1,310
Views
20
CrossRef citations to date
0
Altmetric
Review Article

Microalgae: a robust “green bio-bridge” between energy and environment

, & ORCID Icon
Pages 351-368 | Received 12 Aug 2015, Accepted 17 May 2017, Published online: 01 Aug 2017

References

  • D’Alessandro EB, Antoniosi Filho NR. Concepts and studies on lipid and pigments of microalgae: a review. Renew Sust Energy Rev. 2016;58:832–841.
  • Choix FJ, de-Bashan LE, Bashan Y. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions. Enzyme Microb Technol. 2012;51:300–309.
  • Simon DP, Anila N, Gayathri K, et al. Heterologous expression of β-carotene hydroxylase in Dunaliella salina by Agrobacterium-mediated genetic transformation. Algal Res. 2016;18:257–265.
  • Guedes A, Amaro HM, Malcata FX. Microalgae as sources of high added‐value compounds—a brief review of recent work. Biotechnol Prog. 2011;27:597–613.
  • Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004;65:635–648.
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev. 2010;14:217–232.
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306.
  • Sendra M, Sánchez-Quiles D, Blasco J, et al. Effects of TiO2 nanoparticles and sunscreens on coastal marine microalgae: ultraviolet radiation is key variable for toxicity assessment. Environ Int. 2017;98:62–68.
  • Bengtson S, Belivanova V, Rasmussen B, et al. The controversial “Cambrian” fossils of the Vindhyan are real but more than a billion years older. Proc Natl Acad Sci. 2009;106:7729.
  • Chen CH, Berns DS. Comparison of the stability of phycocyanins from thermophilic, mesophilic, psychrophilic and halophilic algae. Biophys Chem. 1978;8:203–213.
  • Peters GP, Marland G, Le Quéré C, et al. Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat Clim Change. 2012;2:2–4.
  • Ravishankara AR, Rudich Y, Pyle JA. Role of chemistry in earth's climate. Chem Rev. 2015;115:3679–3681.
  • Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy. 2009;86:2273–2282.
  • Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008;26:126–131.
  • Torzillo G, Scoma A, Faraloni C, et al. Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii. Crit Rev Biotechnol. 2015;35:485–496.
  • Elsayed S, Boukis N, Patzelt D, et al. Gasification of microalgae using supercritical water and the potential of effluent recycling. Chem Eng Technol. 2016;39:335–342.
  • John RP, Anisha G, Nampoothiri KM, et al. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol. 2011;102:186–193.
  • Cho S-H, Kim K-H, Jeon YJ, et al. Pyrolysis of microalgal biomass in carbon dioxide environment. Bioresour Technol. 2015;193:185–191.
  • “Sustainable Development of Algal Biofuels” (USA National Academy of Sciences, NW, Washington, http://www.nap.edu, 2012).
  • Serrenho AC, Mourão ZS, Norman J, et al. The influence of UK emissions reduction targets on the emissions of the global steel industry. Resour Conserv Recycling. 2016;107:174–184.
  • Ondrey G. Progress to limit climate change. Chem Eng. 2016;123:16–19.
  • Chisholm JR, Fernex FE, Mathieu D, et al. Wastewater discharge, seagrass decline and algal proliferation on the Cote d'Azur. Mar Pollut Bull. 1997;34:78–84.
  • Ansari AA, Gill SS, Khan FA, et al. Chapter 17: Phytoremediation systems for the recovery of nutrients from eutrophic waters. In: Ansari AA, Gill SS, editors. Eutrophication: causes, consequences and control. New York: Springer; 2011. p. 225–246.
  • de-Bashan LE, Bashan Y. Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol. 2010;101:1611–1627.
  • Zhu L, Wang Z, Shu Q, et al. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res. 2013;47:4294–4302.
  • Abdelaziz AE, Leite GB, Belhaj MA, et al. Screening microalgae native to Quebec for wastewater treatment and biodiesel production. Bioresour Technol. 2014;157:140–148.
  • de-Bashan LE, Hernandez J-P, Morey T, et al. Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res. 2004;38:466–474.
  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol. 2010;101:58–64.
  • Perez-Garcia O, Bashan Y. Chapter 3: Microalgal heterotrophic and mixotrophic culturing for bio-refining: from metabolic routes to techno-economics. In: Prokop A, Bajpai RK, Zappi ME, editors. Algal biorefineries: Volume 2: products and refinery design. Cham: Springer International Publishing; 2015. p. 61–131.
