475
Views
11
CrossRef citations to date
0
Altmetric
Review Article

Review: the potential impact of surface crystalline states of titanium for biomedical applications

, , , , , , , , , & ORCID Icon show all
Pages 423-437 | Received 11 Jul 2016, Accepted 17 May 2017, Published online: 07 Sep 2017

References

  • Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R: Rep. 2004;47:49–121.
  • Geetha M, Singh A, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Prog Mater Sci. 2009;54:397–425.
  • Schwager K. Titanium as an ossicular replacement material: results after 336 days of implantation in the rabbit. Otol Neurotol. 1998;19:569–573.
  • Ho SY, Battista RA, Wiet RJ. Early results with titanium ossicular implants. Otol Neurotol. 2003;24:149–152.
  • Debry C, Dupret-Bories A, Vrana NE, et al. Laryngeal replacement with an artificial larynx after total laryngectomy: the possibility of restoring larynx functionality in the future. Head Neck. 2014;36:1669–1673.
  • Karthega M, Nagarajan S, Rajendran N. In vitro studies of hydrogen peroxide treated titanium for biomedical applications. Electrochimica Acta. 2010;55:2201–2209.
  • Park C-H, Jung MY, Tijing LD, et al. Characterization and biostability of HA/Ti6Al4V ACL anchor prepared by simple heat-treatment. Ceram Int. 2012;38:5385–5391.
  • Celen S, Ozden H. Laser-induced novel patterns: as smart strain actuators for new-age dental implant surfaces. Appl Surf Sci. 2012;263:579–585.
  • Yeung KWK, Wu SL, Zhao Y, et al. Antimicrobial effects of oxygen plasma modified medical grade Ti-6Al-4V alloy. Vacuum. 2013;89:271–279.
  • Seddiki O, Harnagea C, Levesque L, et al. Evidence of antibacterial activity on titanium surfaces through nanotextures. Appl Surf Sci. 2014;308:275–284.
  • Ye X, Tse ZTH, Tang G, et al. The effect of electropulsing induced gradient topographic oxide coating of Ti-Al-V alloy strips on the fibroblast adhesion and growth. Surf Coat Technol. 2015;261:213–218.
  • El-Hossary FM, Negm NZ, Abd El-Rahman AM, et al. Tribo-mechanical and electrochemical properties of plasma nitriding titanium. Surf Coat Technol. 2015;276:658–667.
  • Degatica NLH, Jones GL, Gardella JA. Surface characterization of titanium-alloys sterilized for biomedical applications. Appl Surf Sci. 1993;68:107–121.
  • Nouri A, Wen C. 2015. 1 - Introduction to surface coating and modification for metallic biomaterials. In: Wen C, editor. Surface coating and modification of metallic biomaterials. Cambridge (UK): Woodhead Publishing; p. 3–60.
  • Brunette DM, Tengvall P, Textor M, et al. 2012. Titanium in medicine: material science, surface science, engineering, biological responses and medical applications. Berlin (Germany): Springer Science & Business Media.
  • Variola F, Yi JH, Richert L, et al. Tailoring the surface properties of Ti6Al4V by controlled chemical oxidation. Biomaterials. 2008;29:1285–1298.
  • Das K, Bose S, Bandyopadhyay A. Surface modifications and cell-materials interactions with anodized Ti. Acta Biomater. 2007;3:573–585.
  • Landgraeber S, Jager M, Jacobs JJ, et al. The pathology of orthopedic implant failure is mediated by innate immune system cytokines. Mediators Inflamm. 2014;2014:185150.
  • Kzhyshkowska J, Gudima A, Riabov V, et al. Macrophage responses to implants: prospects for personalized medicine. J Leukoc Biol. 2015;98:953–962.
  • Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100.
  • Abu-Amer Y, Darwech I, Clohisy JC. Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther. 2007;9:S6.
  • Pearl JI, Ma T, Irani AR, et al. Role of the Toll-like receptor pathway in the recognition of orthopedic implant wear-debris particles. Biomaterials. 2011;32:5535–5542.
  • Zaveri TD, Lewis JS, Dolgova NV, et al. Integrin-directed modulation of macrophage responses to biomaterials. Biomaterials. 2014;35:3504–3515.
