1,218
Views
34
CrossRef citations to date
0
Altmetric
Review Article

Standardized reactors for the study of medical biofilms: a review of the principles and latest modifications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 657-670 | Received 09 Jun 2017, Accepted 07 Sep 2017, Published online: 27 Sep 2017

References

  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–1322.
  • Deva AK, Adams WP Jr, Vickery K. The role of bacterial biofilms in device-associated infection. Plast Reconstruct Surg. 2013;132:1319–1328.
  • Mah T-FC, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9:34–39.
  • Simões LC, Simões M. Biofilms in drinking water: problems and solutions. RSC Adv. 2013;3:2520–2533.
  • Cloete TE. Resistance mechanisms of bacteria to antimicrobial compounds. Int Biodeterior Biodegrad. 2003;51:277–282.
  • Xue Z, Sendamangalam VR, Gruden CL, et al. Multiple roles of extracellular polymeric substances on resistance of biofilm and detached clusters. Environ Sci Technol. 2012;46:13212–13219.
  • Stowe SD, Richards JJ, Tucker AT, et al. Anti-biofilm compounds derived from marine sponges. Mar Drugs. 2011;9:2010–2035.
  • Soto SM. Importance of biofilms in urinary tract infections: new therapeutic approaches. Adv Biol. 2014;2014:13.
  • Prakash B, Veeregowda B, Krishnappa G. Biofilms: a survival strategy of bacteria. Curr Sci. 2003;85:1299–1307.
  • Stewart PS. Mini-review: convection around biofilms. Biofouling. 2012;28:187–198.
  • Codony F, Morató J, Mas J. Role of discontinuous chlorination on microbial production by drinking water biofilms. Water Res. 2005;39:1896–1906.
  • Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol. 2002;292:107–113.
  • Madsen JS, Burmølle M, Hansen LH, et al. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol. 2012;65:183–195.
  • Elias S, Banin E. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev. 2012;36:990–1004.
  • Fux CA, Wilson S, Stoodley P. Detachment characteristics and oxacillin resistance of Staphyloccocus aureus biofilm emboli in an in vitro catheter infection model. J Bacteriol. 2004;186:4486–4491.
  • Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cell Microbiol. 2009;11:1034–1043.
  • Romling U, Balsalobre C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med. 2012;272:541–561.
  • Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15:167–193.
  • Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS. 2013;121:1–58.
  • Donlan RM. Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis. 2001;33:1387–1392.
  • Vickery K, Hu H, Jacombs AS, et al. A review of bacterial biofilms and their role in device-associated infection. Health Infect. 2013;18:61–66.
  • Berrington A, Gould FK. Use of antibiotic locks to treat colonized central venous catheters. J Antimicrob Chemother. 2001;48:597–603.
  • Saginur R, StDenis M, Ferris W, et al. Multiple combination bactericidal testing of staphylococcal biofilms from implant-associated infections. Antimicrob Agents Chemother. 2006;50:55–61.
  • Salek MM, Jones SM, Martinuzzi RJ. Methicillin resistant Staphylococcus aureus biofilm susceptibility in response to increased level of shear stresses and flow agitation. Bioengineering Conference, 2009 IEEE 35th Annual Northeast; 2009 3–5; 2009.
  • Agostinho AM, Hartman A, Lipp C, et al. An in vitro model for the growth and analysis of chronic wound MRSA biofilms. J Appl Microbiol. 2011;111:1275–1282.
  • Williams D, Woodbury K, Haymond B, et al. A modified CDC biofilm reactor to produce mature biofilms on the surface of PEEK membranes for an in vivo animal model application. Curr Microbiol. 2011;62:1657–1663.
  • Lebeaux D, Chauhan A, Rendueles O, et al. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens. 2013;2:288.
  • Roberts AEL, Kragh KN, Bjarnsholt T, et al. The limitations of in vitro experimentation in understanding biofilms and chronic infection. J Mol Biol. 2015;427:3646–3661.
  • McBain AJ. In vitro biofilm models: an overview. In: Laskin AI, Sariashari S, Gadd G, editors. Advances in applied microbiology, vol. 69. London: Elsevier; 2009.