  • Williams PJlB, Laurens LML. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci. 2010;3:554–590.
  • Ajeej A, Thanikal JV, Narayanan CM, et al. An overview of bio augmentation of methane by anaerobic co-digestion of municipal sludge along with microalgae and waste paper. Renew Sust Energy Rev. 2015;50:270–276.
  • Ruiz J, Olivieri G, de Vree J, et al. Towards industrial products from microalgae. Energy Environ Sci. 2016;9:3036–3043.
  • Li Y, Horsman M, Wu N, et al. Biofuels from microalgae. Biotechnol Prog. 2008;24:815–820.
  • Bilanovic D, Andargatchew A, Kroeger T, et al. Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations – response surface methodology analysis. Energy Convers Manage. 2009;50:262–267.
  • Wang T-H, Chu S-H, Tsai Y-Y, et al. Influence of inoculum cell density and carbon dioxide concentration on fed-batch cultivation of Nannochloropsis oculata. Biomass Bioenergy. 2015;77:9–15.
  • Murakami M, Ikenouchi M. The biological CO2 fixation and utilization project by rite (2) – screening and breeding of microalgae with high capability in fixing CO2. Energy Convers Manage. 1997;38:S493–S497.
  • de Morais MG, Costa JAV. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Convers Manage. 2007;48:2169–2173.
  • Kasiri S, Abdulsalam S, Ulrich A, et al. Optimization of CO2 fixation by Chlorella kessleri using response surface methodology. Chem Eng Sci. 2015;127:31–39.
  • Iwasaki I, Hu Q, Kurano N, et al. Effect of extremely high-CO2 stress on energy distribution between photosystem I and photosystem II in a high-CO2 ‘tolerant green alga’, Chlorococcum littorale and the intolerant green alga Stichococcus bacillaris. J Photochem Photobiol B: Biol. 1998;44:184–190.
  • Ota M, Takenaka M, Sato Y, et al. Variation of photoautotrophic fatty acid production from a highly CO2 tolerant alga, Chlorococcum littorale, with inorganic carbon over narrow ranges of pH. Biotechnol Prog. 2015;31:1053–1057.
  • Ota M, Kato Y, Watanabe H, et al. Effect of inorganic carbon on photoautotrophic growth of microalga Chlorococcum littorale. Biotechnol Prog. 2009;25:492–498.
  • Sakai N, Sakamoto Y, Kishimoto N, et al. Chlorella strains from hot springs tolerant to high temperature and high CO2. Energy Convers Manage. 1995;36:693–696.
  • Maeda K, Owada M, Kimura N, et al. CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Convers Manage. 1995;36:717–720.
  • Yun YS, Lee SB, Park JM, et al. Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biotechnol. 1997;69:451–455.
  • De Morais MG, Costa JAV. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol. 2007;129:439–445.
  • Bagchi SK, Mallick N. Carbon dioxide biofixation and lipid accumulation potential of an indigenous microalga Scenedesmus obliquus (Turpin) Kützing GA 45 for biodiesel production. RSC Adv. 2016;6:29889–29898.
  • Hanagata N, Takeuchi T, Fukuju Y, et al. Tolerance of microalgae to high CO2 and high temperature. Phytochemistry. 1992;31:3345–3348.
  • Borkenstein CG, Knoblechner J, Frühwirth H, et al. Cultivation of Chlorella emersonii with flue gas derived from a cement plant. J Appl Phycol. 2011;23:131–135.
  • Chiu SY, Kao CY, Huang TT, et al. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresour Technol. 2011;102:9135–9142.
  • Mortensen LM, Gislerød HR. The growth of Chlorella sorokiniana as influenced by CO2, light, and flue gases. J Appl Phycol. 2016;28:813–820.
  • Zimmerman WB, Zandi M, Hemaka Bandulasena H, et al. Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina. Appl Energy. 2011;88:3357–3369.
  • Li FF, Yang ZH, Zeng R, et al. Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber. Ind Eng Chem Res. 2011;50:6496–6502.
  • Yoshihara KI, Nagase H, Eguchi K, et al. Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor. J Fermentation Bioeng. 1996;82:351–354.
  • Chen H-W, Yang T-S, Chen M-J, et al. Purification and immunomodulating activity of C-phycocyanin from Spirulina platensis cultured using power plant flue gas. Process Biochem. 2014;49:1337–1344.
