12,817
Views
95
CrossRef citations to date
0
Altmetric
Review Article

Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 690-703 | Received 14 Apr 2017, Accepted 03 Oct 2017, Published online: 12 Dec 2017

References

  • Mcneil B, Giavasis I, Archer D, et al. Microbial production of food ingredients, enzymes and nutraceuticals. 1st ed. Mcneil B, Giavasis I, Archer D, et al., editors. Cambridge: Woodhead Publishing; 2013.
  • Suvarna K, Lolas A, Hughes P, et al. Case studies of microbial contamination in biologic product manufacturing. Am Pharm Rev. 2011;50–57.
  • Ryan J. Understanding and managing cell culture contamination. Corning Tech Bull. 2008;1–24. CLS-AN-020 REV 2.
  • Yen H-W, Chen P-W, Chen L-J. The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation. Bioresour Technol. 2014;184:148–152.
  • Dong Q, Zhao X. In situ carbon dioxide fixation in the process of natural astaxanthin production by a mixed culture of Haematococcus pluvialis and Phaffia rhodozyma. Catal Today. 2004;98:537–544.
  • Delaux P-M, Radhakrishnan GV, Jayaraman D, et al. Algal ancestor of land plants was preadapted for symbiosis. Proc Natl Acad Sci. 2015;112:13390–13395.
  • Taylor MW, Radax R, Steger D, et al. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev. 2007;71:295–347.
  • Thiel V, Peckmann J, Richnow HH, et al. Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat. Mar Chem. 2001;73:97–112.
  • Santos CC, Libeck Bda S, Schwan RF. Co-culture fermentation of peanut-soy milk for the development of a novel functional beverage. Int J Food Microbiol. 2014;186:32–41.
  • Kouzuma a, Watanabe K. Microbial ecology pushes frontiers in biotechnology. Microbes Environ. 2014;29:1–3.
  • Kim JY, Kim Y-G, Lee GM. CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol. 2012;93:917–930.
  • Yang Z, Wang S, Halim A, et al. Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nat Biotechnol. 2015;33:2014–2017.
  • Johnson I. Human insulin from recombinant DNA technology. Science. 1983;219:632–637.
  • Williams DC, Frank RMV, Muth WL, et al. Cytoplasmic inclusion bodies in Escherichia coli producing biosynthetic human insulin production. Science. 1982;215:687–688.
  • Chen T, Wang Y. Optimized astaxanthin production in Chlorella zofingiensis under dark condition by response surface methodology. Food Sci Biotechnol. 2013;22:1343–1350.
  • Graverholt OS, Eriksen NT. Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl Microbiol Biotechnol.. 2007;77:69–75.
  • Prieto A, Canavate JP, Garcia-Gonzalez M. Assessment of carotenoid production by Dunaliella salina in different culture systems and operation regimes. J Biotechnol. 2011;151:180–185.
  • Malvankar NS, Lovley DR. Microbial nanowires for bioenergy applications. Curr Opin Biotechnol. 2014;27:88–95.
  • Lovley DR. Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol. 2006;17:327–332.
  • Langer ES. Batch failure rates in biomanufacturing good training and investing in the right equipment upfront are among solutions. Genetic Eng Biotechnol News. 2008;28.
  • Kazamia E, Riseley AS, Howe CJ, et al. An engineered community approach for industrial cultivation of microalgae. Ind Biotechnol (New Rochelle NY). 2014;10:184–190.
  • Brenner K, You L, Arnold FH. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 2008;26:483–489.
  • Williams P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology (Reading, Engl). 2007;153:3923–3938.
  • Koenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA. 2011;108:4578–4585.
  • Cocolin L, Ercolini D. Zooming into food-associated microbial consortia: a “cultural” evolution. Curr Opin Food Sci. 2015;2:43–50.
  • Singh BK, Millard P, Whiteley AS, et al. Unravelling rhizosphere–microbial interactions: opportunities and limitations. Trends Microbiol. 2004;12:386–393.
