901
Views
21
CrossRef citations to date
0
Altmetric
Review Article

Microbial interactions during sugar cane must fermentation for bioethanol production: does quorum sensing play a role?

&
Pages 231-244 | Received 28 Aug 2016, Accepted 02 Apr 2017, Published online: 02 Jun 2017

References

  • Carere CR, Sparling R, Cicek N, et al. Third generation biofuels via direct cellulose fermentation. Int J Mol Sci. 2008;9:1342–1360.
  • Rajee O, Fabian KQS, Shen LJ, et al. Potential and technological advancement of biofuels. Int J Adv Sci Tech Res. 2014;4:12–29.
  • Sims REH, Mabee W, Saddler JN, et al. An overview of second generation biofuel technologies. Bioresour Technol. 2010;101:1570–1580.
  • RFA. Global Ethanol Production [Internet]. Renewable fuels association: alternative fuels data center; 2015. Available from: http://www.afdc.energy.gov/data/10331
  • RFA. World fuel ethanol production [Internet]. Renewable Fuels Association; Alternative Fuels Data Center; 2014. Available from: http://www.ethanolrfa.org/resources/industry/statistics/world/
  • UNICA. Produção brasileira de álcool anidro e hidratado. Unicadata. União da Indústria de cana-de-açúcar; 2016. Available from: http://www.unicadata.com.br
  • Amorim HV, Leão RM. Fermentação Alcoólica: Ciência e Tecnologia. Industriais F-ST, editor. Piracicaba (BR): Fermentec; 2005. p. 448.
  • Andrietta GS, Steckelberg C, Andrietta R. Bioetanol: Brasil, 30 anos na vanguarda. Construindo a História Dos Prod Nat. 2006;7:1–16.
  • Basso LC, De Amorim HV, De Oliveira AJ, et al. Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res. 2008;8:1155–1163.
  • Vianna CR, Silva CLC, Neves MJ, et al. Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaça: Trehalose metabolism, heat and ethanol resistance. Antonie Van Leeuwenhoek, Int J Gen Mol Microbiol. 2008;93:205–217.
  • de Freitas LC, Kaneko S. Ethanol demand under the flex-fuel technology regime in Brazil. Energy Econ. 2011;33:1146–1154.
  • Andrietta MGS, Andrietta SR, Steckelberg C, et al. Bioethanol: Brazil, 30 years of Proalcool. Int Sugar J. 2007;109:195–200.
  • Basso L, Basso T, Rocha S. Ethanol production in Brazil: the industrial process and its impact on yeast fermentation. In: Bernardes MAS, editor. Biofuel production recent development prospects. Vol. 1530. Rijeka (Croatia): InTech; 2011. p. 85–100.
  • Della-Bianca BE, Basso TO, Stambuk BU, et al. What do we know about the yeast strains from the Brazilian fuel ethanol industry? Appl Microbiol Biotechnol. 2013;97:979–991.
  • Liberal ATS, Basílio ACM, Resende AM, et al. Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation. J Appl Microbiol. 2007;102:538–547.
  • Filho EA, da S, de Melo HF, Antunes DF, et al. Isolation by genetic and physiological characteristics of a fuel-ethanol fermentative Saccharomyces cerevisiae strain with potential for genetic manipulation. J Ind Microbiol Biotechnol. 2005;32:481–486.
  • Basílio ACM, de Araújo PRL, de Morais JOF, et al. Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Curr Microbiol. 2008;56:322–326.
  • Lucena BT. Genetic diversity of lactic bacteria present in alcohol fuel distilleries in the states of Paraiba and Pernambuco [thesis]. Federal University of Pernambuco; 2010.
  • Skinner KA, Leathers TD. Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol. 2004;31:401–408.
  • Lacerda ICA, Gomes FCO, Borelli BM, et al. Identification of the bacterial community responsible for traditional fermentation during sour cassava starch, cachaça and minas cheese production using cultureindependent 16s rrna gene sequence analysis. Braz J Microbiol. 2011;42:650–657.
  • Gallo CR. Determinação da microbiota bacteriana de mosto e de dornas de fermentação alcoólica (Determination of the bacterial microbiota of must and alcoholic fermentation vats) [thesis]. State University of Campinas; 1989.
