402
Views
24
CrossRef citations to date
0
Altmetric
Review Article

Streptomyces sp. is a powerful biotechnological tool for the biodegradation of HCH isomers: biochemical and molecular basis

, , &
Pages 719-728 | Received 05 Jun 2017, Accepted 06 Oct 2017, Published online: 10 Nov 2017

References

  • Barber LB, Keefe SH, Antweiler RC, et al. Accumulation of contaminants in fish from wastewater treatment wetlands. Environ Sci Technol. 2006;40:603–611.
  • Bempah CK, Donkor AK. Pesticide residues in fruits at the market level in Accra Metropolis, Ghana, a preliminary study. Environ Monit Assess. 2010;175:551–561.
  • Jia H, Chang Y, Sun Y, et al. Distribution and potential human risk of organochlorine pesticides in market mollusks from Dalian, China. Bull Environ Contam Toxicol. 2010;84:278–284.
  • UNEP. Preparation of an international legally binding instrument for implementing international action on certain persistent organic pollutants. UNEP/POPS/INC.4/INF/6. Nairobi, Kenya: United Nations Environment Programme; 2000.
  • Vijgen J, Abhilash PC, Li YF, et al. Hexachlorocyclohexane (HCH) as new Stockholm convention POPs—a global perspective on the management of Lindane and its waste isomers. Environ Sci Pollut Res. 2011;18:152–162.
  • Hermanowicz A, Nawarska Z, Borys D, et al. The neutrophil function and infectious diseases in workers occupationally exposed to organochloride insecticides. Int Arch Occup Environ Heath. 1982;50:329–340.
  • Nagata Y, Nariya T, Ohtomo R, et al. Cloning and sequencing of a dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of γ-hexachlorocyclohexane (γ-HCH) in Pseudomonas paucimobilis. J Bacteriol. 1993;175:6403–6410.
  • Nagasawa S, Kikuchi R, Nagata Y, et al. Aerobic mineralization of γ-HCH by Pseudomonas paucimobilis UT26. Chemosphere. 1993;26:1719–1728.
  • Quintero JC, Moreira MT, Feijoo G, et al. Anaerobic degradation of hexachlorocyclohexane isomers in liquid and soil slurry systems. Chemosphere. 2005;61:528–536.
  • Colt JS, Rothman N, Severson RK, et al. Organochlorine exposure, immune gene variation, and risk of non-Hodgkin lymphoma. Blood. 2009;113:1899–1905.
  • Chia VM, Li Y, Quraishi SM, et al. Effect modification of endocrine disruptors and testicular germ cell tumour risk by hormone-metabolizing genes. Int J Androl. 2010;33:588–596.
  • Manna RN, Zinovjev K, Tunon I, et al. Dehydrochlorination of hexachlorocyclohexanes catalyzed by the LinA dehydrohalogenase. A QM/MM study. J Phys Chem B. 2015;119:15100–15109.
  • Manickam N, Mau M, Schlömann M. Characterization of the novel HCH-degrading strain, Microbacterium sp. ITRC1. Appl Microbiol Biotechnol. 2006;69:580–588.
  • ATSDR, Agency for toxic substances and disease registry, US Department of Health and Human Services. Toxicological profile for alpha-, beta-, gamma-, and delta-hexachlorocyclohexane. Tauranga: Clement and Associates; 1999.
  • Liu Z, Zhang H, Tao M, et al. Organochlorine pesticides in consumer fish and mollusks of Liaoning province, China: distribution and human exposure implications. Arch Environ Contam Toxicol. 2010;59:444–453.
  • Quintero JC, Lú-Chau TA, Moreira MT, et al. Bioremediation of HCH present in soil by the white-rot fungus Bjerkandera adusta in a slurry batch bioreactor. Int Biodeterior Biodegrad. 2007;60:319–326.
  • Nagata Y, Endo R, Ito M, et al. Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol. 2007;76:741–752.
  • Singh BK, Kuhad RC. Biodegradation of lindane (gamma-hexachlorocyclohexane) by the white-rot fungus Trametes hirsutus. Lett Appl Microbiol. 1999;28:238–241.
  • Singh BK, Kuhad RC, Singh A, et al. Microbial degradation of the pesticide lindane (gamma-hexachlorocyclohexane). Adv Appl Microbiol. 2000;47:269–298.
  • De Schrijver A, De Mot R. Degradation of pesticides by actinomycetes. Crit Rev Microbiol. 1999;25:85–119.
  • Baczynski TP, Pleissner D, Grotenhuis T. Anaerobic biodegradation of organochlorine pesticides in contaminated soil – significance of temperature and availability. Chemosphere. 2010;78:22–28.
  • Alvarez A, Benimeli CS, Saez JM, et al. Bacterial bio-resources for remediation of hexachlorocyclohexane. Int J Mol Sci. 2012;13:15086–15106.
  • Kothe E, Bergmann H, Buchel G. Molecular mechanisms in biogeointeractions: from a case study to general mechanisms. Chem Der Erde/Geochem. 2005;65:7–27.