  • Kukavica-Ibrulj I, Levesque RC. Animal models of chronic lung infection with Pseudomonas aeruginosa: useful tools for cystic fibrosis studies. Lab Anim. 2008;42:389–412.
  • Coenye T, Nelis HJ. In vitro and in vivo model systems to study microbial biofilm formation. J Microbiol Methods. 2010;83:89–105.
  • Merritt JH, Kadouri DE, O'Toole GA. Growing and analyzing static biofilms. Curr Protoc Microbiol. 2005;22:Unit-1B-1.1–1B.1.18.
  • Ray VA, Morris AR, Visick KL. A semi-quantitative approach to assess biofilm formation using wrinkled colony development. J Vis Exp. 2012;64:e4035.
  • Groisman A, Lobo C, Cho H, et al. A microfluidic chemostat for experiments with bacterial and yeast cells. Nat Methods. 2005;2:685–689.
  • Kim J, Hegde M, Kim SH, et al. A microfluidic device for high throughput bacterial biofilm studies. Lab Chip. 2012;12:1157–1163.
  • Sandberg M, Maattanen A, Peltonen J, et al. Automating a 96-well microtitre plate model for Staphylococcus aureus biofilms: an approach to screening of natural antimicrobial compounds. Int J Antimicrob Agents. 2008;32:233–240.
  • Stepanović S, Vuković D, Hola V, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115:891–899.
  • Macià MD, Rojo-Molinero E, Oliver A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect. 2014;20:981–990.
  • Liu H, Zhao Y, Zhao D, et al. Antibacterial and anti-biofilm activities of thiazolidione derivatives against clinical staphylococcus strains. Emerg Microbes Infect. 2015;4:e1.
  • Nouraldin AAM, Baddour MM, Harfoush RAH, et al. Bacteriophage-antibiotic synergism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa. AJM. 2016;52:99–105.
  • Benoit MR, Conant CG, Ionescu-Zanetti C, et al. New device for high-throughput viability screening of flow biofilms. Appl Environ Microbiol. 2010;76:4136–4142.
  • Banks MK, Bryers JD. Bacterial species dominance within a binary culture biofilm. Appl Environ Microbiol. 1991;57:1974–1979.
  • Purevdorj B, Costerton JW, Stoodley P. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl Environ Microbiol. 2002;68:4457–4464.
  • Kharazmi A, Giwercman B, Høiby N. Robbins device in biofilm research. Methods in enzymology, vol. 310. San Diego: Academic Press; 1999. p. 207–215.
  • Nickel JC, Ruseska I, Wright JB, et al. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother. 1985;27:619–624.
  • Kinniment SL, Wimpenny JWT, Adams D, et al. Development of a steady-state oral microbial biofilm community using the constant-depth film fermenter. Microbiology. 1996;142:631–638.
  • Pratten J, Barnett P, Wilson M. Composition and susceptibility to chlorhexidine of multispecies biofilms of oral bacteria. Appl Environ Microbiol. 1998;64:3515–3519.
  • Pratten J. Growing oral biofilms in a constant depth film fermentor (CDFF). Curr Protoc Microbiol. 2007;6:1B.5.1–1B.5.18.
  • Lamfon H, Porter SR, McCullough M, et al. Susceptibility of Candida albicans biofilms grown in a constant depth film fermentor to chlorhexidine, fluconazole and miconazole: a longitudinal study. J Antimicrob Chemother. 2004;53:383–385.
  • van der Borden AJ, van der Werf H, van der Mei HC, et al. Electric current-induced detachment of Staphylococcus epidermidis biofilms from surgical stainless steel. Appl Environ Microbiol. 2004;70:6871–6874.
  • Chin MYH, Busscher HJ, Evans R, et al. Early biofilm formation and the effects of antimicrobial agents on orthodontic bonding materials in a parallel plate flow chamber. Eur J Orthod. 2006;28:1–7.
  • Busscher HJ, van der Mei HC. Microbial adhesion in flow displacement systems. Clin Microbiol Rev. 2006;19:127–141.
  • Azeredo J, Azevedo NF, Briandet R, et al. Critical review on biofilm methods. Crit Rev Microbiol. 2017;43:313–351.