  • Johansson JF, Paul LR, Finlay RD. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol. 2004;48:1–13.
  • Kent AD, Triplett EW. Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol. 2002;56:211–236.
  • Bayer EA, Lamed R, Himmel ME. The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotechnol. 2007;18:237–245.
  • Visick KL, Ruby EG. Vibrio fischeri and its host: it takes two to tango. Curr Opin Microbiol. 2006;9:632–638.
  • Moissl-Eichinger C, Huber H. Archaeal symbionts and parasites. Curr Opin Microbiol. 2011;14:364–370.
  • Santos CA, Reis A. Microalgal symbiosis in biotechnology. Appl Microbiol Biotechnol. 2014;98:5839–5846.
  • Gebuhr C, Pohlon E, Schmidt AR, et al. Development of microalgae communities in the phytotelmata of allochthonous populations of Sarracenia purpurea (Sarraceniaceae). Plant Biol. 2006;8:849–860.
  • Mendes B, Brantes L, Vermelho AB. Allelopathy as a potential strategy to improve microalgae cultivation. Biotechnol Biofuels. 2013;6:152.
  • Benavente-Valdes JR, Aguilar C, Contreras-Esquivel JC, et al. Strategies to enhance the production of photosynthetic pigments and lipids in chlorophycae species. Biotechnol Rep. 2016;10:117–125.
  • Natrah FMI, Bossier P, Sorgeloos P, et al. Significance of microalgal-bacterial interactions for aquaculture. Rev Aquacult. 2014;6:48–61.
  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, et al. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv. 2011;29:896–907.
  • Bernstein HC, Carlson RP. Microbial consortia engineering for cellular factories: in vitro to in silico systems. Comput Struct Biotechnol J. 2012;3:1–8.
  • Brenner K, Karig DK, Weiss R, et al. Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc Natl Acad Sci USA. 2007;104:17300–17304.
  • Hays SG, Patrick WG, Ziesack M, et al. Better together: engineering and application of microbial symbioses microbial consortia engineering for cellular factories: in vitro to in silico systems. Curr Opin Biotechnol. 2015;36:40–49.
  • Pandhal J, Noirel J. Synthetic microbial ecosystems for biotechnology. Biotechnol Lett. 2014;36:1141–1151.
  • Fussmann GF, Loreau M, Abrams PA. Eco-evolutionary dynamics of communities and ecosystems. Funct Ecol. 2007;21:465–477.
  • Loeuille N, Leibold MA. Evolution in metacommunities: on the relative importance of species sorting and monopolization in structuring communities. Am Nat. 2008;171:788–799.
  • Barranguet C, van Beusekom SAM, Veuger B, et al. Studying undisturbed autotrophic biofilms: still a technical challenge. Aquat Microb Ecol. 2004;34:1–9.
  • Kavita A, Jha BKM. Extracellular polymeric substances from two biofilm forming Vibrio species: characterization and applications. Carbohydr Polym. 2013;94:882–888.
  • Zhang B, Powers R. Analysis of bacterial biofilms using NMR-based metabolomics. Future Med Chem. 2012;4:1273–1306.
  • Sekar VP, Nandakumar K, Nair KVK, et al. Early stages of biofilm succession in a lentic freshwater environment. Hydrobiologia. 2004;512:97–108.
  • Beech IB, Sunner J. Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol. 2004;15:181–186.
  • Dashti Y, Grkovic T, Abdelmohsen UR, et al. Production of induced secondary metabolites by a co-culture of sponge-associated actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Mar Drugs. 2014;12:3046–3059.
  • Volk RB, Furkert FH. Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res. 2006;161:180–186.
  • Ahmer BMM. Cell-to-cell signalling in Escherichia coli and Salmonella enterica. Mol Microbiol. 2004;52:933–945.