  • Lin TH, Tamaki Y, Pajarinen J, et al. Chronic inflammation in biomaterial-induced periprosthetic osteolysis: NF-kappaB as a therapeutic target. Acta Biomater. 2014;10:1–10.
  • Beidelschies MA, Huang H, Mcmullen MR, et al. Stimulation of macrophage TNFalpha production by orthopaedic wear particles requires activation of the ERK1/2/Egr-1 and NF-kappaB pathways but is independent of p38 and JNK. J Cell Physiol. 2008;217:652–666.
  • Luo G, Li Z, Wang Y, et al. Resveratrol protects against titanium particle-induced aseptic loosening through reduction of oxidative stress and inactivation of NF-kappaB. Inflammation. 2016;39:775–785.
  • Minematsu H, Shin MJ, Aydemir ABC, et al. Orthopedic implant particle-induced tumor necrosis factor-alpha production in macrophage-monocyte lineage cells is mediated by nuclear factor of activated T cells. Ann N Y Acad Sci. 2007;1117:143–150.
  • Naganuma Y, Takakubo Y, Hirayama T, et al. Lipoteichoic acid modulates inflammatory response in macrophages after phagocytosis of titanium particles through toll-like receptor 2 cascade and inflammasomes. J Biomed Mater Res. 2016;104:435–444.
  • Pajarinen J, Kouri VP, Jamsen E, et al. The response of macrophages to titanium particles is determined by macrophage polarization. Acta Biomater. 2013;9:9229–9240.
  • Rakshit DS, Ly K, Sengupta TK, et al. Wear debris inhibition of anti-osteoclastogenic signaling by interleukin-6 and interferon-gamma. Mechanistic insights and implications for periprosthetic osteolysis. J Bone Joint Surg Am. 2006;88:788–799.
  • Ruiz PA, Moron B, Becker HM, et al. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome. Gut. 2017;66:1216–1224.
  • Valles G, Gonzalez-Melendi P, Gonzalez-Carrasco JL, et al. Differential inflammatory macrophage response to rutile and titanium particles. Biomaterials. 2006;27:5199–5211.
  • Yang H, Xu Y, Zhu M, et al. Inhibition of titanium-particle-induced inflammatory osteolysis after local administration of dopamine and suppression of osteoclastogenesis via D2-like receptor signaling pathway. Biomaterials. 2016;80:1–10.
  • Yazdi AS, Guarda G, Riteau N, et al. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta. Proc Natl Acad Sci USA. 2010;107:19449.
  • Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10:417–426.
  • Mao X, Pan X, Peng X, et al. Inhibition of titanium particle-induced inflammation by the proteasome inhibitor bortezomib in murine macrophage-like RAW 264.7 cells. Inflammation. 2012;35:1411–1418.
  • Hamilton RF, Wu N, Porter D, et al. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol. 2009;6:35.
  • Liu R, Yin LH, Pu YP, et al. The immune toxicity of titanium dioxide on primary pulmonary alveolar macrophages relies on their surface area and crystal structure. J Nanosci Nanotech. 2010;10:8491–8499.
  • Lee NK, Choi YG, Baik JY, et al. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood. 2005;106:852–859.
  • Puskas BL, Menke NE, Huie P, et al. Expression of nitric oxide, peroxynitrite, and apoptosis in loose total hip replacements. J Biomed Mater Res. 2003;66:541–549.
  • Huang KT, Wu CT, Huang KH, et al. Titanium nanoparticle inhalation induces renal fibrosis in mice via an oxidative stress upregulated transforming growth factor-beta pathway. Chem Res Toxicol. 2015;28:354–364.
  • Jovanovic B. Critical review of public health regulations of titanium dioxide, a human food additive. Integr Environ Assess Manag. 2015;11:10–20.
  • Sang X, Zheng L, Sun Q, et al. The chronic spleen injury of mice following long-term exposure to titanium dioxide nanoparticles. J Biomed Mater Res. 2012;100:894–902.
  • Wang J, Li N, Zheng L, et al. P38-Nrf-2 signaling pathway of oxidative stress in mice caused by nanoparticulate TiO2. Biol Trace Elem Res. 2011;140:186–197.
