1,179
Views
61
CrossRef citations to date
0
Altmetric
Review Article

Marine natural pigments as potential sources for therapeutic applications

, , , , , & ORCID Icon show all
Pages 745-761 | Received 28 Aug 2017, Accepted 03 Oct 2017, Published online: 10 Nov 2017

References

  • Pangestuti R, Kim SK. Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Foods. 2011;3:255–266.
  • Pereira DM, Valentão P, Andrade PB. Marine natural pigments: chemistry, distribution and analysis. Dyes Pigm. 2014;111:124–134.
  • Cho Y, Park J, Hwang H, et al. Production of red pigment by submerged culture of Paecilomyces sinclairii. Lett Appl Microbiol. 2002;35:195–202.
  • Boo HO, Hwang SJ, Bae CS, et al. Extraction and characterization of some natural plant pigments. Ind Crops Prod. 2012;40:129–135.
  • El Gamal AA. Biological importance of marine algae. Saudi Pharm J. 2010;18:1–25.
  • Khan SB, Kong CS, Kim JA, et al. Protective effect of Amphiroa dilatata on ROS induced oxidative damage and MMP expressions in HT1080 cells. Biotechnol Bioprocess Eng. 2010;15:191–198.
  • Soliev AB, Hosokawa K, Enomoto K. Bioactive pigments from marine bacteria: applications and physiological roles. Evid Based Complement Altern Med. 2011;2011:1–17.
  • Manivasagan P, Nam SY, Oh J. Marine microorganisms as potential biofactories for synthesis of metallic nanoparticles. Crit Rev Microbiol. 2016;42:1–13.
  • Dufosse L, Fouillaud M, Caro Y, et al. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol. 2014;26:56–61.
  • Bandaranayake WM. The nature and role of pigments of marine invertebrates. Nat Prod Rep. 2006; 23:223–255.
  • Rastogi RP, Sinha RP, Singh SP, et al. Photoprotective compounds from marine organisms. J Ind Microbiol Biotechnol. 2010;37:537–558.
  • Lu Y, Wang L, Xue Y, et al. Production of violet pigment by a newly isolated psychrotrophic bacterium from a glacier in Xinjiang, China. Biochem Eng J. 2009;43:135–141.
  • Hosikian A, Lim S, Halim R, et al. Chlorophyll extraction from microalgae: a review on the process engineering aspects. Int J Chem Eng. 2010;2010:1–11.
  • Larkum AWD, Kühl M. Chlorophyll d: the puzzle resolved. Trends Plant Sci. 2005;10:355–357.
  • Ferruzzi MG, Blakeslee J. Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutr Res. 2007;27:1–12.
  • Ormond AB, Freeman HS. Dye sensitizers for photodynamic therapy. Materials (Basel). 2013;6:817–840.
  • Li WT, Tsao HW, Chen YY, et al. A study on the photodynamic properties of chlorophyll derivatives using human hepatocellular carcinoma cells. Photochem Photobiol Sci. 2007;6:1341–1348.
  • Alenezi K, Tovmasyan A, Batinic-Haberle I, et al. Optimizing Zn porphyrin-based photosensitizers for efficient antibacterial photodynamic therapy. Photodiagnosis Photodyn Ther. 2017;17:154–159.
  • Lanfer-Marquez UM, Barros RM, Sinnecker P. Antioxidant activity of chlorophylls and their derivatives. Food Res Int. 2005;38:885–891.
  • Jelic D, Tatic I, Trzun M, et al. Porphyrins as new endogenous anti-inflammatory agents. Eur J Pharmacol. 2012;691:251–260.
  • Spiller GA, Dewell A. Safety of an astaxanthin-rich Haematococcus pluvialis algal extract: a randomized clinical trial. J Med Food. 2003;6:51–56.
  • Edge R, McGarvey D, Truscott T. The carotenoids as anti-oxidants-a review. J Photochem Photobiol B. 1997;41:189–200.
  • Rao AV, Rao LG. Carotenoids and human health. Pharmacol Res. 2007;55:207–216.