  • Matsumoto H, Hamasaki A, Sioji N, et al. Influence of CO2, SO2 and NO in flue gas on microalgae productivity. J Chem Eng Jpn. 1997;30:620–624.
  • Thomas MK, Litchman E. Effects of temperature and nitrogen availability on the growth of invasive and native cyanobacteria. Hydrobiologia. 2016;763:357–369.
  • Červený J, Sinetova MA, Zavřel T, et al. Mechanisms of high temperature resistance of Synechocystis sp. PCC 6803: an impact of histidine kinase 34. Life. 2015;5:676–699.
  • Wang X, Liu X, Qin B, et al. Green algae dominance quickly switches to cyanobacteria dominance after nutrient enrichment in greenhouse with high temperature. J Ecol Environ. 2015;38:293–305.
  • Kupriyanova EV, Samylina OS. CO2-concentrating mechanism and its traits in haloalkaliphilic cyanobacteria. Microbiology. 2015;84:112–124.
  • Sandrini G, Jakupovic D, Matthijs HCP, et al. Strains of the harmful cyanobacterium Microcystis aeruginosa differ in gene expression and activity of inorganic carbon uptake systems at elevated CO2 levels. Appl Environ Microbiol. 2015;81:7730–7739.
  • Skjånes K, Lindblad P, Muller J. BioCO2 – a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomol Eng. 2007;24:405–413.
  • Wang B, Li Y, Wu N, et al. CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol. 2008;79:707–718.
  • Judd S, van den Broeke LJP, Shurair M, et al. Algal remediation of CO2 and nutrient discharges: a review. Water Res. 2015;87:356–366.
  • USDOE, National algal biofuels technology roadmap. Report no.: DOE/EE-0332. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program; May 2010.
  • Carney LT, Reinsch SS, Lane PD, et al. Microbiome analysis of a microalgal mass culture growing in municipal wastewater in a prototype OMEGA photobioreactor. Algal Res. 2014;4:52–61.
  • Correll DL. The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual. 1998;27:261–266.
  • Jimenez-Perez M, Sanchez-Castillo P, Romera O, et al. Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure. Enzyme Microb Technol. 2004;34:392–398.
  • An J-Y, Sim S-J, Lee JS, et al. Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J Appl Phycol. 2003;15:185–191.
  • Worms IAM, Traber J, Kistler D, et al. Uptake of Cd (II) and Pb (II) by microalgae in presence of colloidal organic matter from wastewater treatment plant effluents. Environ Pollut. 2010;158:369–374.
  • Zeng X, Danquah MK, Zheng C, et al. NaCS–PDMDAAC immobilized autotrophic cultivation of Chlorella sp. for wastewater nitrogen and phosphate removal. Chem Eng J. 2012;187:185–192.
  • Mendez L, Sialve B, Tomás-Pejó E, et al. Comparison of Chlorella vulgaris and cyanobacterial biomass: cultivation in urban wastewater and methane production. Bioprocess Biosyst Eng. 2016;39:703–712.
  • Álvarez-Díaz PD, Ruiz J, Arbib Z, et al. Wastewater treatment and biodiesel production by Scenedesmus obliquus in a two-stage cultivation process. Bioresour Technol. 2015;181:90–96.
  • Martı´nez ME, Sánchez S, Jiménez JM, et al. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol. 2000;73:263–272.
  • Olguín EJ, Galicia S, Mercado G, et al. Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J Appl Phycol. 2003;15:249–257.
  • Osundeko O, Dean AP, Davies H, et al. Acclimation of microalgae to wastewater environments involves increased oxidative stress tolerance activity. Plant Cell Physiol. 2014;55:1848–1857.
  • Chiu S-Y, Kao C-Y, Chen T-Y, et al. Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresour Technol. 2015;184:179–189.
  • Deng D, Tam NF-y. Isolation of microalgae tolerant to polybrominated diphenyl ethers (PBDEs) from wastewater treatment plants and their removal ability. Bioresour Technol. 2015;177:289–297.
  • Kabra AN, Ji M-K, Choi J, et al. Toxicity of atrazine and its bioaccumulation and biodegradation in a green microalga, Chlamydomonas mexicana. Environ Sci Pollut Res. 2014;21:12270–12278.
  • Suresh Kumar K, Dahms H-U, Won E-J, et al. Microalgae – a promising tool for heavy metal remediation. Ecotoxicol Environ Saf. 2015;113:329–352.
