4,751
Views
78
CrossRef citations to date
0
Altmetric
Review Article

An overview of Bacillus proteases: from production to application

, &
Pages 321-334 | Received 20 Apr 2015, Accepted 18 Jun 2017, Published online: 08 Aug 2017

References

  • Garcia-Carreno FL, Navarrete MA, Toro DEL. Classification of proteases without tears. Biochem Educ. 1997;25:161–167.
  • Grassmann W, Dyckerhoff H. Über die Proteinase und die polypeptidase der hefe. Hoppe-Seyler’s Z Physiol Chem. 1928;179:41–78.
  • Barrett AJ, McDonald JK. Nomenclature: protease, proteinase and peptidase. Biochem J. 1986;237:935.
  • Rawlings ND, Barrett AJ, Bateman A. MEROPS: the peptidase database. Nucleic Acids Res. 2010;38:D227–D233.
  • Rawlings ND, Tole DP, Barrett AJ. MEROPS: the peptidase database. Nucleic Acids Res. 2004;32:D160–D164.
  • Kuddus M, Singh P, Thomas G, et al. Recent developments in production and biotechnological applications of c-phycocyanin. Biomed Res Int. 2013;2013:330–338.
  • Ahmed Z, Donkor O, Street WA, et al. Proteolytic activities in fillets of selected underutilized Australian fish species. Food Chem. 2013;140:238–244.
  • Sharma KM, Kumar R, Panwar S, et al. Microbial alkaline proteases: optimization of production parameters and their properties. J Genet Eng Biotechnol. 2017;15:115–126.
  • Tufvesson P, Lima-Ramos J, Nordblad M, et al. Guidelines and cost analysis for catalyst production in biocatalytic processes. Org Process Res Dev. 2011;15:266–274.
  • Belmessikh A, Boukhalfa H, Mechakra-Maza A, et al. Statistical optimization of culture medium for neutral protease production by Aspergillus oryzae. Comparative study between solid and submerged fermentations on tomato pomace. J Taiwan Inst Chem Eng. 2013;44:377–385.
  • Chi Z, Ma C, Wang P, et al. Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Bioresour Technol. 2007;98:534–538.
  • Bach E, Sant’Anna V, Daroit DJ, et al. Production, one-step purification, and characterization of a keratinolytic protease from Serratia marcescens P3. Process Biochem. 2012;47:2455–2462.
  • Auther C, Helal M, Amer H, et al. Physiological and microbiological studies on production of alkaline protease from locally isolated Bacillus subtilis. Aust J Basic Appl Sci. 2012;6:193–203.
  • Harwood CR, Cranenburgh R. Bacillus protein secretion: an unfolding story. Trends Microbiol. 2008;16:73–79.
  • Rehman R, Ahmed M, Siddique A, et al. Catalytic role of thermostable metalloproteases from Bacillus subtilis KT004404 as dehairing and destaining agent. Appl Biochem Biotechnol. 2017;181:434–450.
  • Anandharaj M, Sivasankari B, Siddharthan N, et al. Production, purification, and biochemical characterization of thermostable metallo-protease from novel Bacillus alkalitelluris TWI3 isolated from tannery waste. Appl Biochem Biotechnol. 2016;178:1666–1686.
  • Vetter R, Wilke D, Möller B, et al. Alkalische proteasen aus Bacillus pumilus. EP 0572992 A1; 1993.
  • Merkel M, Siegert P, Wieland S, et al. Subtilisin from Bacillus pumilus and washing and cleaning agents containing said novel subtilisin. WO/2007/131656; 2007.
  • Shikha SA, Darmwal NS. Improved production of alkaline protease from a mutant of alkalophilic Bacillus pantotheneticus using molasses as a substrate. Bioresour Technol. 2007;98:881–885.