  • Warme BA, Epstein NJ, Trindade MC, et al. Proinflammatory mediator expression in a novel murine model of titanium-particle-induced intramedullary inflammation. J Biomed Mater Res B Appl Biomater. 2004;71:360–366.
  • Takayanagi H. New immune connections in osteoclast formation. Ann NY Acad Sci. 2010;1192:117–123.
  • Clohisy JC, Frazier E, Hirayama T, et al. RANKL is an essential cytokine mediator of polymethylmethacrylate particle-induced osteoclastogenesis. J Orthop Res. 2003;21:202–212.
  • Liu F, Zhu Z, Mao Y, et al. Inhibition of titanium particle-induced osteoclastogenesis through inactivation of NFATc1 by VIVIT peptide. Biomaterials. 2009;30:1756–1762.
  • Cadosch D, Gautschi OP, Chan E, et al. Titanium induced production of chemokines CCL17/TARC and CCL22/MDC in human osteoclasts and osteoblasts. J Biomed Mater Res A. 2010;92:475–483.
  • Pioletti DP, Kottelat A. The influence of wear particles in the expression of osteoclastogenesis factors by osteoblasts. Biomaterials. 2004;25:5803–5808.
  • Jiang Y, Jia T, Gong W, et al. Titanium particle-challenged osteoblasts promote osteoclastogenesis and osteolysis in a murine model of periprosthestic osteolysis. Acta Biomater. 2013;9:7564–7572.
  • Shin DK, Kim MH, Lee SH, et al. Inhibitory effects of luteolin on titanium particle-induced osteolysis in a mouse model. Acta Biomater. 2012;8:3524–3531.
  • Kim DH, Novak MT, Wilkins J, et al. Response of monocytes exposed to phagocytosable particles and discs of comparable surface roughness. Biomaterials. 2007;28:4231–4239.
  • Alfarsi MA, Hamlet SM, Ivanovski S. Titanium surface hydrophilicity modulates the human macrophage inflammatory cytokine response. J Biomed Mater Res A. 2014;102:60–67.
  • Hamlet S, Alfarsi M, George R, et al. The effect of hydrophilic titanium surface modification on macrophage inflammatory cytokine gene expression. Clin Oral Impl Res. 2012;23:584–590.
  • Hotchkiss KM, Reddy GB, Hyzy SL, et al. Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater. 2016;31:425–434.
  • Hyzy SL, Olivares-Navarrete R, Hutton DL, et al. Microstructured titanium regulates interleukin production by osteoblasts, an effect modulated by exogenous BMP-2. Acta Biomater. 2013;9:5821–5829.
  • Rostam HM, Singh S, Vrana NE, et al. Impact of surface chemistry and topography on the function of antigen presenting cells. Biomater Sci. 2015;3:424–441.
  • Le Guéhennec L, Soueidan A, Layrolle P, et al. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844–854.
  • Sjöström T, Brydone AS, Meek RD, et al. Titanium nanofeaturing for enhanced bioactivity of implanted orthopedic and dental devices. Nanomedicine. 2013;8:89–104.
  • Koenig G, Ozcelik H, Haesler L, et al. Cell-laden hydrogel/titanium microhybrids: site-specific cell delivery to metallic implants for improved integration. Acta Biomaterialia. 2016;33:301–310.
  • Schultz P, Vautier D, Charpiot A, et al. Development of tracheal prostheses made of porous titanium: a study on sheep. Eur Arch Oto-Rhino-Laryngol. 2007;264:433–438.
  • Vrana NE, Dupret‐Bories A, et al. Modification of macroporous titanium tracheal implants with biodegradable structures: tracking in vivo integration for determination of optimal in situ epithelialization conditions. Biotechnol Bioeng. 2012;109:2134–2146.
  • Regis M, Marin E, Fedrizzi L, et al. Additive manufacturing of trabecular titanium orthopedic implants. MRS Bull. 2015;40:137–144.
  • Fujino T, Taguchi Y, Komasa S, et al. Cell differentiation on nanoscale features of a titanium surface: effects of deposition time in NaOH solution. J Hard Tissue Biology. 2014;23:63–70.
  • Gittens RA, Olivares-Navarrete R, Cheng A, et al. The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells. Acta Biomaterialia. 2013;9:6268–6277.