  • Inthorn D. Removal of heavy metal by using microalgae. Photosynthetic Microorganisms Environ Biotechnol. 2001;310:111–135.
  • Zeraatkar AK, Ahmadzadeh H, Talebi AF, et al. Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manage. 2016;181:817–831.
  • Mehta SK, Gaur JP. Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol. 2005;25:113–152.
  • Covarrubias SA, de-Bashan LE, Moreno M, et al. Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Appl Microbiol Biotechnol. 2012;93:2669–2680.
  • Delrue F, Setier PA, Sahut C, et al. An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresour Technol. 2012;111:191–200.
  • Posten C. Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci. 2009;9:165–177.
  • Wan M, Liu P, Xia J, et al. The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl Microbiol Biotechnol. 2011;91:835–844.
  • Turon V, Trably E, Fouilland E, et al. Potentialities of dark fermentation effluents as substrates for microalgae growth: a review. Process Biochem. 2016;51:1843–1854.
  • Chen F. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 1996;14:421–426.
  • Perez-Garcia O, Escalante FME, de-Bashan LE, et al. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 2011;45:11–36.
  • Boyle NR, Morgan JA. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol. 2009;3:4.
  • Cheirsilp B, Torpee S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol. 2012;110:510–516.
  • Choi HJ, Seung-Mok L. Biomass and oil content of microalgae under mixotrophic conditions. Environ Eng Res. 2015;20:25–32.
  • Pancha I, Chokshi K, Mishra S. Enhanced biofuel production potential with nutritional stress amelioration through optimization of carbon source and light intensity in Scenedesmus sp. CCNM 1077. Bioresour Technol. 2015;179:565–572.
  • Paranjape K, Leite GB, Hallenbeck PC. Strain variation in microalgal lipid production during mixotrophic growth with glycerol. Bioresour Technol. 2016;204:80–88.
  • Lowrey J, Brooks MS, McGinn PJ. Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges—a critical review. J Appl Phycol. 2015;27:1485–1498.
  • Sanz-Luque E, Chamizo-Ampudia A, Llamas A, et al. Understanding nitrate assimilation and its regulation in microalgae. Front Plant Sci. 2015;6:899.
  • Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energy Rev. 2013;19:360–369.
  • Kang J, Wen Z. Use of microalgae for mitigating ammonia and CO2 emissions from animal production operations — evaluation of gas removal efficiency and algal biomass composition. Algal Res. 2015;11:204–210.
  • He PJ, Mao B, Shen CM, et al. Cultivation of Chlorella vulgaris on wastewater containing high levels of ammonia for biodiesel production. Bioresour Technol. 2013;129:177–181.
  • Collos Y, Harrison PJ. Acclimation and toxicity of high ammonium concentrations to unicellular algae. Mar Pollut Bull. 2014;80:8–23.
  • Hsieh C-H, Wu W-T. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol. 2009;100:3921–3926.
  • Casal C, Cuaresma M, Vega JM, et al. Enhanced productivity of a lutein-enriched novel Acidophile Microalga grown on urea. Mar Drugs. 2011;9:29.
  • Minaeva E, Forchhammer K, Ermilova E. Glutamine assimilation and feedback regulation of l-acetyl-N-glutamate kinase activity in Chlorella variabilis NC64A results in changes in arginine pools. Protist. 2015;166:493–505.
  • Ogbonna JC, Yoshizawa H, Tanaka H. Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J Appl Phycol. 2000;12:277–284.
  • Perez-Garcia O, de-Bashan LE, Hernandez J-P, et al. Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense. J Phycol. 2010;46:800–812.
  • Kalyuzhnyi S, Sklyar V, Epov A, et al. Sustainable treatment and reuse of diluted pig manure streams in Russia. ABAB. 2003;109:77–94.
  • Moreno-Garrido I, Lubián LM, Blasco J. Sediment toxicity tests involving immobilized microalgae (Phaeodactylum tricornutum Bohlin). Environ Int. 2007;33:481–485.
  • Mallick N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals. 2002;15:377–390.
  • Bashan Y. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv. 1998;16:729–770.
  • Moreno-Garrido I. Microalgae immobilization: current techniques and uses. Bioresour Technol. 2008;99:3949–3964.
  • Lam MK, Lee KT. Immobilization as a feasible method to simplify the separation of microalgae from water for biodiesel production. Chem Eng J. 2012;191:263–268.