  • Sangeetha R, Geetha A, Arulpandi I. Pongamia pinnata seed cake: a promising and inexpensive substrate for production of protease and lipase from Bacillus pumilus SG2 on solid-state fermentation. Indian J Biochem Biophys. 2011;48:435–439.
  • Shivasharana CT, Naik GR. Production of alkaline protease from a thermoalkalophilic Bacillus sp. JB-99 under solid state fermentation. Int J Pharm Biol Sci. 2012;3:571–587.
  • Jaouadi NZ, Jaouadi B, Aghajari N, et al. The overexpression of the SAPB of Bacillus pumilus CBS and mutated sapB-L31I/T33S/N99Y alkaline proteases in Bacillus subtilis DB430: new attractive properties for the mutant enzyme. Bioresour Technol. 2012;105:142–151.
  • Annamalai N, Rajeswari MV, Thavasi R, et al. Optimization, purification and characterization of novel thermostable, haloalkaline, solvent stable protease from Bacillus halodurans CAS6 using marine shellfish wastes: a potential additive for detergent and antioxidant synthesis. Bioprocess Biosyst Eng. 2013;36:873–883.
  • Bougatef A, Balti R, Haddar A, et al. Protein hydrolysates from bluefin tuna (Thunnus thynnus) heads as influenced by the extent of enzymatic hydrolysis. Biotechnol Bioproc E. 2012;17:841–852.
  • Ozcan T, Kurdal E. The effects of using a starter culture, lipase, and protease enzymes on ripening of Mihalic cheese. Int J Dairy Technol. 2012;65:585–593.
  • Caille J, Govindan CK, Junga H. Hetero diels-alder-biocatalysis approach for the synthesis of (s) -3-[2-{(methylsulfonyl)oxy}ethoxy]-4-(triphenylmethoxy)-1-butanol methanesulfonate, a key intermediate for the synthesis of the pkc inhibitor. Org Process Res Dev. 2002;6:471–476.
  • Ferreira L, Ramos MA, Dordick JS, et al. Influence of different silica derivatives in the immobilization and stabilization of a Bacillus licheniformis protease (Subtilisin Carlsberg). J Mol Catal B Enzym. 2003;21:189–199.
  • Gopal N, Hill C, Ross PR, et al. The prevalence and control of Bacillus and related spore-forming bacteria in the dairy industry. Front Microbiol. 2015;6:1418.
  • Alcaraz LD, Olmedo G, Bonilla G, et al. The genome of Bacillus coahuilensis reveals adaptations essential for survival in the relic of an ancient marine environment. Proc Natl Acad Sci USA. 2008;105:5803–5808.
  • Gupta R, Beg Q, Lorenz P. Bacterial alkaline proteases: Molecular approaches and industrial applications. Appl Microbiol Biotechnol. 2002;59:15–32.
  • Sumantha A, Larroch C, Pandey A. Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Technol Biotechnol. 2006;44:211–220.
  • Sewalt V, Shanahan D, Gregg L, et al. The Generally Recognized as Safe (GRAS) process for industrial microbial enzymes. Indus Biotechnol. 2016;12:295–302.
  • Schallmey M, Singh A, Ward OP. Developments in the use of Bacillus species for industrial production. Can J Microbiol. 2004;50:1–17.
  • Rahmer R, Heravi KM, Altenbuchner J. Construction of a super-competent Bacillus subtilis 168 using the PmtlA-comKS inducible cassette. Front Microbiol. 2015;6:1431.
  • Adinarayana K, Ellaiah P, Prasad DS. Purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus subtilis PE-11. AAPS PharmSciTech. 2003;4:E56.
  • Rozs M, Manczinger L, Vágvölgyi C, et al. Secretion of a trypsin-like thiol protease by a new keratinolytic strain of Bacillus licheniformis. FEMS Microbiol Lett. 2001;205:221–224.
  • Sookkheo B, Sinchaikul S, Phutrakul S, et al. Purification and characterization of the highly thermostable proteases from Bacillus stearothermophilus TLS33. Protein Expr Purif. 2000;20:142–151.