  • González JE, Keshavan ND. Messing with bacterial quorum sensing. Microbiol Mol Biol Rev. 2006;70:859–875.
  • Hooshangi S, Bentley WE. From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications. Curr Opin Biotechnol. 2008;19:550–555.
  • March JC, Bentley WE. Quorum sensing and bacterial cross-talk in biotechnology. Curr Opin Biotechnol. 2004;15:495–502.
  • Badri DV, Weir TL, van der Lelie D, et al. Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol. 2009;20:642–650.
  • Shank EA, Kolter R. New developments in microbial interspecies signaling. Curr Opin Microbiol. 2009;12:205–214.
  • Netzker T, Fischer J, Weber J, et al. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol. 2015;6:299.
  • Rateb ME, Hallyburton I, Houssen WE, et al. Induction of diverse secondary metabolites in Aspergillus fumigatus by microbial co-culture. RSC Adv. 2013;3:14444–14450.
  • Watanabe K. Microorganisms relevant to bioremediation. Curr Opin Biotechnol. 2001;12:237–241.
  • Jones WR. Practical applications of marine bioremediation. Curr Opin Biotechnol. 1998;9:300–304.
  • Atlas RM, Atlas MC. Biodegradation of oil and bioremediation of oil spills. Curr Opin Biotechnol. 1991;2:440–443.
  • Díaz E, Jiménez JI, Nogales J. Aerobic degradation of aromatic compounds. Curr Opin Biotechnol. 2013;24:431–442.
  • Ding S-Y, Xu Q, Crowley M, et al. A biophysical perspective on the cellulosome: new opportunities for biomass conversion. Curr Opin Biotechnol. 2008;19:218–227.
  • Stenuit B, Agathos SN. Deciphering microbial community robustness through synthetic ecology and molecular systems synecology. Curr Opin Biotechnol. 2015;33:305–317.
  • van Baarlen P, Kleerebezem M, Wells JM. Omics approaches to study host-microbiota interactions. Curr Opin Microbiol. 2013;16:270–277.
  • Schofield MM, Sherman DH. Meta-omic characterization of prokaryotic gene clusters for natural product biosynthesis. Curr Opin Biotechnol. 2013;24:1151–1158.
  • Sue T, Obolonkin V, Griffiths H, et al. An exometabolomics approach to monitoring microbial contamination in microalgal fermentation processes by using metabolic footprint analysis. Appl Environ Microbiol. 2011;77:7605–7610.
  • Croft MT, Lawrence AD, Raux-Deery E, et al. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. 2005;438:90–93.
  • Angelis S, Noivak AC, Sydney EB, et al. Co-culture of microalgae, cyanobacteria, and macromycetes for exopolysaccharides production: process preliminary optimization and partial characterization. Appl Biochem Biotechnol. 2012;167:1092–1106.
  • Goers L, Freemont P, Polizzi KM. Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface. 2014;0065:11.
  • Markou G, Nerantzis E. Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv. 2013;31:1532–1542.
  • Gebreslassie BH, Waymire R, You FQ. Sustainable design and synthesis of algae-based biorefinery for simultaneous hydrocarbon biofuel production and carbon sequestration. AICHE J. 2013;59:1599–1621.
  • Trzcinski AP, Hernandez E, Webb C. A novel process for enhancing oil production in algae biorefineries through bioconversion of solid by-products. Bioresour Technol. 2012;116:295–301.
  • DesRochers TM, Kuo IY, Kimmerling EP, et al. The effects of mycoplasma contamination upon the ability to form bioengineered 3D kidney cysts. PLoS One. 2015;10:1–11.
  • Schmidtke A, Gaeke U, Weithoff G. A mechanistic basis for underyielding in phytoplankton communities. Ecology. 2010;91:212–221.
  • Cheirsilp B, Suwannarat W, Niyomdecha R. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. N Biotechnol. 2011;28:362–368.