  • Dharmaraj S, Ashokkumar B, Dhevendaran K. Food-grade pigments from Streptomyces sp. isolated from the marine sponge Callyspongia diffusa. Food Res Int. 2009;42:487–492.
  • Batista AP, Raymundo A, Sousa I, et al. Rheological characterization of coloured oil-in-water food emulsions with lutein and phycocyanin added to the oil and aqueous phases. Food Hydrocoll. 2006;20:44–52.
  • Lichtenthaler HK. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 1987;148:350–382.
  • Dembitsky VM, Maoka T. Allenic and cumulenic lipids. Prog Lipid Res. 2007;46:328–375.
  • Heo SJ, Jeon YJ. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J Photochem Photobiol B. 2009;95:101–107.
  • Sangeetha RK, Bhaskar N, Divakar S, et al. Bioavailability and metabolism of fucoxanthin in rats: structural characterization of metabolites by LC-MS (APCI). Mol Cell Biochem. 2010;333:299–310.
  • Peng J, Yuan JP, Wu CF, et al. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs. 2011;9:1806–1828.
  • Ambati RR, Phang SM, Ravi S, et al. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications: a review. Mar Drugs. 2014;12:128–152.
  • Lorenz RT, Cysewski GR. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 2000;18:160–167.
  • Pashkow FJ, Watumull DG, Campbell CL. Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol. 2008;101:S58–S68.
  • Guerin M, Huntley ME, Olaizola M. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 2003;21:210–216.
  • Yuan JP, Peng J, Yin K, et al. Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res. 2011;55:150–165.
  • Chew BP, Park JS. Carotenoid action on the immune response. J Nutr. 2004;134:257S–261S.
  • Palozza P, Torelli C, Boninsegna A, et al. Growth-inhibitory effects of the astaxanthin-rich alga Haematococcus pluvialis in human colon cancer cells. Cancer Lett. 2009;283:108–117.
  • Hussein G, Sankawa U, Goto H, et al. Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod. 2006;69:443–449.
  • Furusawa N. A simple and small-scale sample preparation technique to determine canthaxanthin in hen egg yolk. Food Chem. 2011;124:1643–1646.
  • Hojjati M, Razavi SH, Rezaei K, et al. Stabilization of canthaxanthin produced by Dietzia natronolimnaea HS-1 with spray drying microencapsulation. J Food Sci Technol. 2014;51:2134–2140.
  • Tanaka T, Shnimizu M, Moriwaki H. Cancer chemoprevention by carotenoids. Molecules. 2012;17:3202–3242.
  • Shahidi F, Brown JA. Carotenoid pigments in seafoods and aquaculture. Crit Rev Food Sci. 1998;38:1–67.
  • Das A, Yoon SH, Lee SH, et al. An update on microbial carotenoid production: application of recent metabolic engineering tools. Appl Microbiol Biotechnol. 2007;77:505–512.
  • Holden JM, Eldridge AL, Beecher GR, et al. Carotenoid content of US foods: an update of the database. J Food Comp Anal. 1999;12:169–196.
  • Shahina M, Hameed A, Lin SY, et al. Gramella planctonica sp. nov., a zeaxanthin-producing bacterium isolated from surface seawater, and emended descriptions of Gramella aestuarii and Gramella echinicola. Antonie Van Leeuwenhoek. 2014;105:771–779.
  • Hameed A, Shahina M, Lin SY, et al. Aquibacter zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from surface seawater, and emended descriptions of the genera Aestuariibaculum and Gaetbulibacter. Int J Syst Evol Microbiol. 2014;64:138–145.
  • Gammone MA, Riccioni G, D’Orazio N. Marine carotenoids against oxidative stress: effects on human health. Mar Drugs. 2015;13:6226–6246.
  • Viskari PJ, Colyer CL. Rapid extraction of phycobiliproteins from cultured cyanobacteria samples. Anal Biochem. 2003;319:263–271.