  • Briki S, Hamdi O, Landoulsi A. Enzymatic dehairing of goat skins using alkaline protease from Bacillus sp. SB12. Protein Expr Purif. 2016;121:9–16.
  • Sathishkumar R, Ananthan G, Arun J. Production, purification and characterization of alkaline protease by ascidian associated Bacillus subtilis GA CAS8 using agricultural wastes. Biocatal Agric Biotechnol. 2015;4:214–220.
  • Farhadian S, Asoodeh A, Lagzian M. Purification, biochemical characterization and structural modeling of a potential htrA-like serine protease from Bacillus subtilis DR8806. J Mol Catal B. 2015;115:51–58.
  • Annamalai N, Rajeswari MV, Balasubramanian T. Extraction, purification and application of thermostable andhalostable alkaline protease from Bacillus alveayuensis CAS 5using marine wastes. Food Bioprod Process. 2014;92:335–342.
  • Wang J, Xu A, Wan Y, et al. Purification and characterization of a new metallo-neutral protease for beer brewing from Bacillus amyloliquefaciens SYB-001. Appl Biochem Biotechnol. 2013;170:2021–2033.
  • Anbu P. Characterization of solvent stable extracellular protease from Bacillus koreensis (BK-P21A). Int J Biol Macromol. 2013;56:162–168.
  • Jain D, Pancha I, Mishra SK, et al. Purification and characterization of haloalkaline thermoactive, solvent stable and SDS-induced protease from Bacillus sp.: a potential additive for laundry detergents. Bioresour Technol. 2012;115:228–236.
  • Rajkumar R, Jayappriyan KR, Rengasamy R. Purification and characterization of a protease produced by Bacillus megaterium RRM2: application in detergent and dehairing industries. J Basic Microbiol. 2011;51:614–624.
  • Singh SK, Singh SK, Tripathi VR, et al. Purification, characterization and secondary structure elucidation of a detergent stable, halotolerant, thermoalkaline protease from Bacillus cereus SIU1. Process Biochem. 2012;47:1479–1487.
  • Duman RE, Löwe J. Crystal structures of Bacillus subtilis lon protease. J Mol Biol. 2010;401:653–670.
  • Betzel C, Klupsch S, Branner S, et al. Crystal structures of the alkaline proteases savinase and esperase from Bacillus lentus. Adv Exp Med Biol. 1996;379:49–61.
  • Nonaka T, Fujihashi M, Kita A, et al. The crystal structure of an oxidatively stable subtilisin-like alkaline serine protease, KP-43, with a C-terminal beta-barrel domain. J Biol Chem. 2004;279:47344–47345.
  • Siezen RJ, Leunissen JA. Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci. 1997;6:501–523.
  • Betzel C, Klupsch S, Papendorf G, et al. Crystal structure of the alkaline proteinase Savinase from Bacillus lentus at 1.4 A resolution. J Mol Biol. 1992;223:427–445.
  • Yamane T, Kani T, Hatanaka T, et al. Structure of a new alkaline serine protease (M-protease) from Bacillus sp. KSM-K16. Acta Crystallogr D Biol Crystallogr. 1995;51:199–206.
  • Shirai T, Suzuki A, Yamane T, et al. High-resolution crystal structure of M-protease: Phylogeny aided analysis of the high-alkaline adaptation mechanism. Protein Eng. 1997;10:627–634.
  • Lee BG, Kim MK, Song HK. Structural insights into the conformational diversity of ClpP from Bacillus subtilis. Mol Cells. 2011;32:589–595.
  • Nam SE, Kim AC, Paetzel M. Crystal structure of Bacillus subtilis signal peptide peptidase A. J Mol Biol. 2012;419:347–358.
  • Rao MB, Tanksale AM, Ghatge MS, et al. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev. 1998;62:597–635.