  • Liu K, Li J, Qiao H, et al. Immobilization of Chlorella sorokiniana GXNN 01 in alginate for removal of N and P from synthetic wastewater. Bioresour Technol. 2012;114:26–32.
  • Praveen P, Loh K-C. Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis. Appl Microbiol Biotechnol. 2015;99:10345–10354.
  • Petrovič A, Simonič M. The effect of carbon source on nitrate and ammonium removal from drinking water by immobilised Chlorella sorokiniana. Int J Environ Sci Technol. 2015;12:3175–3188.
  • Rooke JC, Leonard A, Sarmento H, et al. Novel photosynthetic CO2 bioconvertor based on green algae entrapped in low-sodium silica gels. J Mater Chem. 2011;21:951–959.
  • Aguilar-May B, del Pilar Sánchez-Saavedra M, Lizardi J, et al. Growth of Synechococcus sp. immobilized in chitosan with different times of contact with NaOH. J Appl Phycol. 2007;19:181–183.
  • Liu J. Optimisation of biomass and lipid production by adjusting the interspecific competition mode of Dunaliella salina and Nannochloropsis gaditana in mixed culture. J Appl Phycol. 2014;26:163–171.
  • Zhao P, Yu X, Li J, et al. Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10. J Biosci Bioeng. 2014;118:72–77.
  • Wan C, Zhao X-Q, Guo S-L, et al. Bioflocculant production from Solibacillus silvestris W01 and its application in cost-effective harvest of marine microalga Nannochloropsis oceanica by flocculation. Bioresour Technol. 2013;135:207–212.
  • Powell RJ, Hill RT. Rapid aggregation of biofuel-producing algae by the Bacterium Bacillus sp. strain RP1137. Appl Environ Microbiol. 2013;79:6093–6101.
  • Wang Y, Yang Y, Ma F, et al. Optimization of Chlorella vulgaris and bioflocculant-producing bacteria co-culture: enhancing microalgae harvesting and lipid content. Lett Appl Microbiol. 2015;60:497–503.
  • Palacios OA, Bashan Y, Schmid M, et al. Enhancement of thiamine release during synthetic mutualism between Chlorella sorokiniana and Azospirillum brasilense growing under stress conditions. J Appl Phycol. 2016;28:1521–1531.
  • Hernandez J-P, de-Bashan LE, Bashan Y. Starvation enhances phosphorus removal from wastewater by the microalga Chlorella spp. co-immobilized with Azospirillum brasilense. Enzyme Microb Technol. 2006;38:190–198.
  • Ruiz-Güereca DA, Sánchez-Saavedra MP. Growth and phosphorus removal by Synechococcus elongatus co-immobilized in alginate beads with Azospirillum brasilense. J Appl Phycol. 2016;28:1501–1507.
  • Ren H-Y, Liu B-F, Kong F, et al. Hydrogen and lipid production from starch wastewater by co-culture of anaerobic sludge and oleaginous microalgae with simultaneous COD, nitrogen and phosphorus removal. Water Res. 2015;85:404–412.
  • Kazamia E, Czesnick H, Nguyen TTV, et al. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol. 2012;14:1466–1476.
  • Xie B, Bishop S, Stessman D, et al. Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria. ISMEJ. 2013;7:1544–1555.
  • Wang RM, Tian Y, Xue SZ, et al. Enhanced microalgal biomass and lipid production via co-culture of Scenedesmus obliquus and Candida tropicalis in an autotrophic system. J Chem Technol Biotechnol. 2016;91:1387–1396.
  • Ryu B-G, Kim J, Farooq W, et al. Algal–bacterial process for the simultaneous detoxification of thiocyanate-containing wastewater and maximized lipid production under photoautotrophic/photoheterotrophic conditions. Bioresour Technol. 2014;162:70–79.
  • Wrede D, Taha M, Miranda AF, et al. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment. PLoS One. 2014;9:e113497.
  • Kong Q, Li L, Martinez B, et al. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol. 2010;160:9–18.
  • Patel AK, Huang EL, Low-Décarie E, et al. Comparative shotgun proteomic analysis of wastewater-cultured microalgae: nitrogen sensing and carbon fixation for growth and nutrient removal in Chlamydomonas reinhardtii. J Proteome Res. 2015;14:3051–3067.
  • Li Y, Chen Y-F, Chen P, et al. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol. 2011;102:5138–5144.
  • Bhattacharjee M, Siemann E. Low algal diversity systems are a promising method for biodiesel production in wastewater fed open reactors. Algae. 2015;30:67–79.