  • Viskari PJ, Kinkade CS, Colyer CL. Determination of phycobiliproteins by capillary electrophoresis with laser‐induced fluorescence detection. Electrophoresis. 2001;22:2327–2335.
  • Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea F. Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr. 2006;46:185–196.
  • Cornish ML, Garbary DJ. Antioxidants from macroalgae: potential applications in human health and nutrition. Algae. 2010;25:155–171.
  • Ngo DH, Wijesekara I, Vo TS, et al. Marine food-derived functional ingredients as potential antioxidants in the food industry: an overview. Food Res Int. 2011;44:523–529.
  • Le Tutour B, Benslimane F, Gouleau M, et al. Antioxidant and pro-oxidant activities of the brown algae, Laminaria digitata, Himanthalia elongata, Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum. J Appl Phycol. 1998;10:121–129.
  • Cho M, Lee HS, Kang IJ, et al. Antioxidant properties of extract and fractions from Enteromorpha prolifera, a type of green seaweed. Food Chem. 2011;127:999–1006.
  • Xia S, Wang K, Wan L, et al. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Mar Drugs. 2013;11:2667–2681.
  • Fung A, Hamid N, Lu J. Fucoxanthin content and antioxidant properties of Undaria pinnatifida. Food Chem. 2013;136:1055–1062.
  • Miki W. Biological functions and activities of animal carotenoids. Pure Appl Chem. 1991;63:141–146.
  • da Silva FO, Tramonte VL, Parisenti J, et al. Litopenaeus vannamei muscle carotenoids versus astaxanthin: a comparison of antioxidant activity and in vitro protective effects against lipid peroxidation. Food Biosci. 2015;9:12–19.
  • Naguib YM. Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem. 2000;48:1150–1154.
  • Yabuta Y, Fujimura H, Kwak CS, et al. Antioxidant activity of the phycoerythrobilin compound formed from a dried Korean purple laver (Porphyra sp.) during in vitro digestion. Food Sci Technol Res. 2010;16:347–352.
  • Hirata T, Tanaka M, Ooike M, et al. Antioxidant activities of phycocyanobilin prepared from Spirulina platensis. J Appl Phycol. 2000;12:435–439.
  • Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2012;64:206–212.
  • Banu H, Sethi DK, Edgar A, et al. Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines. J Photochem Photobiol B. 2015;149:116–128.
  • Manivasagan P, Bharathiraja S, Santha Moorthy M, et al. Marine biopolymer-based nanomaterials as a novel platform for theranostic applications. Polym Rev. 2017;57:631–667.
  • Das SK, Hashimoto T, Kanazawa K. Growth inhibition of human hepatic carcinoma HepG2 cells by fucoxanthin is associated with down-regulation of cyclin D. Biochim Biophys Acta. 2008;1780:743–749.
  • Zhang Z, Zhang P, Hamada M, et al. Potential chemoprevention effect of dietary fucoxanthin on urinary bladder cancer EJ-1 cell line. Oncol Rep. 2008;20:1099–1103.
  • Kim KN, Heo SJ, Kang SM, et al. Fucoxanthin induces apoptosis in human leukemia HL-60 cells through a ROS-mediated Bcl-xL pathway. Toxicol In Vitro. 2010;24:1648–1654.
  • Takahashi K, Hosokawa M, Kasajima H, et al. Anticancer effects of fucoxanthin and fucoxanthinol on colorectal cancer cell lines and colorectal cancer tissues. Oncol Lett. 2015;10:1463–1467.
  • Kim JH, Park JJ, Lee BJ, et al. Astaxanthin inhibits proliferation of human gastric cancer cell lines by interrupting cell cycle progression. Gut Liver. 2016;10:369–374.
  • Ravi M, Tentu S, Baskar G, et al. Molecular mechanism of anti-cancer activity of phycocyanin in triple-negative breast cancer cells. BMC Cancer. 2015;15:768.
  • Liao G, Gao B, Gao Y, et al. Phycocyanin inhibits tumorigenic potential of pancreatic cancer cells: role of apoptosis and autophagy. Sci Rep. 2016;6:34564.