  • Franklin MJ, Chang C, Akiyama T, et al. New technologies for studying biofilms. Microbiol Spectr. 2015;3. DOI:10.1128/microbiolspec.MB-0016-2014
  • Subramanian S, Gerasopoulos K, Guo M, et al. Autoinducer-2 analogs and electric fields – an antibiotic-free bacterial biofilm combination treatment. Biomed Microdev. 2016;18:95.
  • Tremblay YDN, Vogeleer P, Jacques M, et al. High-throughput microfluidic method to study biofilm formation and host–pathogen interactions in pathogenic Escherichia coli. Appl Environ Microbiol. 2015;81:2827–2840.
  • Shields RC, Burne RA. Growth of Streptococcus mutans in biofilms alters peptide signaling at the sub-population level. Front Microbiol. 2016;7:1075.
  • Stoodley P, Dodds I, Boyle JD, et al. Influence of hydrodynamics and nutrients on biofilm structure. J Appl Microbiol. 1998;85:19S–28S.
  • Nagaoka T, Yoshida A. Noninvasive evaluation of wall shear stress on retinal microcirculation in humans. Invest Ophthalmol Vis Sci. 2006;47:1113–1119.
  • Reneman RS, Hoeks APG. Wall shear stress as measured in vivo: consequences for the design of the arterial system. Med Biol Eng Comput. 2008;46:499–507.
  • Guo P, Weinstein AM, Weinbaum S. A hydrodynamic mechanosensory hypothesis for brush border microvilli. Am J Physiol Renal Physiol. 2000;279:F698–F712.
  • Wong A, Ye M, Levy A, et al. The blood–brain barrier: an engineering perspective. Front Neuroeng. 2013;6:7.
  • Frumento RJ, Hirsh AL, Parides MK, et al. Differences in arterial and venous thromboelastography parameters: potential roles of shear stress and oxygen content. J Cardiothorac Vasc Anesth. 2002;16:551–554.
  • Cai Z, Xin J, Pollock DM, et al. Shear stress-mediated NO production in inner medullary collecting duct cells. Am J Physiol Renal Physiol. 2000;279:F270–F274.
  • Kang YG, Shin JW, Park SH, et al. Effects of flow-induced shear stress on limbal epithelial stem cell growth and enrichment. PLoS One. 2014;9:e93023.
  • Mathmann K. Investigation of intraoral mechanical effects on sensory sensations and their contribution to mouthfeel. Munich: Technische Universitat Munchen; 2011.
  • Beeson JG, Rogerson SJ, Cooke BM, et al. Adhesion of Plasmodium falciparum-infected erythrocytes to hyaluronic acid in placental malaria. Nat Med. 2000;6:86–90.
  • Goeres DM. Design of model reactor system for evaluating disinfectants against biofilm bacteria. Bozeman, Montana: Montana State University; 2006.
  • ASTM. Standard test method for testing disinfectant efficacy against Pseudomonas aeruginosa biofilm using the MBEC assay; 2012.
  • Gu W, Xu D, Sun S. In vitro models to study Candida albicans biofilms. JPDD. 2015;3:301–312.
  • Ceri H, Olson ME, Stremick C, et al. The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol. 1999;37:1771–1776.
  • Parahitiyawa NB, Samaranayake YH, Samaranayake LP, et al. Interspecies variation in Candida biofilm formation studied using the Calgary biofilm device. APMIS. 2006;114:298–306.
  • Harrison JJ, Ceri H, Yerly J, et al. The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the Calgary Biofilm Device. Biol Proced Online. 2006;8:194–215.
  • Molina-Manso D, del Prado G, Ortiz-Pérez A, et al. In vitro susceptibility to antibiotics of staphylococci in biofilms isolated from orthopaedic infections. Int J Antimicrob Agents. 2013;41:521–523.
  • Kistler JO, Pesaro M, Wade WG. Development and pyrosequencing analysis of an in-vitro oral biofilm model. BMC Microbiol. 2015;15:24.
  • Parker AE, Walker DK, Goeres DM, et al. Ruggedness and reproducibility of the MBEC biofilm disinfectant efficacy test. J Microbiol Methods. 2014;102:55–64.
  • Rivardo F, Martinotti MG, Turner RJ, et al. Synergistic effect of lipopeptide biosurfactant with antibiotics against Escherichia coli CFT073 biofilm. Int J Antimicrob Agents. 2011;37:324–331.
