1–23.
  • Yuan TQ, Xu F, Sun RC. Role of lignin in a biorefinery: separation characterization and valorization. J Chem Technol Biotechnol. 2013;88:346–352.
  • Menon V, Rao M. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci. 2012;38:522–550.
  • Vallander L, Eriksson K. Production of ethanol from lignocellulosic materials: state of the art. In: Fiechter A, editor. Bioprocesses and applied enzymology. New York, NY: Springer; 1990. p. 63–95.
  • Dubé MA, Li L. In-line monitoring of SBR emulsion polymerization using ATR-FTIR spectroscopy. Polym. Plast Technol Eng. 2010;49:648–656.
  • Puskas JE, Antony P, Kwon Y, et al. Macromolecular engineering via carbocationic polymerization: branched structures, block copolymers and nanostructures. Macromol Mater Eng. 2001;286:565–582.
  • Rubin EM. Genomics of cellulosic biofuels. Nature. 2008;454:841–845.
  • Monro J, Burlingame B. Carbohydrates and related food components: INFOODS tagnames, meanings, and uses. J Food Compos Anal. 1996;9:100–118.
  • Walford SN. Sugarcane bagasse: how easy is it to measure its constituents? Proc S Afr Sug Technol Ass. 2008;81:266–273.
  • Hayes DJM, Hayes MHB, Leahy JJ. Analysis of lignocellulosic components of peat samples with development of near infrared spectroscopy models for rapid quantitative predictions. Fuel. 2015;150:261–268.
  • Rambo MKD, Ferreira MMC, Amorim EP. Multio-product calibration models using NIR spectroscopy. Chemometr Intell Lab. 2016;151:108–114.
  • Cheng G, Zhang X, Simmons B, et al. Theory, practice and prospects of X-ray and neutron scattering for lignocellulosic biomass characterization: towards understanding biomass pretreatment. Energy Environ Sci. 2015;8:436–455.
  • Michailof CM, Kalogiannis KG, Sfetsas T, et al. Advanced analytical techniques for bio-oil characterization. WIREs Energy Environ. 2016;5:614–639.
  • Watkins D, Nuruddin M, Hosur M, et al. Extraction and characterization of lignin from different biomass resources. J Mat Res Technol. 2015;4:26–32.
  • Lupoi JS, Singh S, Simmons BA, et al. Assessment of lignocellulosic biomass using analytical spectroscopy: an evolution to high-throughput techniques. Bioenerg Res. 2014;7.
  • Lupoi JS, Gjersing E, Davis MF. Evaluating lignocellulosic biomass, its derivatives, and downstream products with Raman spectroscopy. Front Bioeng Biotechnol. 2015;3:50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.