  • Zhang L, Shan Y, Li C, et al. Discovery of novel anti-angiogenesis agents. Part 6: Multi-targeted RTK inhibitors. Eur J Med Chem. 2017;127:275–285.
  • Sugawara T, Matsubara K, Akagi R, et al. Antiangiogenic activity of brown algae fucoxanthin and its deacetylated product, fucoxanthinol. J Agric Food Chem. 2006;54:9805–9810.
  • Ganesan P, Matsubara K, Ohkubo T, et al. Anti-angiogenic effect of siphonaxanthin from green alga, Codium fragile. Phytomedicine. 2010;17:1140–1144.
  • Hasani-Ranjbar S, Jouyandeh Z, Abdollahi M. A systematic review of anti-obesity medicinal plants-an update. J Diabetes Metab Disord. 2013;12:28.
  • Maeda H, Hosokawa M, Sashima T, et al. Effect of medium-chain triacylglycerols on anti-obesity effect of fucoxanthin. J Oleo Sci. 2007;56:615–621.
  • Maeda H, Hosokawa M, Sashima T, et al. Anti-obesity and anti-diabetic effects of fucoxanthin on diet-induced obesity conditions in a murine model. Mol Med Rep. 2009;2:897–902.
  • Abidov M, Ramazanov Z, Seifulla R, et al. The effects of Xanthigen™ in the weight management of obese premenopausal women with non‐alcoholic fatty liver disease and normal liver fat. Diabetes Obes Metab. 2010;12:72–81.
  • Okada T, Mizuno Y, Sibayama S, et al. Antiobesity effects of Undaria lipid capsules prepared with scallop phospholipids. J Food Sci. 2011;76:2–6.
  • Dai J, Kim JC. In vivo anti-obesity efficacy of fucoxanthin-loaded emulsions stabilized with phospholipid. J Pharm Investig. 2016;46:669–675.
  • Kaewkroek K, Wattanapiromsakul C, Matsuda H, et al. Anti-inflammatory activity of compounds from Kaempferia marginata rhizomes. Songklanakarin J Sci Technol. 2017;39:91–99.
  • Pan MH, Chiou YS, Tsai ML, et al. Anti-inflammatory activity of traditional Chinese medicinal herbs. J Tradit Complement Med. 2011;1:8–24.
  • Lin HTV, Lu WJ, Tsai GJ, et al. Enhanced anti-inflammatory activity of brown seaweed Laminaria japonica by fermentation using Bacillus subtilis. Process Biochem. 2016;51:1945–1953.
  • Abad MJ, Bedoya LM, Bermejo P. Natural marine anti-inflammatory products. Mini Rev Med Chem. 2008;8:740–754.
  • Kim KN, Heo SJ, Yoon WJ, et al. Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-κB and MAPKs in lipopolysaccharide-induced RAW 264.7 macrophages. Eur J Pharmacol. 2010;649:369–375.
  • Choi SK, Park YS, Choi DK, et al. Effects of astaxanthin on the production of NO and the expression of COX-2 and iNOS in LPS-stimulated BV2 microglial cells. J Microbiol Biotechnol. 2008;18:1990–1996.
  • Cannon JB. Pharmaceutics and drug delivery aspects of heme and porphyrin therapy. J Pharm Sci. 1993;82:435–446.
  • Veres DN, Böcskei-Antal B, Voszka I, et al. Comparison of binding ability and location of two mesoporphyrin derivatives in liposomes explored with conventional and site-selective fluorescence spectroscopy. J Phys Chem B. 2012;116:9644–9652.
  • Hsu CY, Nieh MP, Lai PS. Facile self-assembly of porphyrin-embedded polymeric vesicles for theranostic applications. Chem Commun. 2012;48:9343–9345.
  • Kawakami H, Hiraka K, Tamai M, et al. pH‐sensitive liposome retaining Fe‐porphyrin as SOD mimic for novel anticancer drug delivery system. Polym Adv Technol. 2007;18:82–87.