  • Laverty G, Alkawareek MY, Gilmore BF. The in vitro susceptibility of biofilm forming medical device related pathogens to conventional antibiotics. Dataset Pap Sci. 2014;2014:10.
  • Singh V, Arora V, Alam MJ, et al. Inhibition of biofilm formation by esomeprazole in Pseudomonas aeruginosa and Staphylococcus aureus. Antimicrob Agents Chemother. 2012;56:4360–4364.
  • Goeres DM, Loetterle LR, Hamilton MA, et al. Statistical assessment of a laboratory method for growing biofilms. Microbiology (Reading, Engl). 2005;151:757–762.
  • Williams D, Bloebaum R. Observing the biofilm matrix of Staphylococcus epidermidis ATCC 35984 grown using the CDC biofilm reactor. Microsc Microanal. 2010;16:143–152.
  • ASTM. Standard test method for quantification of Pseudomonas aeruginosa biofilm grown with high shear and continuous flow using CDC biofilm reactor; 2012.
  • ASTM. Standard test method for evaluating disinfectant efficacy against Pseudomonas aeruginosa biofilm grown in the CDC biofilm reactor using the single tube method; 2013.
  • Lora-Tamayo J, Murillo O, Bergen PJ, et al. Activity of colistin combined with doripenem at clinically relevant concentrations against multidrug-resistant Pseudomonas aeruginosa in an in vitro dynamic biofilm model. J Antimicrob Chemother. 2014;69:2434–2442.
  • Honraet K, Goetghebeur E, Nelis HJ. Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. J Microbiol Methods. 2005;63:287–295.
  • Agostinho A, James G, Wazni O, et al. Inhibition of Staphylococcus aureus biofilms by a novel antibacterial envelope for use with implantable cardiac devices. Clin Transl Sci. 2009;2:193–198.
  • Humphreys G, Lee GL, Percival SL, et al. Combinatorial activities of ionic silver and sodium hexametaphosphate against microorganisms associated with chronic wounds. J Antimicrob Chemother. 2011;66:2556–2561.
  • Garvey M, Andrade Fernandes JP, Rowan N. Pulsed light for the inactivation of fungal biofilms of clinically important pathogenic Candida species. Yeast. 2015;32:533–540.
  • Pérez-Díaz MA, Boegli L, James G, et al. Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect. Mater Sci Eng C Mater Biol Appl. 2015;55:360–366.
  • Rudney JD, Chen R, Lenton P, et al. A reproducible oral microcosm biofilm model for testing dental materials. J Appl Microbiol. 2012;113:1540–1553.
  • Li Y, Carrera C, Chen R, et al. Degradation in the dentin–composite interface subjected to multi-species biofilm challenges. Acta Biomater. 2014;10:375–383.
  • Gomes IB, Simões M, Simões LC. An overview on the reactors to study drinking water biofilms. Water Res. 2014;62:63–87.
  • Cai W, Wu J, Xi C, et al. Diazeniumdiolate-doped poly(lactic-co-glycolic acid)-based nitric oxide releasing films as antibiofilm coatings. Biomaterials. 2012;33:7933–7944.
  • Donlan RM, Piede JA, Heyes CD, et al. Model system for growing and quantifying Streptococcus pneumoniae biofilms in situ and in real time. Appl Environ Microbiol. 2004;70:4980–4988.
  • Stewart PS, Rayner J, Roe F, et al. Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates. J Appl Microbiol. 2001;91:525–532.
  • Goeres DM, Hamilton MA, Beck NA, et al. A method for growing a biofilm under low shear at the air–liquid interface using the drip flow biofilm reactor. Nat Protoc. 2009;4:783–788.
  • Ledder RG, Sreenivasan PK, DeVizio W, et al. Evaluation of the specificity and effectiveness of selected oral hygiene actives in salivary biofilm microcosms. J Med Microbiol. 2010;59:1462–1468.
  • Ledder RG, McBain AJ. An in vitro comparison of dentifrice formulations in three distinct oral microbiotas. Arch Oral Biol. 2012;57:139–147.
  • Curtin JJ, Donlan RM. Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrob Agents Chemother. 2006;50:1268–1275.