  • Makanjuola DB, Tymon A, Springham DG. Some effects of lactic acid bacteria on laboratory-scale yeast fermentations. Enzyme Microb Technol. 1992;14:350–357.
  • Narendranath NV. Bacterial contamination and control in ethanol production. In: Ingledew WM, Kelsall DR, Austin GD, Kluhspies C, editors. The alcohol textbook. 4th ed. Nottingham (UK): Nottingham University Press; 2003. p. 287–298.
  • Bayrock DP, Ingledew WM. Inhibition of yeast by lactic acid bacteria in continuous culture: nutrient depletion and/or acid toxicity? J Ind Microbiol Biotechnol. 2004;31:362–368.
  • Tosin C, Andrietta SR, Andrietta M. d GS. Population dynamics of yeasts inhabiting bioethanol production with cell recycling. J Inst Brew. 2015;121:343–348.
  • Bayrock D, Ingledew WM. Changes in steady state on introduction of a Lactobacillus contaminant to a continuous culture ethanol fermentation. J Ind Microbiol Biotechnol. 2001;27:39–45.
  • Paramithiotis S, Gioulatos S, Tsakalidou E, et al. Interactions between Saccharomyces cerevisiae and lactic acid bacteria in sourdough. Process Biochem. 2006;41:2429–2433.
  • Beckner M, Ivey ML, Phister TG. Microbial contamination of fuel ethanol fermentations. Lett Appl Microbiol. 2011;53:387–394.
  • Sue T, Obolonkin V, Griffiths H, et al. An exometabolomics approach to monitoring microbial contamination in microalgal fermentation processes by using metabolic footprint analysis. Appl Environ Microbiol. 2011;77:7605–7610.
  • Albergaria H, Arneborg N. Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes: role of physiological fitness and microbial interactions. Appl Microbiol Biotechnol. 2016;100:2035–2046.
  • Branco P, Francisco D, Chambon C, et al. Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions. Appl Microbiol Biotechnol. 2014;98:843–853.
  • Kemsawasd V, Branco P, Almeida MG, et al. Cell-to-cell contact and antimicrobial peptides play a combined role in the death of Lachanchea thermotolerans during mixed-culture alcoholic fermentation with Saccharomyces cerevisiae. FEMS Microbiol Lett. 2015;362:1–8.
  • Branco P, Viana T, Albergaria H, et al. Antimicrobial peptides (AMPs) produced by Saccharomyces cerevisiae induce alterations in the intracellular pH, membrane permeability and culturability of Hanseniaspora guilliermondii cells. Int J Food Microbiol. 2015;205:112–118.
  • Narendranath NV, Hynes SH, Thomas KC, et al. Effects of lactobacilli on yeast-catalyzed ethanol fermentations. Appl Environ Microbiol. 1997;63:4158–4163:
  • Dorta C, Oliva-Neto P, De-Abreu-Neto MS, et al. Synergism among lactic acid, sulfite, pH and ethanol in alcoholic fermentation of Saccharomyces cerevisiae (PE-2 and M-26). World J Microbiol Biotechnol. 2006;22:177–182.
  • Kuipers OP, De Ruyter PGGA Kleerebezem M, et al. Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol. 1998;64:15–21.
  • Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55:165–199.
  • Costa VM. Perfil de metabólitos excretados por Lactobacillus isolados de processos industriais de produção de etanol, com ênfase nos isômeros óticos D(−) e L(+) do ácido lático (Metabolics profile excrected by Lactobacillus isolated from industrial ethanol production process concearning D(-) and L(+) Lactic Acid optical isomers) [thesis]. ESALQ-University of São Paulo; 2006.
  • Di Cagno R, De Angelis M, Calasso M, et al. Proteomics of the bacterial cross-talk by quorum sensing. J Proteomics. 2011;74:19–34.
  • Winzer K, Hardie KR, Williams P. Bacterial cell-to-cell communication: sorry, can't talk now - gone to lunch! Curr Opin Microbiol. 2002;5:216–222.