  • Sverzut AT, Crippa GE, Morra M, et al. Effects of type I collagen coating on titanium osseointegration: histomorphometric, cellular and molecular analyses. Biomed Mater. 2012;7:035007.
  • Gittens RA, Scheideler L, Rupp F, et al. A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomater. 2014;10:2907–2918.
  • Rivera-Chacon D, Alvarado-Velez M, Acevedo-Morantes C, et al. Fibronectin and vitronectin promote human fetal osteoblast cell attachment and proliferation on nanoporous titanium surfaces. J Biomed Nanotechnol. 2013;9:1092.
  • Rieger E, Dupret-Bories A, Salou L, et al. Controlled implant/soft tissue interaction by nanoscale surface modifications of 3D porous titanium implants. Nanoscale. 2015;7:9908–9918.
  • Bächle M, Kohal RJ. A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast‐like MG63 cells. Clin Oral Implants Res. 2004;15:683–692.
  • Cho S-A, Park KT. The removal torque of titanium screw inserted in rabbit tibia treated by dual acid etching. Biomaterials. 2003;24:3611–3617.
  • Yi J-H, Bernard C, Variola F, et al. Characterization of a bioactive nanotextured surface created by controlled chemical oxidation of titanium. Surf Sci. 2006;600:4613–4621.
  • De Oliveira PT, Nanci A. Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. Biomaterials. 2004;25:403–413.
  • Wazen RM, Kuroda S, Nishio C, et al. Gene expression profiling and histomorphometric analyses of the early bone healing response around nanotextured implants. Nanomedicine. 2013;8:1385–1395.
  • Guo J, Padilla RJ, Ambrose W, et al. The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo. Biomaterials. 2007;28:5418–5425.
  • Lamolle SF, Monjo M, Rubert M, et al. The effect of hydrofluoric acid treatment of titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells. Biomaterials. 2009;30:736–742.
  • Kulkarni M, Mazare A, Schmuki P, et al. Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine. 2014;111:111.
  • Yao C, Slamovich EB, Webster TJ. Enhanced osteoblast functions on anodized titanium with nanotube‐like structures. J Biomed Mater Res Part A. 2008;85:157–166.
  • Yao C, Perla V, Mckenzie JL, et al. Anodized Ti and Ti6Al4V possessing nanometer surface features enhances osteoblast adhesion. J Biomed Nanotechnol. 2005;1:68–73.
  • Chiang CY, Chiou SH, Yang WE, et al. Formation of TiO(2) nano-network on titanium surface increases the human cell growth. Dent Mater. 2009;25:1022–1029.
  • Oliveira NCM, Moura CCG, Zanetta-Barbosa D, et al. Effects of titanium surface anodization with CaP incorporation on human osteoblastic response. Mater Sci Eng C. 2013;33:1958–1962.
  • Nishiguchi S, Nakamura T, Kobayashi M, et al. The effect of heat treatment on bone-bonding ability of alkali-treated titanium. Biomaterials. 1999;20:491–500.
  • Kargupta R, Bok S, Darr CM, et al. Coatings and surface modifications imparting antimicrobial activity to orthopedic implants. Wires Nanomed Nanobiotechnol. 2014;6:475–495.
  • Ramalingam M, Vallittu P, Ripamonti U, et al. 2012. Tissue engineering and regenerative medicine: a nano approach. Boca Raton (FL): CRC Press.
  • Gao G, Lange D, Hilpert K, et al. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials. 2011;32:3899–3909.
  • An YH, Friedman RJ. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res. 1998;43:338–348.
  • Yoshinari M, Oda Y, Kato T, et al. Influence of surface modifications to titanium on oral bacterial adhesion in vitro. J Biomed Mater Res. 2000;52:388–394.
  • Taborelli M, Jobin M, Francois P, et al. Influence of surface treatments developed for oral implants on the physical and biological properties of titanium.(I) surface characterization. Clin Oral Implants Res. 1997;8:208–216.
  • Glinel K, Thebault P, Humblot V, et al. Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater. 2012;8:1670–1684.
  • Emmerson M. A microbiologist's view of factors contributing to infection. New Horiz. 1998;6:S3–S10.