  • Kitcha S, Cheirsilp B. Enhanced lipid production by co-cultivation and co-encapsulation of oleaginous yeast Trichosporonoides spathulata with microalgae in alginate gel beads. Appl Biochem Biotechnol. 2014;173:522–534.
  • Su CH, Chien LJ, Gomes J, et al. Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. J Appl Phycol. 2011;23:903–908.
  • Chi ZY, Liu Y, Frear C, et al. Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Appl Microbiol Biotechnol. 2009;81:1141–1148.
  • Orphan VJ. Methods for unveiling cryptic microbial partnerships in nature. Curr Opin Microbiol. 2009;12:231–237.
  • Minty JJ, Singer ME, Scholz SA, et al. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci USA. 2013;110:14592–14597.
  • Oren a. Availability, uptake and turnover of glycerol in hypersaline environments. FEMS Microbiol Ecol. 1993;12:15–23.
  • Tinzl-Malang SK, Rast P, Grattepanche F, et al. Exopolysaccharides from co-cultures of Weissella confusa 11GU-1 and Propionibacterium freudenreichii JS15 act synergistically on wheat dough and bread texture. Int J Food Microbiol. 2015;214:91–101.
  • Zhang Z, Ji H, Gong G, et al. Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields. Bioresour Technol. 2014;164:93–99.
  • Buzzini P. Batch and fed-batch carotenoid production by Rhodotorula glutinis-Debaryomyces castellii co-cultures in corn syrup. J Appl Microbiol. 2001;90:843–847.
  • Fukami T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst. 2015;46:1–23.
  • Chase JM. Community assembly: when should history matter? Oecologia. 2003;136:489–498.
  • Paul C, Mausz MA, Pohnert G. A co-culturing/metabolomics approach to investigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism. Metabolomics. 2012;9:349–359.
  • Wrede D, Taha M, Miranda AF, et al. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment. PLoS One. 2014;9:e113497.
  • Smith MJ, Francis MB. Improving metabolite production in microbial co-cultures using a spatially constrained hydrogel. Biotechnol Bioeng. 2017;114:1195–1200.
  • Ponomarova O, Patil KR. Metabolic interactions in microbial communities: untangling the Gordian knot. Curr Opin Microbiol. 2015;27:37–44.
  • Dalmas FR, Astarita L, Defilippis L, et al. Growth inhibition of an Araucaria angustifolia (Coniferopsida) fungal seed pathogen, Neofusicoccum parvum, by soil streptomycetes. BMC Microbiol. 2013;13:168.
  • Santos C, Caldeira M, Lopes da Silva T, et al. Enhanced lipidic algae biomass production using gas transfer from a fermentative Rhodosporidium toruloides culture to an autotrophic Chlorella protothecoides culture. Bioresour Technol. 2013;138:48–54.
  • Byun CK, Hwang H, Choi WS, et al. Productive chemical interaction between a bacterial microcolony couple is enhanced by periodic relocation. J Am Chem Soc. 2013;135:2242–2247.
  • Lobete MM, Fernandez EN, Van Impe JFM. Recent trends in non-invasive in situ techniques to monitor bacterial colonies in solid (model) food. Front Microbiol. 2015;6:148.
  • Fukami T. Community assembly along a species pool gradient: implications for multiple-scale patterns of species diversity. Popul Ecol. 2004;46:137–147.
  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, et al. Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Int. 2013;51:59–72.
  • Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv. 2011;29:686–702.
  • Machado IMP, Atsumi S. Cyanobacterial biofuel production. J Biotechnol. 2012;162:50–56.
  • Mata TM, Martins AA, Caetano N. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev. 2010;14:217–232.
  • Frigon JC, Matteau-Lebrun F, Hamani Abdou R, et al. Screening microalgae strains for their productivity in methane following anaerobic digestion. Appl Energy. 2013;108:100–107.
  • Parmar A, Singh NK, Pandey A, et al. Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol. 2011;102:10163–10172.