  • Bassler BL, Losick R. Bacterially speaking. Cell. 2006;125:237–246.
  • Camilli A, Bassler BL. Bacterial small-molecule signaling pathways. Science. 2006;311:1113–1116.
  • Williams P, Winzer K, Chan WC, et al. Look who's talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci. 2007;362:1119–1134.
  • Albuquerque P, Casadevall A. Quorum sensing in fungi-a review. Med Mycol. 2012;50:337–345.
  • Zupan J, Avbelj M, Butinar B, et al. Monitoring of quorum-sensing molecules during minifermentation studies in wine yeast. J Agric Food Chem. 2013;61:2496–2505.
  • Fleet G. Yeast interactions and wine flavour. Int J Food Microbiol. 2003;86:11–22.
  • Ivey M, Massel M, Phister TG. Microbial interactions in food fermentations. Annu Rev Food Sci Technol. 2013;4:141–162.
  • Ruth L. Bio or bust? The economic and ecological cost of biofuels. EMBO Rep. 2008;9:130–133.
  • Dias MODS Maciel Filho R, Mantelatto PE, et al. Sugarcane processing for ethanol and sugar in Brazil. Environ Dev. 2015;1:17.
  • Brexó RP, Sant’Ana AS. Impact and significance of microbial contamination during fermentation for bioethanol production. Renew Sustain Energy Rev. 2017;73:423–434.
  • Borzani W, Schmidell W, Lima U, de A, et al. Biotecnologia Industrial: Processos Fermentativos e Enzimáticos. São Paulo (BR): Blucher; 2001. p. 593.
  • Facciotti MCR. Fermentação Contínua. In: Schmidell W, Lima UA, Aquarone E, Borzani W, editors. Biotecnologia Industrial II: Engenharia Bioquímica. São Paulo: Edgar Blücher; 2001. p. 223–46.
  • de Souza Liberal AT, da Silva Filho EA, de Morais JOF, et al. Contaminant yeast detection in industrial ethanol fermentation must by rDNA-PCR. Lett Appl Microbiol. 2005;40:19–23.
  • Ngang JJE, Letourneau F, Villa P. Alcoholic fermentation of beet molasses: effects of lactic acid on yeast fermentation parameters. Appl Microbiol Biotechnol. 1989;31:125–128.
  • Gallo CR, Canhos VP. Efeitos do tratamento ácido no fermento sobre a microbiota bacteriana da fermentação alcoólica. stab. 1991;29:35–37.
  • Alcarde VE. Avaliação de parametros que afetam a floculação de leveduras e bacterias isoladas de processos industriais de fermentação alcoolica (Evaluation of parameters affecting yeasts and bacteria flocculation isolated from industrial alcohol fermentation process) [thesis]. State University of Campinas; 2001.
  • Camolez MA, Mutton MJR. Influência de microrganismos contaminantes sobre o processo fermentativo. stab. 2005;23:6–9.
  • Muthaiyan A, Limayem A, Ricke SC. Antimicrobial strategies for limiting bacterial contaminants in fuel bioethanol fermentations. Prog Energy Combust Sci. 2011;37:351–370.
  • Worley-Morse TO, Deshusses MA, Gunsch CK. Reduction of invasive bacteria in ethanol fermentations using bacteriophages. Biotechnol Bioeng. 2015;112:1544–1553.
  • Roach DR, Khatibi P. a, Bischoff KM, et al. Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations. Biotechnol Biofuels. 2013;6:20.
  • Rich JO, Leathers TD, Bischoff KM, et al. Biofilm formation and ethanol inhibition by bacterial contaminants of biofuel fermentation. Bioresour Technol. 2015;196:347–354.
  • Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol. 1994;176:269–275.
  • Hense BA, Kuttler C, Müller J, et al. Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol. 2007;5:230–239.
  • Karlson P, Lüscher M. Pheromones’: a new term for a class of biologically active substances. Nature. 1959;183:55–56.
  • Even-Tov E, Omer Bendori S, Valastyan J, et al. Social evolution selects for redundancy in bacterial quorum sensing. PLoS Biol. 2016;14:e1002386.
  • Bassler BL. Small talk. Cell-to-cell communication in bacteria. Cell. 2002;109:421–424.
  • Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol. 2005;21:319–346.
  • Skandamis PN, Nychas G-JE. Quorum sensing in the context of food microbiology. Appl Environ Microbiol. 2012;78:5473–5482.
  • Henke JM, Bassler BL. Bacterial social engagements. Trends Cell Biol. 2004;14:648–656.
  • Taga ME, Bassler BL. Chemical communication among bacteria. Proc Natl Acad Sci. 2003;100(Suppl):14549–14554.
  • Lade H, Paul D, Kweon JH. N-Acyl homoserine lactone-mediated quorum sensing with special reference to use of quorum quenching bacteria in membrane biofouling control. Biomed Res Int. 2014;2014:1–25.
  • Lyon GJ, Novick RP. Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides. 2004;25:1389–1403.
  • Lyon GJ, Muir TW. Chemical signaling among bacteria and its inhibition. Chem Biol. 2003;10:1007–1021.
  • Smith D, Wang J-H, Swatton JE, et al. Variations on a theme: diverse N-acyl homoserine lactone-mediated quorum sensing mechanisms in gram-negative bacteria. Sci Prog. 2006;89:167–211.
  • Antunes LCM, Ferreira RBR. Intercellular communication in bacteria. Crit Rev Microbiol. 2009;35:69–80.
  • Reading NC, Torres AG, Kendall MM, et al. A novel two-component signaling system that activates transcription of an enterohemorrhagic Escherichia coli effector involved in remodeling of host actin. J Bacteriol. 2007;189:2468–2476.
  • Hogan DA. Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell. 2006;5:613–619.
  • Sprague GF, Winans SC. Eukaryotes learn how to count: quorum sensing by yeast. Genes Dev. 2006;20:1045–1049.
  • Rumjanek NG, Fonseca MCC da, Xavier GR. Quorum sensing em sistemas agricolas: Comportamento multicelular em procarioto via comunicação intercelular. Rev Biotecnol Cienc e Desenvolv. 2004;33:35–50.
  • Flavier AB, Ganova-Raeva LM, Schell MA, et al. Hierarchical autoinduction in Ralstonia solanacearum: control of acyl-homoserine lactone production by a novel autoregulatory system responsive to 3-hydroxypalmitic acid methyl ester. J Bacteriol. 1997;179:7089–7097.
  • Diggle SP, Matthijs S, Wright VJ, et al. The Pseudomonas aeruginosa 4-Quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol. 2007;14:87–96.
  • Sturme MHJ, Kleerebezem M, Nakayama J, et al. Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek. 2002;81:233–243.
  • Bassler BL. How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol. 1999;2:582–587.
  • Wuster A, Babu MM. Transcriptional control of the quorum sensing response in yeast. Mol BioSyst. 2009;6:134–141.
  • Gori K, Knudsen PB, Nielsen KF, et al. Alcohol-based quorum sensing plays a role in adhesion and sliding motility of the yeast Debaryomyces hansenii. FEMS Yeast Res. 2011;11:643–652.
  • Monnet V, Juillard V, Gardan R. Peptide conversations in Gram-positive bacteria. Crit Rev Microbiol. 2014;42:339–351.
  • Reading NC, Sperandio V. Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett. 2006;254:1–11.
  • Withers H, Swift S, Williams P. Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Curr Opin Microbiol. 2001;4:186–193.
  • Long T, Tu KC, Wang Y, et al. Quantifying the integration of quorum-sensing signals with single-cell resolution. PLoS Biol. 2009;7:e1000068.
  • Hornby JM, Jensen EC, Lisec AD, et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol. 2001;67:2982–2992.
  • Keller L, Surette MG. Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol. 2006;4:249–258.
  • Ivey M. Transcriptome analysis of Saccharomyces cerevisiae under bacterial contamination and lactic acid stress during ethanolic fermentation [Thesis]. New York State University; 2010.
  • Redfield RJ. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 2002;10:365–370.
  • Weber M, Buceta J. Dynamics of the quorum sensing switch: stochastic and non-stationary effects. BMC Syst Biol. 2013;7:6.