  • Harris L, Tosatti S, Wieland M, et al. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly (L-lysine)-grafted-poly (ethylene glycol) copolymers. Biomaterials. 2004;25:4135–4148.
  • Klok H-A, Genzer J. Expanding the polymer mechanochemistry toolbox through surface-initiated polymerization. ACS Macro Lett. 2015;4:636–639.
  • Eckhardt S, Brunetto PS, Gagnon J, et al. Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev. 2013;113:4708–4754.
  • Cao H, Cui T, Jin G, et al. Cellular responses to titanium successively treated by magnesium and silver PIII&D. Surf Coat Technol. 2014;256:9–14.
  • Qiao S, Cao H, Zhao X, et al. Ag-plasma modification enhances bone apposition around titanium dental implants: an animal study in Labrador dogs. Int J Nanomed. 2015;10:653.
  • Popat KC, Eltgroth M, Latempa TJ, et al. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials. 2007;28:4880–4888.
  • Özçelik H, Vrana NE, Gudima A, et al. Harnessing the multifunctionality in nature: a bioactive agent release system with self‐antimicrobial and immunomodulatory properties. Adv Healthcare Mater. 2015;4:2026–2036.
  • Pornpattananangkul D, Zhang L, Olson S, et al. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J Am Chem Soc. 2011;133:4132–4139.
  • Jin G, Cao H, Qiao Y, et al. Osteogenic activity and antibacterial effect of zinc ion implanted titanium. Colloids Surf B Biointerfaces. 2014;117:158–165.
  • Shibata Y, Tanimoto Y. A review of improved fixation methods for dental implants. Part I: Surface optimization for rapid osseointegration. J Prosthodont Res. 2015;59:20–33.
  • Hu X, Neoh KG, Zhang J, et al. Bacterial and osteoblast behavior on titanium, cobalt–chromium alloy and stainless steel treated with alkali and heat: a comparative study for potential orthopedic applications. J Colloid Interface Sci. 2014;417:410–419.
  • Diebold U. The surface science of titanium dioxide. Surf Sci Rep. 2003;48:53–229.
  • Greenwood NN, Earnshaw A. Chemistry of the elements. Burlington (MA): Elsevier; 2012.
  • Sharpe AG, Pousse A. Chimie inorganique. Louvain-la-Neuve (Belgium): De Boeck; 2010.
  • Schneider J, Matsuoka M, Takeuchi M, et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev. 2014;114:9919–9986.
  • Ning C, Yu P, Zhu Y, et al. Built-in microscale electrostatic fields induced by anatase–rutile-phase transition in selective areas promote osteogenesis. NPG Asia Mater. 2016;8:e243.
  • Hanaor DA, Sorrell CC. Review of the anatase to rutile phase transformation. J Mater Sci. 2011;46:855–874.
  • Luo Z, Poyraz AS, Kuo CH, et al. Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity. Chem Mater. 2014;27:6–17.
  • Diamanti M, Pedeferri M. Effect of anodic oxidation parameters on the titanium oxides formation. Corros Sci. 2007;49:939–948.
  • Uttiya S, Contarino D, Prandi S, et al. Anodic oxidation of titanium in sulphuric acid and phosphoric acid electrolytes. J Mater Sci Nanotechnol. 2014;1:S106.
  • Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces. Nature. 1997;388:431.
  • Österlund L. Structure-reactivity relationships of anatase and rutile TiO2 nanocrystals measured by in situ vibrational spectroscopy. SSP. 2010;162:203–219.
  • Chen W, Kuang Q, Wang Q, et al. Engineering a high energy surface of anatase TiO 2 crystals towards enhanced performance for energy conversion and environmental applications. RSC Advances. 2015;5:20396–20409.
  • Rajh T, Dimitrijevic NM, Bissonnette M, et al. Titanium dioxide in the service of the biomedical revolution. Chem Rev. 2014;114:10177–10216.
  • Xu Y, Wei M-T, Ou-Yang HD, et al. Exposure to TiO 2 nanoparticles increases Staphylococcus aureus infection of HeLa cells. J Nanobiotechnol. 2016;14:34.
  • Rahman L, Wu D, Johnston M, et al. Toxicogenomics analysis of mouse lung responses following exposure to titanium dioxide nanomaterials reveal their disease potential at high doses. Mutagenesis. 2017;32:59–76.