  • Fastrez J, Fersht AR. Demonstration of the acyl-enzyme mechanism for the hydrolysis of peptides and anilides by chymotrypsin. Biochemistry. 1973;12:2025–2034.
  • Roderick SL, Matthews BW. Structure of the cobalt-dependent methionine aminopeptidase from Escherichia coli: A new type of proteolytic enzyme. Biochemistry. 1993;32:3907–3912.
  • Cottrell GS, Hooper NM, Turner AJ. Cloning, expression, and characterization of human cytosolic aminopeptidase P: A single manganese(II)-dependent enzyme. Biochemistry. 2000;39:15121–15128.
  • Heitzer M, Hallmann A. An extracellular matrix-localized metalloproteinase with an exceptional QEXXH metal binding site prefers copper for catalytic activity. J Biol Chem. 2002;277:28280–28286.
  • Kirk O, Borchert TV, Fuglsang CC. Industrial enzyme applications. Curr Opin Biotechnol. 2002;13:345–351.
  • Baweja M, Tiwari R, Singh PK, et al. An alkaline protease from Bacillus pumilus MP 27: functional analysis of its binding model toward its applications as detergent additive. Front Microbiol. 2016;7:1–14.
  • Oliveira CTD, Rieger TJ, Daroit DJ. Catalytic properties and thermal stability of a crude protease from the keratinolytic Bacillus sp. CL33A. Biocatal Agric Biotechnol. 2017;10:270–277.
  • Kim M, Si J-B, Reddy LV, et al. Enhanced production of extracellular proteolytic enzyme excreted by a newly isolated Bacillus subtilis FBL-1 through combined utilization of statistical designs and response surface methodology. RSC Adv. 2016;6:51270–51278.
  • Moorthy I, Baskar R. Statistical modeling and optimization of alkaline protease production from a newly isolated alkalophilic Bacillus species BGS using response surface methodology and genetic algorithm. Prep Biochem Biotechnol. 2013;43:293–314.
  • Nadeem M, Baig S, Syed QUA, et al. Microbial production of alkaline proteases by locally isolated Bacillus subtilis PCSIR-5. Pak J Zool. 2006;38:109–114.
  • Qureshi AS, Khushk I, Ali CH, et al. Coproduction of protease and amylase by thermophilic Bacillus sp. BBXS-2 using open solid-state fermentation of lignocellulosic biomass. Biocatal Agric Biotechnol. 2016;8:146–151.
  • Vijayaraghavan P, Lazarus S, Vincent SGP. De-hairing protease production by an isolated Bacillus cereus strain AT under solid-state fermentation using cow dung: Biosynthesis and properties. Saudi J Biol Sci. 2014;21:27–34.
  • Rathakrishnan P, Nagarajan P. Red gram husk: a potent substrate for production of protease by Bacillus cereus in solid-state fermentation. Int J ChemTech Res. 2011;3:1526–1533.
  • Gupta R, Beg QK, Khan S, et al. An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl Microbiol Biotechnol. 2003;60:381–395.
  • Pandey A. Recent process developments in solid-state fermentation. Process Biochem. 1992;27:109–117.
  • Couto RS, Sanromán M. Effect of two wastes fromgroundnut processing on laccase production and dye decolouriza-tion ability. J Food Eng. 2006;73:388–393.
  • Pandey A, Soccol CR, Nigam P, et al. Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresour Technol. 2000;74:69–80.
  • Lonsane BK, Ghildyal NP, Budiatman S, et al. Engineering aspects of solid state fermentation. Enzyme Microb Technol. 1985;7:258–265.
  • Chiliveri SR, Koti S, Linga VR. Retting and degumming of natural fibers by pectinolytic enzymes produced from Bacillus tequilensis SV11-UV37 using solid state fermentation. Springerplus. 2016;5:559.