  • Buckingham-Meyer K, Goeres DM, Hamilton MA. Comparative evaluation of biofilm disinfectant efficacy tests. J Microbiol Methods. 2007;70:236–244.
  • ASTM. Standard test method for quantification of Pseudomonas aeruginosa biofilm grown using drip flow biofilm reactor with low shear and continuous flow; 2013.
  • Ammons MCB, Ward LS, James GA. Anti-biofilm efficacy of a lactoferrin/xylitol wound hydrogel used in combination with silver wound dressings. Int Wound J. 2011;8:268–273.
  • Bird RB, Stewart WE, Lightfoot EN. Shell momentum balances and velocity distributions in laminar flow. In: Bird RB, Stewart WE, Lightfoot EN, editors. Transport phenomena. 2nd ed. New York (USA): John Wiley & Sons, Inc.; 2002. p. 43–46.
  • Carlson RP, Taffs R, Davison WM, et al. Anti-biofilm properties of chitosan-coated surfaces. J Biomater Sci Polym Ed. 2008;19:1035–1046.
  • Folsom JP, Baker B, Stewart PS. In vitro efficacy of bismuth thiols against biofilms formed by bacteria isolated from human chronic wounds. J Appl Microbiol. 2011;111:989–996.
  • Brambilla E, Ionescu A, Cazzaniga G, et al. The influence of antibacterial toothpastes on in vitro Streptococcus mutans biofilm formation: a continuous culture study. Am J Dent. 2014;27:160–166.
  • Xu KD, Stewart PS, Xia F, et al. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol. 1998;64:4035–4039.
  • Pitts B, Willse A, McFeters GA, et al. A repeatable laboratory method for testing the efficacy of biocides against toilet bowl biofilms. J Appl Microbiol. 2001;91:110–117.
  • Garo E, Eldridge GR, Goering MG, et al. Asiatic acid and corosolic acid enhance the susceptibility of Pseudomonas aeruginosa biofilms to tobramycin. Antimicrob Agents Chemother. 2007;51:1813–1817.
  • ASTM. Standard test method for quantification of a Pseudomonas aeruginosa biofilm grown with shear and continuous flow using a rotating disc reactor; 2012.
  • Cotter JJ, O’Gara JP, Stewart PS, et al. Characterization of a modified rotating disk reactor for the cultivation of Staphylococcus epidermidis biofilm. J Appl Microbiol. 2010;109:2105–2117.
  • Jin Y, Zhang T, Samaranayake YH, et al. The use of new probes and stains for improved assessment of cell viability and extracellular polymeric substances in Candida albicans biofilms. Mycopathologia. 2005;159:353–360.
  • Schwartz K, Stephenson R, Hernandez M, et al. The use of drip flow and rotating disk reactors for Staphylococcus aureus biofilm analysis. J Vis Exp. 2010;27:2470.
  • Pelleïeux S, Bertrand I, Skali-Lami S, et al. Accumulation of MS2, GA, and Qβ phages on high density polyethylene (HDPE) and drinking water biofilms under flow/non-flow conditions. Water Res. 2012;46:6574–6584.
  • Winston M, Rupp CJ, Vinogradov AM, et al. Rheology of biofilms. 16th Engineering Mechanics Conference of the American Society of Civil Engineers; Seattle; 2003.
  • Cotter JJ, O'Gara JP, Mack D, et al. Oxygen-mediated regulation of biofilm development is controlled by the alternative Sigma factor σ(B) in Staphylococcus epidermidis. Appl Environ Microbiol. 2009;75:261–264.
  • Yarwood JM, Bartels DJ, Volper EM, et al. Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol. 2004;186:1838–1850.
  • Ohsumi T, Takenaka S, Wakamatsu R, et al. Residual structure of Streptococcus mutans biofilm following complete disinfection favors secondary bacterial adhesion and biofilm re-development. PLoS One. 2015;10:e0116647.
  • Murga R, Forster TS, Brown E, et al. Role of biofilms in the survival of Legionella pneumophila in a model potable-water system. Microbiology. 2001;147:3121–3126.
  • Möhle RB, Langemann T, Haesner M, et al. Structure and shear strength of microbial biofilms as determined with confocal laser scanning microscopy and fluid dynamic gauging using a novel rotating disc biofilm reactor. Biotechnol Bioeng. 2007;98:747–755.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.