  • Uboldi C, Urbán P, Gilliland D, et al. Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts. Toxicol In Vitro. 2016;31:137–145.
  • Moravec H, Vandrovcova M, Chotova K, et al. Cell interaction with modified nanotubes formed on titanium alloy Ti-6Al-4V. Mater Sci Eng C Mater Biol Appl. 2016;65:313–322.
  • Wang G, Li J, Lv K, et al. Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration. Sci Rep. 2016;6:31769.
  • Mohamed MS, Torabi A, Paulose M, et al. Anodically grown titania nanotube induced cytotoxicity has genotoxic origins. Sci Rep. 2017;7:41844.
  • Selcuk S, Selloni A. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. Nat Mater. 2016;15:1107–1112.
  • Ribeiro A, Gemini-Piperni S, Travassos R, et al. Trojan-like internalization of anatase titanium dioxide nanoparticles by human osteoblast cells. Sci Rep. 2016;6:23615.
  • Mandl S, Sader R, Thorwarth G, et al. Biocompatibility of titanium based implants treated with plasma immersion ion implantation. Nucl Instrum Methods Phys Res B. 2003;206:517–521.
  • Borgioli F, Galvanetto E, Fossati A, et al. Glow-discharge and furnace treatments of Ti-6Al-4V. Surf Coat Technol. 2004;184:255–262.
  • Ye X, Kuang J, Li X, et al. Microstructure, properties and temperature evolution of electro-pulsing treated functionally graded Ti–6Al–4V alloy strip. J Alloys Compd. 2014;599:1–9.
  • Havlikova J, Strasky J, Vandrovcova M, et al. Innovative surface modification of Ti-6Al-4V alloy with a positive effect on osteoblast proliferation and fatigue performance. Mater Sci Eng C-Mater Biol Appl. 2014;39:371–379.
  • Wen M, Wen C, Hodgson P, et al. Improvement of the biomedical properties of titanium using SMAT and thermal oxidation. Colloids Surf B-Biointerfaces. 2014;116:658–665.
  • Jiang P, Lin L, Zhang F, et al. Electrochemical construction of micro-nano spongelike structure on titanium substrate for enhancing corrosion resistance and bioactivity. Electrochimica Acta. 2013;107:16–25.
  • Li J, Wang G, Wang D, et al. Alkali-treated titanium selectively regulating biological behaviors of bacteria, cancer cells and mesenchymal stem cells. J Colloid Interface Sci. 2014;436:160–170.
  • Zheng CY, Li SJ, Tao XJ, et al. Calcium phosphate coating of Ti-Nb-Zr-Sn titanium alloy. Mater Sci Eng C-Biomim Supramol Syst. 2007;27:824–831.
  • Pisarek M, Roguska A, Andrzejczuk M, et al. Effect of two-step functionalization of Ti by chemical processes on protein adsorption. Appl Surf Sci. 2011;257:8196–8204.
  • Kulkarni M, Mazare A, Schmuki P, et al. Biomaterial surface modification of titanium and titanium alloys for medical applications. Manchester: One Central Press; 2014.
  • Aliofkhazraei M. Handbook of mechanical nanostructuring. Weinheim (Germany): Wiley-VCH Verlag GmbH & Co; 2015.
  • Wei D, Zhou Y, Jia D, et al. Chemical treatment of TiO2-based coatings formed by plasma electrolytic oxidation in electrolyte containing nano-HA, calcium salts and phosphates for biomedical applications. Appl Surf Sci. 2008;254:1775–1782.
  • Wise DL, Trantolo DJ, Lewandrowski K-U, et al. Orthopedic, dental, and bone graft applications. Totowa (NJ): Humana Press; 2000.
  • Zhang P, Zhang Z, Li W, et al. Effect of Ti-OH groups on microstructure and bioactivity of TiO2 coating prepared by micro-arc oxidation. Appl Surf Sci. 2013;268:381–386.
  • Zhang X, Wu H, Geng Z, et al. Microstructure and cytotoxicity evaluation of duplex-treated silver-containing antibacterial TiO2 coatings. Mater Sci Eng C-Mater Biol Appl. 2014;45:402–410.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.