  • Pandey A, Soccol CR, Mitchell D. New developments in solid state fermentation: I-bioprocesses and products. Process Biochem. 2000;35:1153–1169.
  • O’Hara MB, Hageman JH. Energy and calcium ion dependence of proteolysis during sporulation of Bacillus subtilis cells. J Bacteriol. 1990;172:4161–4170.
  • Hanlon GW, Hodges NA. Bacitracin and protease production in relation to sporulation during exponential growth of Bacillus licheniformis on poorly utilized carbon and nitrogen sources. J Bacteriol. 1981;147:427–431.
  • Joo HS, Chang CS. Production of an oxidant and SDS-stable alkaline protease from an alkaophilic Bacillus clausii I-52 by submerged fermentation: feasibility as a laundry detergent additive. Enzyme Microb Technol. 2006;38:176–183.
  • Huang R, Yang Q, Feng H. Single amino acid mutation alters thermostability of the alkaline protease from Bacillus pumilus: thermodynamics and temperature dependence. Acta Biochim Biophys Sin. 2015;47:98–105.
  • Jaouadi B, Aghajari N, Haser R, et al. Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis. Biochimie. 2010;92:360–369.
  • Jaouadi NZ, Jaouadi B, Hlima HB, et al. Probing the crucial role of Leu31 and Thr33 of the Bacillus pumilus CBS alkaline protease in substrate recognition and enzymatic depilation of animal hide. PLoS One. 2014;9:e108367.
  • Liu Y, Zhang T, Zhang Z, et al. Enzymatic improvement of cold adaptation of Bacillus alcalophilus alkaline protease by directed evolution. J Mol Catal B. 2014;106:117–123.
  • Van den Burg B, de Kreij A, Van der Veek P, et al. Characterization of a novel stable biocatalyst obtained by protein engineering. Biotechnol Appl Biochem. 1999;30:35–40.
  • Martinez R, Jakob F, Tu R, et al. Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution. Biotechnol Bioeng. 2013;110:711–720.
  • Wang H, Yang L, Ping Y, et al. Engineering of a Bacillus amyloliquefaciens strain with high neutral protease producing capacity and optimization of its fermentation conditions. PLoS One. 2016;11:e0146373.
  • Diep TB, Thom NT, Sang HD, et al. Screening streptomycin resistant mutations from gamma ray irradiated Bacillus subtilis B5 for selection of potential mutants with high production of protease. J Sci Nat Sci Technol. 2016;32:170–176.
  • Feldman LI. Preparation of microbial alkaline protease by fermentation with Bacillus subtilis, variety licheniformis. US3623957 A; 1971.
  • Rahman RNZ, Salleh A, Basri M, et al. Production of protease from Bacillus stearothermophilus F1. US20050186661 A1; 2005.
  • Shih J. Construction of Bacillus licheniformis T1 strain, and fermentation production of crude enzyme extract therefrom. US20050032188 A17; 2005.
  • Weber A, Hellebrandt A, Wieland S, et al. Alkaline protease from Bacillus gibsonii (DSM 14393) and washing and cleaning products comprising said alkaline protease. US7262042 B2; 2007.
  • Quaedflieg PJLM, Nuijens T. Enzymatic synthesis of amino acid and peptide c-terminal amides. WO2013129927 A1; 2013.
  • Damodaran S, Han X-Q. Detergent-stable alkaline protease from Bacillus pumilus. US 5976859 A; 1996.
  • Adrio JL, Demain AL. Microbial enzymes: tools for biotechnological processes. Biomolecules. 2014;4:117–139.
  • Hmidet N, El-Hadj AN, Haddar A, et al. Alkaline proteases and thermostable α-amylase co-produced by Bacillus licheniformis NH1: characterization and potential application as detergent additive. Biochem Eng J. 2009;47:71–79.
  • Lagzian M, Asoodeh A. An extremely thermotolerant, alkaliphilic subtilisin-like protease from hyperthermophilic Bacillus sp. MLA64. Int J Biol Macromol. 2012;51:960–967.