  • Rajendran P, Muthukrishnan J, Gunasekaran P. Microbes in heavy metal remediation. Indian J Exp Bot. 2003;41:935–944.
  • Dixit R, Wasiullah Malaviya D, et al. Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability. 2015;7:2189–2212.
  • Alvarez A, Saez JM, Davila JS, et al. Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere. 2017;166:41–62.
  • Cuozzo SA, Rollan G, Abate CM, et al. Specific dechlorinase activity in lindane degradation by Streptomyces sp. M7. World J Microbiol Biotechnol. 2009;25:1539–1546.
  • Cuozzo SA, Fuentes MS, Bourguignon N, et al. Chlordane biodegradation study in aerobic condition by indigenous Streptomyces strains. Int Biodeterior Biodegrad. 2012;66:19–24.
  • Polti MA, Aparicio JD, Benimeli CS, et al. Role of Actinobacteria in bioremediation. Microb Biodegrad Bioremed. 2014;286:2.
  • Amoroso MJ, Benimeli CS, Cuozzo SA. Actinobacteria: application in bioremediation and production of industrial enzymes. Boca Raton, FL: CRC Press LLC; 2013.
  • Isaac P, Martínez FL, Bourguignon N, et al. Improved PAHs removal performance by a defined bacterial consortium of indigenous Pseudomonas and Actinobacteria from Patagonia, Argentina. Int Biodeterior Biodegrad. 2015;101:23–31.
  • Briceño G, Fuentes MS, Palma G, et al. Chlorpyrifos biodegradation and 3,5,6-trichloro-2-pyridinol production by Actinobacteria isolated from soil. Int Biodeterior Biodegrad. 2012;73:1–7.
  • Papale M, Giannarelli S, Francesconi S, et al. Enrichment, isolation and biodegradation potential of psychrotolerant polychlorinated-biphenyl degrading bacteria from the Kongsfjorden (Svalbard Islands, High Arctic Norway). Mar Pollut Bull. 2017;14:849–859.
  • De Paolis MR, Lippi D, Guerriero E, et al. Biodegradation of α-, β-, and γ-hexachlorocyclohexane by Arthrobacter fluorescens and Arthrobacter giacomelloi. Appl Biochem Biotechnol. 2013;170:514–524.
  • Michaud L, Di Marco G, Bruni V, et al. Biodegradative potential and characterization of psychrotolerant polychlorinated biphenyl-degrading marine bacteria isolated from a coastal station in the Terra Nova Bay (Ross Sea, Antarctica). Mar Pollut Bull. 2007;54:1754–1761.
  • Qi Y, Zhao L, Olusheyi OZ, et al. Isolation and preliminary characterization of a 3-chlorobenzoate degrading bacteria. J Environ Sci (China). 2007;19:332–337.
  • Sineli P, Tortella G, Dávila Costa JS, et al. Evidence of α-, β- and γ-HCH mixture aerobic degradation by the native Actinobacteria Streptomyces sp. M7. World J Microbiol Biotechnol. 2016;32:1–9.
  • Manickam N, Reddy MK, Saini HS, et al. Isolation of hexachlorocyclohexane-degrading Sphingomonas sp. by dehalogenase assay and characterization of genes involved in γ-HCH degradation. J Appl Microbiol. 2008;104:952–960.
  • Jesenska A, Sedlacek I, Damborsky J. Dehalogenation of haloalkanes by Mycobacterium tuberculosis H37Rv and other Mycobacteria. Appl Environ Microbiol. 2000;66:219–222.
  • Datta J, Maiti AK, Modak DP, et al. Metabolism of gamma-hexachlorocyclohexane by Arthrobacter citreus strain BI-100: identification of metabolites. J Gen Appl Microbiol. 2000;46:59–67.
  • Sineli P, Fuentes S, Benimeli C, et al. Estudio de la degradación de los isómeros α- y β-Hexaclorociclohexano por Streptomyces sp. M7. IDITec; 2013. p. 33–40.
  • Fuentes MS, Raimondo EE, Amoroso MJ, et al. Removal of a mixture of pesticides by a Streptomyces consortium: influence of different soil systems. Chemosphere. 2017;173:359–367.
  • Ravel J, Amoroso MJ, Colwell RR, et al. Mercury resistant actinomycetes from Chesapeake Bay. FEMS Microbiol Lett. 1998;162:177–184.
  • Olaniran AO, Pillay D, Pillay B. Haloalkane and haloacid dehalogenases from aerobic bacterial isolates indigenous to contaminated sites in Africa demonstrate diverse substrate specificities. Chemosphere. 2004;55:27–33.
  • Sallis PJ, Armfield SJ, Bull AT, et al. Isolation and characterization of a haloalkane halidohydrolase from Rhodococcus erythropolis Y2. J Gen Microbiol. 1990;136:115–120.
  • Lal D, Gupta SK, Schumann P, et al. Microbacterium lindanitolerans sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol. 2010;60:2634–2638.
  • Yokota T, Omori T, Kodama T. Purification and properties of haloalkane dehalogenase from Corynebacterium sp. strain m15-3. J Bacteriol. 1987;169:4049–4049.