  • Posten C, Schaub G. Microalgae and terrestrial biomass as source for fuels-a process view. J Biotechnol. 2009;142:64–69.
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306.
  • Vigani M, Parisi C, Rodriguez-Cerezo E, et al. Food and feed products from micro-algae: market opportunities and challenges for the EU. Trends Food Sci Technol. 2015;42:81–92.
  • Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, et al. Extraction and purification of high-value metabolites from microalgae: Essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol. 2015;8:190–209.
  • Borowitzka MA. High-value products from microalgae-their development and commercialisation. J Appl Phycol. 2013;25:743–756.
  • Liu L, Pohnert G, Wei D. Extracellular metabolites from industrial microalgae and their biotechnological potential. Mar Drugs. 2016;14:191.
  • Chen H, Jiang JG. Osmotic responses of Dunaliella to the changes of salinity. J Cell Physiol. 2009;219:251–258.
  • Dragone G, Fernandes BD, Abreu AP, et al. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy. 2011;88:3331–3335.
  • Ras M, Steyer JP, Bernard O. Temperature effect on microalgae: a crucial factor for outdoor production. Rev Environ Sci. Bio-Technol. 2013;12:153–164.
  • Sayre R. Microalgae: The potential for carbon capture. Bioscience. 2010;60:722–727.
  • Yao B, Xi BD, Hu CM, et al. A model and experimental study of phosphate uptake kinetics in algae: considering surface adsorption and P-stress. J Environ Sci. 2011;23:189–198.
  • Elvira-Antonio N, Ruiz-Marin A, Canedo-Lopez Y. Effect of nitrogen content and CO2 consumption rate by adding sodium carbonate in the lipid content of Chlorella vulgaris and Neochloris oleoabundans. Int J Environ Prot. 2013;3:13–19.
  • Feng DN, Chen ZA, Xue S, et al. Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour Technol. 2011;102:6710–6716.
  • Jiang Y, Yoshida T, Quigg A. Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae. Plant Physiol Biochem. 2012;54:70–77.
  • San Pedro A, Gonzalez-Lopez CV, Acien FG, et al. Marine microalgae selection and culture conditions optimization for biodiesel production. Bioresour Technol. 2013;134:353–361.
  • Schlagermann P, Göttlicher G, Dillschneider R, et al. Composition of algal oil and its potential as biofuel. J Combust. 2012;2012:1–14.
  • Campenni’ L, Nobre BP, Santos CA, et al. Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions. Appl Microbiol Biotechnol. 2013;97:1383–1393.
  • Fu W, Guðmundsson L, Paglia G, et al. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl Microbiol Biotechnol. 2013;97:2395–2403.
  • Lamers PP, van de Laak CCW, Kaasenbrood PS, et al. Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol Bioeng. 2010;106:638–648.
  • Phadwal K, Singh PK. Isolation and characterization of an indigenous isolate of Dunaliella sp. for beta-carotene and glycerol production from a hypersaline lake in India. J Basic Microbiol. 2003;43:423–429.
  • Phadwal K, Singh P. Effect of nutrient depletion on beta-carotene and glycerol accumulation in two strains of Dunaliella sp. Bioresour Technol. 2003;90:55–58.
  • Hard BC, Gilmour DJ. A mutant of Dunaliella parva CCAP 19/9 leaking large amounts of glycerol into the medium. J Appl Phycol. 1991;3:367–372.
  • Tran D, Doan N, Louime C, et al. Growth, antioxidant capacity and total carotene of Dunaliella salina DCCBC15 in a low cost enriched natural seawater medium. World J Microbiol Biotechnol. 2014;30:317–322.
  • Del Campo JA, García-González M, Guerrero MG. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol. 2007;74:1163–1174.
  • Avila-Leon I, Matsudo M, Sato S, et al. Arthrospira platensis biomass with high protein content cultivated in continuous process using urea as nitrogen source. J Appl Microbiol. 2012;112:1086–1094.