  • Feng Y, Li C, Zhang D. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol. 2011;102:101–105.
  • Woertz I, Feffer A, Lundquist T, et al. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng. 2009;135:1115–1122.
  • Wu LF, Chen PC, Huang AP, et al. The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresour Technol. 2012;113:14–18.
  • Jiang L, Luo S, Fan X, et al. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energy. 2011;88:3336–3341.
  • Chinnasamy S, Bhatnagar A, Hunt RW, et al. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol. 2010;101:3097–3105.
  • Rashid N, Lee K, Mahmood Q. Bio-hydrogen production by Chlorella vulgaris under diverse photoperiods. Bioresour Technol. 2011;102:2101–2104.
  • Chader S, Mahmah B, Chetehouna K, et al. Biohydrogen production using green microalgae as an approach to operate a small proton exchange membrane fuel cell. Int J Hydrogen Energy. 2011;36:4089–4093.
  • Hallenbeck PC. Fermentative hydrogen production: principles, progress, and prognosis. Int J Hydrogen Energy. 2009;34:7379–7389.
  • Yan Q, Zhao M, Miao H, et al. Coupling of the hydrogen and polyhydroxyalkanoates (PHA) production through anaerobic digestion from Taihu blue algae. Bioresour Technol. 2010;101:4508–4512.
  • Harun R, Danquah MK, Forde GM. Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol. 2010;85:199–203.
  • Khoo HH, Koh CY, Shaik MS, et al. Bioenergy co-products derived from microalgae biomass via thermochemical conversion – life cycle energy balances and CO2 emissions. Bioresour Technol. 2013;143:298–307.
  • Kishimoto M, Okakura T, Nagashima H, et al. CO2 fixation and oil production using micro-algae. J Fermentation Bioeng. 1994;78:479–482.
  • Liu J, Yuan C, Hu G, et al. Effects of light intensity on the growth and lipid accumulation of microalga Scenedesmus sp. 11-1 under nitrogen limitation. Appl Biochem Biotechnol. 2012;166:2127–2137.
  • Passos F, Hernandez-Marine M, García J, et al. Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Res. 2014;49:351–359.
  • Chen W-T, Zhang Y, Zhang J, et al. Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil. Bioresour Technol. 2014;152:130–139.
  • Collet P, Hélias A, Lardon L, et al. Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol. 2011;102:207–214.
  • Bell G. Experimental evolution of heterotrophy in a green alga. Evolution. 2013;67:468–476.
  • Scott SA, Davey MP, Dennis JS, et al. Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol. 2010;21:277–286.
  • Clarens AF, Resurreccion EP, White MA, et al. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol. 2010;44:1813–1819.
  • Menger-Krug E, Niederste-Hollenberg J, Hillenbrand T, et al. Integration of microalgae systems at municipal wastewater treatment plants: implications for energy and emission balances. Environ Sci Technol. 2012;46:11505–11514.
  • Yang J, Xu M, Zhang X, et al. Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol. 2011;102:159–165.
  • Mu D, Min M, Krohn B, et al. Life cycle environmental impacts of wastewater-based algal biofuels. Environ Sci Technol. 2014;48:11696–11704.
  • Soomro RR, Ndikubwimana T, Zeng X, et al. Development of a two-stage microalgae dewatering process – a life cycle assessment approach. Front Plant Sci. 2016;7:113.
  • Lardon L, He´lias A, Sialve B, et al. Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol. 2009;43:6475–6481.
  • Jorquera O, Kiperstok A, Sales EA, et al. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol. 2010;101:1406–1413.
  • Sturm BSM, Lamer SL. An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl Energy. 2011;88:3499–3506.
  • Demirbaş A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manage. 2001;42:1357–1378.
  • Kadam KL. Environmental implications of power generation via coal-microalgae cofiring. Energy. 2002;27:905–922.
  • Fortier M-OP, Roberts GW, Stagg-Williams SM, et al. Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae. Appl Energy. 2014;122:73–82.
  • Liu X, Clarens AF, Colosi LM. Algae biodiesel has potential despite inconclusive results to date. Bioresour Technol. 2012;104:803–806.
  • Sills DL, Paramita V, Franke MJ, et al. Quantitative uncertainty analysis of life cycle assessment for algal biofuel production. Environ Sci Technol. 2012;47:687–694.
  • Larkum AWD, Ross IL, Kruse O, et al. Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol. 2012;30:198–205.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.