  • Kalia VC. Quorum sensing inhibitors: an overview. Biotechnol Adv. 2013;31:224–245.
  • Du Y, Li T, Wan Y, et al. Signal molecule-dependent quorum-sensing and quorum-quenching enzymes in bacteria. Crit Rev Eukaryot Gene Expr. 2014;24:117–132.
  • Fetzner S. Quorum quenching enzymes. J Biotechnol. 2015;201:2–14.
  • Bassler BL, Miller MB. Quorum sensing. The prokaryotes. Heidelberg: Springer; 2013. p. 495–509.
  • Williams TCC, Averesch NJHJH, Winter G, et al. Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae. Metab Eng. 2015;29:124–134.
  • Tocheva EI, Ortega DR, Jensen GJ. Sporulation, bacterial cell envelopes and the origin of life. Nat Rev Microbiol. 2016;14:535–542.
  • Shirtliff ME, Peters BM, Jabra-Rizk MA. Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol Lett. 2009;299:1–8.
  • Alem MAS, Oteef MDY, Flowers TH, et al. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryot Cell. 2006;5:1770–1779.
  • Lingappa BT, Prasad M, Lingappa Y, et al. Phenethyl alcohol and tryptophol: autoantibiotics produced by the fungus Candida albicans. Science. 1969;163:192–194.
  • Madhani HD. Quorum sensing in fungi: Q&A. PLoS Pathog. 2011;7:10–12.
  • Chen H, Fink GR. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev. 2006;20:1150–1161.
  • Cottier F, Mühlschlegel FA. Communication in fungi. Int J Microbiol. 2012;2012:1–9.
  • Eddy AA. Flocculation characteristics of yeasts: iii. General role of flocculating agents and special characteristics of a yeast flocculated by alcohol. J Inst Brew. 1955;61:318–320.
  • Gilliland RB. The flocculation characteristics of brewing yeasts during fermentation. Proceedings of the European Brewery Convention; Brighton, England; 1951. p. 35–58.
  • Hazelwood LA, Daran J-M, van Maris AJA, et al. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol. 2008;74:2259–2266.
  • Mas A, Guillamon JM, Torija MJ, et al. Bioactive compounds derived from the yeast metabolism of aromatic amino acids during alcoholic fermentation. Biomed Res Int. 2014;2014:1–7.
  • Patil AG, Koolwal SM, Butala HD. Fusel oil: Composition, removal and potential utilization. Int Sugar J. 2009;104:51–58.
  • Dickinson JR. Filament formation in Saccharomyces cerevisiae-a review. Folia Microbiol (Praha). 2008;53:3–14.
  • Machida K, Tanaka T, Fujita K, et al. Farnesol-induced generation of reactive oxygen species via indirect inhibition of the mitochondrial electron transport chain in the yeast Saccharomyces cerevisiae. J Bacteriol. 1998;180:4460–4465.
  • Machida K, Tanaka T, Yano Y, et al. Farnesol-induced growth inhibition in Saccharomyces cerevisiae by a cell cycle mechanism. Microbiology. 1999;145:293–299.
  • Lorenz MC, Cutler NS, Heitman J. Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol Biol Cell. 2000;11:183–199.
  • Ceccato-Antonini SR, Sudbery PE. Filamentous growth in Saccharomyces cerevisiae. Braz J Microbiol. 2004;35:173–181.
  • Sidari R, Caridi A, Howell KS. Wild Saccharomyces cerevisiae strains display biofilm-like morphology in contact with polyphenols from grapes and wine. Int J Food Microbiol. 2014;189:146–152.
  • Hogan DA. Quorum sensing: alcohols in a social situation. Curr Biol. 2006;16:R457–R458.
  • Aggarwal C, Federle MJ. Peptide pheromones and their protein receptors: cellular signaling in Gram-positive bacteria. In: Molecular Life Sciences. New York: Springer; 2014. p. 1–14.
  • Kleerebezem M, Quadri LE, Kuipers OP, et al. Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol. 1997;24:895–904.