  • Liu J, Fan K, Jiang Y, et al. Production potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresour Technol. 2010;101:8658–8663.
  • Sekar S, Chandramohan M. Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol. 2007;20:113–136.
  • Raja R, Hemaiswarya S, Kumar NA, et al. A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol. 2008;34:77–88.
  • Spolaore P, Joannis-Cassan C, Duran E, et al. Commercial applications of microalgae. J Biosci Bioeng. 2006;101:87–96.
  • Pignolet O, Jubeau S, Vaca-Garcia C, et al. Highly valuable microalgae: biochemical and topological aspects. J Ind Microbiol Biotechnol. 2013;40:781–796.
  • Dayananda C, Kumudha A, Sarada R, et al. Isolation, characterization and outdoor cultivation of green microalgae Botryococcus sp. Sci Res Essays. 2012;5:2497–2505.
  • de Morais MG, da Silva Vaz B, Etiele Greque de M, et al. Review article biologically active metabolites synthesized by microalgae. Biomed Res Int. 2015;2015:1–15.
  • Blanco AM, Moreno J, Del Campo JA, et al. Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl Microbiol Biotechnol. 2007;73:1259–1266.
  • Li J, Zhu D, Niu J, et al. An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol Adv. 2011;29:568–574.
  • Caswell M, Zilberman D. Algolculture: an Economical Analaysis of Algoculture. Corvallis (OR): Food and Agriculture Organization of the United Nations. 2000
  • Kazamia E, Czesnick H, Nguyen TT, Van, et al. Mutualistic interactions between vitamin B12 -dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol. 2012;14:1466–1476.
  • Grant MAA, Kazamia E, Cicuta P, et al. Direct exchange of vitamin B12 is demonstrated by modelling the growth dynamics of algal–bacterial cocultures. ISME J. 2014;8(7):1-10.
  • Xie B, Bishop S, Stessman D, et al. Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria. ISME J. 2013;7:1544–1555.
  • Helliwell KE, Scaife MA, Sasso S, et al. Unraveling vitamin B12-responsive gene regulation in algae. Plant Physiol. 2014;165:388–397.
  • Praveen P, Loh K-C. Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis. Appl Microbiol Biotechnol. 2015;99:10345–10354.
  • Cai S, Hu C, Du S. Comparisons of growth and biochemical composition between mixed culture of alga and yeast and monocultures. J Biosci Bioeng. 2007;104:391–397.
  • Shu C-H, Tsai C-C, Chen K-Y, et al. Enhancing high quality oil accumulation and carbon dioxide fixation by a mixed culture of Chlorella sp. and Saccharomyces cerevisiae. J Taiwan Inst Chem Eng. 2013;44:936–942.
  • Wang R, Tian Y, Xue S, et al. Enhanced microalgal biomass and lipid production via co-culture of Scenedesmus obliquus and Candida tropicalis in an autotrophic system. J Chem Technol Biotechnol. 2015;9:1387–1396.
  • Narihiro T, Sekiguchi Y. Microbial communities in anaerobic digestion processes for waste and wastewater treatment: a microbiological update. Curr Opin Biotechnol. 2007;18:273–278.
  • Beale D, Kouremenos K, Palombo E (editors). Microbial metabolomics. Switzerland: Springer International Publishing; 2016
  • Frølund B, Palmgren R, Keiding K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. 1996;30:1749–1758.
  • Solomon KV, Haitjema CH, Thompson DA, et al. Extracting data from the muck: deriving biological insight from complex microbial communities and non-model organisms with next generation sequencing. Curr Opin Biotechnol. 2014;28:103–110.
  • Ebada SS, Edrada RA, Lin W, et al. Methods for isolation, purification and structural elucidation of bioactive secondary metabolites from marine invertebrates. Nat Protoc. 2008;3:1820–1831.