  • Camacho-Pérez B, Ríos-Leal E, Rinderknecht-Seijas N, et al. Enzymes involved in the biodegradation of hexachlorocyclohexane: a mini review. J Environ Manag. 2012;95:306–318.
  • Geueke B, Garg N, Ghosh S, et al. Metabolomics of hexachlorocyclohexane (HCH) transformation: ratio of LinA to LinB determines metabolic fate of HCH isomers. Environ Microbiol. 2013;15:1040–1049.
  • Cérémonie H, Boubakri H, Mavingui P, et al. Plasmid-encoded c-hexachlorocyclohexane degradation genes and insertion sequences in Sphingobium francense (ex-Sphingomonas paucimobilis Sp+). FEMS Microbiol Ecol. 2006;257:243–252.
  • Amoroso MJ, Castro G, Carlino F, et al. Screening of actinomycetes isolated from Salí river tolerant to heavy metal. J Gen Appl Microbiol. 1998;44:29–32.
  • Chaile AP, Romero N, Amoroso MJ, et al. Organochlorine pesticides in Sali River. Tucumán-Argentina. Rev Boliv Ecol. 1999;6:203–209 (in Spanish).
  • Benimeli CS, Amoroso MJ, Chaile AP, et al. Isolation of four aquatic streptomycetes strains capable of growth on organochlorine pesticides. Bioresour Technol. 2003;89:133–138.
  • Phillips TM, Seech AG, Lee H, et al. Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation. 2005;16:363–392.
  • Robles-González IV, Ríos-Leal E, Sastre-Conde I, et al. Slurry bioreactors with simultaneous electron acceptors for bioremediation of an agricultural soil polluted with lindane. Process Biochem. 2012;47:1640–1648.
  • CEPA. Canadian Environmental Protection Act, Priority Substances List Assessment Report. 1,2-Dichlorobenzene. Ottawa: CEPA; 1993.
  • Calvelo P, Ereira R, Monterroso C, et al. Phytotoxicity of hexachlorocyclohexane: effect on germination and early growth of different plant species. Chemosphere. 2010;79:326–333.
  • Sobrero MC, Ronco A. Ensayos toxicológicos y métodos de evaluación de calidad de aguas. Estandarización, intercalibración, resultados y aplicaciones. Capítulo 4.4. In: Castillo G, editor. Ensayo de toxicidad aguda con semillas de lechuga (Lactuca sativa L.) México: IMTA; Canadá: IDRC; 2004.
  • Saez JM, Aparicio JD, Amoroso MJ, et al. Effect of the acclimation of a Streptomyces consortium on lindane biodegradation by free and immobilized cells. Process Biochem. 2015;50:1923–1933.
  • Pearce SL, Oakeshott JG, Pandey G. Insights into ongoing evolution of the hexachlorocyclohexane catabolic pathway from comparative genomics of ten Sphingomonadaceae strains. G3 (Bethesda). 2015;5:1081–1094.
  • Nagata Y, Miyuchi M, Takagi M. Complete analysis of genes and enzymes for γ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. J Ind Microbiol Biotechnol. 1999;23:380–390.
  • Kurihara T, Esaki N. Bacterial hydrolytic dehalogenases and related enzymes: occurrences, reaction mechanisms, and applications. Chem Rec. 2008;8:67–74.
  • Nagata Y, Mori K, Takagi M, et al. Identification of protein fold and catalytic residues of gamma-hexachlorocyclohexane dehydrochlorinase LinA. Proteins. 2001;45:471–477.
  • Nagata Y, Prokop Z, Marvanova S, et al. Reconstruction of mycobacterial dehalogenase Rv2579 by cumulative mutagenesis of haloalkane dehalogenase LinB. Appl Environ Microbiol. 2003;69:2349–2355.
  • Jesenska A, Bartos M, Czernekova V, et al. Cloning and expression of the haloalkane dehalogenase gene dhmA from Mycobacterium avium N85 and preliminary characterization of DhmA. Appl Environ Microbiol. 2002;68:3724–3730.
  • Lal R, Sharma P, Kumari K, et al. Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Biol Rev. 2010;74:58–80.
  • Endo R, Ohtsubo Y, Tsuda M, et al. Identification and characterization of genes encoding a putative ABC-type transporter essential for utilization of γ-hexachlorocyclohexane in Sphingobium japonicum UT26. J Bacteriol. 2007;189:3712–3720.
  • Tabata M, Endo R, Ito M, et al. The lin genes for γ-hexachlorocyclohexane degradation in Sphingomonas sp. MM-1 proved to be dispersed across multiple plasmids. Biosci Biotechnol Biochem. 2011;75:466–472.
  • Singh R, Singh A, Misra V, et al. Degradation of lindane contaminated soil using zero-valent iron nanoparticles. J Biomed Nanotechnol. 2011;7:175–176.
  • Nagpal V, Bokare AD, Chikate RC, et al. Reductive dechlorination of γ-hexachlorocyclohexane using Fe–Pd bimetallic nanoparticles. J Hazard Mater. 2010;175:680–687.
  • Joo SH, Zhao D. Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. Chemosphere. 2008;70:418–425.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.