  • Joshi S, Satyanarayana T. Characteristics and applications of a recombinant alkaline serine protease from a novel bacterium Bacillus lehensis. Bioresour Technol. 2013;131:76–85.
  • Sinha R, Khare SK. Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: Differential role of metal ions in stability and activity. Bioresour Technol. 2013;145:357–361.
  • Danquah MK, Agyei D. Pharmaceutical applications of bioactive peptides. OA Biotechnol. 2012;1:5.
  • Korhonen H, Pihlanto A. Bioactive peptides: production and functionality. Int Dairy J. 2006;16:945–960.
  • Daroit DJ, Corrěa APF, Canales MM, et al. Physicochemical properties and biological activities of ovine caseinate hydrolysates. Dairy Sci Technol. 2012;92:335–351.
  • Law B, Wigmore A. Microbial proteinases as agents for accelerated cheese ripening. Int J Dairy Tech. 1982;35:75–76.
  • Fox PF, Wallace JM, Morgan S, et al. Acceleration of cheese ripening. Antonie Van Leeuwenhoek. 1996;70:271–297.
  • Zapelena MJ, Zalacain I, De Peña MP, et al. Effect of the addition of a neutral proteinase from Bacillus subtilis (Neutrase) on nitrogen fractions and texture of Spanish fermented sausage. J Agric Food Chem. 1997;45:2798–2801.
  • Wang C, Guan Z, He Y. Biocatalytic domino reaction: synthesis of 2H-1-benzopyran-2-one derivatives using alkaline protease from Bacillus licheniformis. Green Chem. 2011;13:2048–2054.
  • Xie B-H, Guan Z, He Y. Biocatalytic knoevenagel reaction using alkaline protease from Bacillus licheniformis. Biocatal Biotransformation. 2012;30:238–244.
  • López-Iglesias M, Busto E, Gotor V. Use of protease from Bacillus licheniformis as promiscuous catalyst for organic synthesis: applications in C-C and C-N bond formation reactions. Adv Synth Catal. 2011;353:2345–2353.
  • Poppe L, Novák L. Selective biocatalysis: a synthetic approach. New York: Weinheim; 1992.
  • Mahmoudian M. Biocatalytic production of chiral pharmaceutical intermediates. Biocatal Biotransformation. 2000;18:105–118.
  • Zheng CZ, Wang JL, Li X, et al. Regioselective synthesis of amphiphilic metoprolol-saccharide conjugates by enzymatic strategy in organic media. Process Biochem. 2011;46:123–127.
  • Zaraî N, Rekik H, Ben M, et al. A novel keratinase from Bacillus tequilensis strain Q7 with promising potential for the leather bating process. Int J Biol Macromol. 2015;79:952–964.
  • Brandelli A. Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Technol. 2008;1:105–116.
  • Lv LX, Sim MH, Li YD, et al. Production, characterization and application of a keratinase from Chryseobacterium L99 sp. nov. Process Biochem. 2010;45:1236–1244.
  • Liu B, Zhang J, Li B, et al. Expression and characterization of extreme alkaline, oxidation-resistant keratinase from Bacillus licheniformis in recombinant Bacillus subtilis WB600 expression system and its application in wool fiber processing. World J Microbiol Biotechnol. 2013;29:825–832.
  • Infante I, Morel MA, Ubalde MC, et al. Wool-degrading Bacillus isolates: extracellular protease production for microbial processing of fabrics. World J Microbiol Biotechnol. 2010;26:1047–1052.
  • Cooper M, Gutterres M, Marcilio N. Environmental developments and researches in Brazilian leather sector. J Soc Leather Technol Chem. 2011;50:209–211.
  • Paliwal N, Singh S, Garg S. Cation-induced thermal stability of an alkaline protease from a Bacillus sp. Bioresour Technol. 1994;50:209–211.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.