  • Kapoore RV, Vaidyanathan S. Towards quantitative mass spectrometry-based metabolomics in microbial and mammalian systems. Philos Trans A. 2016;374:1–14.
  • Goulitquer S, Potin P, Tonon T. Mass spectrometry-based metabolomics to elucidate functions in marine organisms and ecosystems. Mar Drugs. 2012;10:849–889.
  • Metabolomics Society [Internet]; [cited 2016 Nov 12]. Available from http://metabolomicssociety.org/resources/metabolomics-databases#home. 2014.
  • Flemming H, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–633.
  • Xiao R, Zheng Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv. 2016;34:1225–1244.
  • Xue F, Miao J, Zhang X, et al. A new strategy for lipid production by mix cultivation of Spirulina platensis and Rhodotorula glutinis. Appl Biochem Biotechnol. 2010;160:498–503.
  • Papone T, Kookkhunthod S, Leesing R. Microbial oil production by monoculture and mixed cultures of microalgae and oleaginous yeasts using sugarcane juice as substrate. World Acad Sci Eng Technol. 2012;64:1127–1131.
  • Wang E-X, Ding M-Z, Ma Q, et al. Reorganization of a synthetic microbial consortium for one-step vitamin C fermentation. Microb Cell Fact. 2016;15:21.
  • Ling J, Nip S, Cheok WL, et al. Lipid production by a mixed culture of oleaginous yeast and microalga from distillery and domestic mixed wastewater. Bioresour Technol. 2014;173:132–139.
  • Ip P, Wong K, Chen F. Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem. 2004;39:1761–1766.
  • Del Campo JA, Rodríguez H, Moreno J, et al. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol. 2004;64:848–854.
  • Choi YE, Yun YS, Park JM. Evaluation of factors promoting astaxanthin production by a unicellular green alga, Haematococcus pluvialis, with fractional factorial design. Biotechnol Prog. 2002;18:1170–1175.
  • Zhang BY, Geng YH, Li ZK, et al. Production of astaxanthin from Haematococcus in open pond by two-stage growth one-step process. Aquaculture. 2009;295:275–281.
  • Harker M, Tsavalos AJ, Young AJ. Autotrophic growth and carotenoid production of Haematococcus pluvialis in a 30 liter air-lift photobioreactor. J Ferment Bioeng. 1996;82:113–118.
  • Pisal D, Lele S. Carotenoid production from microalga, Dunaliella salina. Indian J Biotechnol. 2005;4:476–483.
  • Gomez PI, Gonzalez MA. The effect of temperature and irradiance on the growth and carotenogenic capacity of seven strains of Dunaliella salina (Chlorophyta) cultivated under laboratory conditions. Biol Res. 2005;38:151–162.
  • Rad FA, Aksoz N, Hejazi MA. Effect of salinity on cell growth and β -carotene production in Dunaliella sp. isolates from Urmia Lake in northwest of Iran. Afr J Biotechnol. 2011;10:2282–2289.
  • Sathasivam R, Kermanee P, Roytrakul S, et al. Isolation and molecular id entification of β -carotene producing strains of Dunaliella salina and Dunaliella bardawil from salt soil samples by using species-specific primers and internal transcribed spacer (ITS) primers. Afr J Biotechnol. 2012;11:16677–16687.
  • Mojaat M, Pruvost J, Foucault A, et al. Effect of organic carbon sources and Fe2+ ions on growth and β-carotene accumulation by Dunaliella salina. Biochem Eng J. 2008;39:177–184.
  • Yoo C, Jun S-Y, Lee J-Y, et al. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol. 2010;101 Suppl:S71–S74.
  • Garbayo I, Cuaresma M, Vilchez C, et al. Effect of abiotic stress on the production of lutein and beta-carotene by Chlamydomonas acidophila. Process Biochem. 2008;43:1158–1161.
  • Sloth JK, Wiebe GW, Eriksen NT. Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzyme Microb Technol. 2006;38:168–175.