  • Di Cagno R, De Angelis M, Calasso M, et al. Quorum sensing in sourdough Lactobacillus plantarum DC400: induction of plantaricin A (PlnA) under co-cultivation with other lactic acid bacteria and effect of PlnA on bacterial and Caco-2 cells. Proteomics. 2010;10:2175–2190.
  • Sturme MHJ, Nakayama J, Molenaar D, et al. An agr-like two-component regulatory system in Lactobacillus plantarum is involved in production of a novel cyclic peptide and regulation of adherence. J Bacteriol. 2005;187:5224–5235.
  • Turgay K, Hahn J, Burghoorn J, et al. Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J. 1998;17:6730–6738.
  • Lazazzera BA, Grossman AD. The ins and outs of peptide signaling. Trends Microbiol. 1998;6:288–294.
  • Skinner-Nemec KA, Nichols NN, Leathers TD. Biofilm formation by bacterial contaminants of fuel ethanol production. Biotechnol Lett. 2007;29:379–383.
  • Bischoff KM, Liu S, Leathers TD, et al. Modeling bacterial contamination of fuel ethanol fermentation. Biotechnol Bioeng. 2009;103:117–122.
  • Leathers TD, Bischoff KM, Rich JO, et al. Inhibitors of biofilm formation by biofuel fermentation contaminants. Bioresour Technol. 2014;169:45–51.
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–1322.
  • Campana FB. Monitoramento temporal e espacial de contaminações bacterianas na produção de bioetanol: caracterização molecular por T-RFLP e detecção quantitativa por qPCR de comunidades formadoras de biofilmes (Temporal and spatial monitoring of bacterial contaminatio [thesis]. ESALQ-University of São Paulo-USP; 2012.
  • Kjelleberg S, Molin S. Is there a role for quorum sensing signals in bacterial biofilms? Curr Opin Microbiol. 2002;5:254–258.
  • Kubota H, Senda S, Nomura N, et al. Biofilm formation by lactic acid bacteria and resistance to environmental stress. J Biosci Bioeng. 2008;106:381–386.
  • Li Y-H, Tian X. Quorum sensing and bacterial social interactions in biofilms. Sensors (Basel). 2012;12:2519–2538.
  • Neto PO. Influência da contaminação por bactérias láticas na fermentação alcoólica por batelada-alimentada (Influence of contamination by lactic acid bacteria in the alcohol fermentation of the fed-batch process) [thesis]. State University of Campinas-UNICAMP; 1990.
  • Sturme MHJ, Francke C, Siezen RJ, et al. Making sense of quorum sensing in lactobacilli: a special focus on Lactobacillus plantarum WCFS1. Microbiology (Reading, Engl). 2007;153:3939–3947.
  • Magnusson J, Schnürer J. Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Appl Environ Microbiol. 2001;67:1–5.
  • Turovskiy Y, Kashtanov D, Paskhover B, Chikindas ML. Quorum sensing: fact, fiction, and everything in between. Adv Appl Microbiol. 2007;62:191–234.
  • Eijsink VGH, Axelsson L, Diep DB, et al. Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek. 2002;81:639–654.
  • Willey JM. Donk WAVD. Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol. 2007;61:477–501.
  • Vuyst L, De, Leroy F. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol. 2007;13:194–199.
  • Camu N, De Winter T, Verbrugghe K, et al. Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl Environ Microbiol. 2007;73:1809–1824.
  • Krivorotova T, Cirkovas A, Maciulyte S, et al. Nisin-loaded pectin nanoparticles for food preservation. Food Hydrocoll. 2016;54:49–56.
  • Zacharof MP, Lovitt RW. Bacteriocins produced by lactic acid bacteria a review article. APCBEE Procedia. 2012;2:50–56.
  • Cotter PD, Ross RP, Hill C. Bacteriocins - a viable alternative to antibiotics? Nat Rev Microbiol. 2012;11:95–105.
  • Balciunas EM, Castillo Martinez FA, Todorov SD, et al. Novel biotechnological applications of bacteriocins: a review. Food Control. 2013;32:134–142.
  • Peng J, Zhang L, Gu Z-H, et al. The role of nisin in fuel ethanol production with Saccharomyces cerevisiae. Lett Appl Microbiol. 2012;55:128–134.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.