  • Králová J, Keji´k Z, Bři´za T, et al. Porphyrin − cyclodextrin conjugates as a nanosystem for versatile drug delivery and multimodal cancer therapy. J Med Chem. 2009;53:128–138.
  • Ma D, Liu ZH, Zheng QQ, et al. Star‐shaped polymer consisting of a porphyrin core and poly (L‐lysine) dendron arms: synthesis, drug delivery, and in vitro chemo/photodynamic therapy. Macromol Rapid Commun. 2013;34:548–552.
  • Ma D, Lin QM, Zhang LM, et al. A star-shaped porphyrin-arginine functionalized poly(L-lysine) copolymer for photo-enhanced drug and gene co-delivery. Biomaterials. 2014;35:4357–4367.
  • Mauriello-Jimenez C, Croissant J, Maynadier M, et al. Porphyrin-functionalized mesoporous organosilica nanoparticles for two-photon imaging of cancer cells and drug delivery. J Mater Chem B. 2015;3:3681–3684.
  • Manivasagan P, Bharathiraja S, Santha Moorthy M, et al. Anti-EGFR antibody conjugation of fucoidan-coated gold nanorods as novel photothermal ablation agents for cancer therapy. ACS Appl Mater Interfaces. 2017;9:14633–14646.
  • Manivasagan P, Bui NQ, Bharathiraja S, et al. Multifunctional biocompatible chitosan-polypyrrole nanocomposites as novel agents for photoacoustic imaging-guided photothermal ablation of cancer. Sci Rep. 2017;7:43593.
  • Nguyen VP, Kim SW, Kim H, et al. Biocompatible astaxanthin as a novel marine-oriented agent for dual chemo-photothermal therapy. PLoS One. 2017;12:1–23.
  • Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci. 2004;3:436–450.
  • Kelleher D, Thews O, Scherz A, et al. Combined hyperthermia and chlorophyll-based photodynamic therapy: tumour growth and metabolic microenvironment. Br J Cancer. 2003;89:2333–2339.
  • Koudinova NV, Pinthus JH, Brandis A, et al. Photodynamic therapy with Pd‐bacteriopheophorbide (TOOKAD): successful in vivo treatment of human prostatic small cell carcinoma xenografts. Int J Cancer. 2003;104:782–789.
  • Schmitt F, Govindaswamy P, Süss-Fink G, et al. Ruthenium porphyrin compounds for photodynamic therapy of cancer. J Med Chem. 2008;51:1811–1816.
  • Liang X, Li X, Jing L, et al. Theranostic porphyrin dyad nanoparticles for magnetic resonance imaging guided photodynamic therapy. Biomaterials. 2014;35:6379–6388.
  • Ferreira DC, Monteiro CS, Chaves CR, et al. Hybrid systems based on gold nanostructures and porphyrins as promising photosensitizers for photodynamic therapy. Colloids Surf B. 2017;150:297–307.
  • Lin J, Wang S, Huang P, et al. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano. 2013;7:5320–5329.
  • Li Z, Wang C, Cheng L, et al. PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy. Biomaterials. 2013;34:9160–9170.
  • Martynenko IV, Kuznetsova VA, Orlova AO, et al. Chlorin e6-ZnSe/ZnS quantum donts based system as reagent for photodynamic therapy. Nanotechnology. 2015;26:1–9.
  • Zhao L, Yang H, Amano T, et al. Efficient delivery of chlorin e6 into overian cancer cells with octalysine conjugated superparamagnetic iron oxide nanoparticles for effective photodynamic therapy. J Mater Chem B. 2016;4:7741–7748.
  • Song X, Feng L, Liang C, et al. Liposomes co-loaded with metformin and chlorin e6 modulate tumor hypoxia during enhanced photodynamic therapy. Nano Res. 2017;10:1200–1212.
  • Yan L, Wang Z, Chen X, et al. Firmly anchored photosensitizer Chlorin e6 to layered double hydroxide nanoflakes for highly efficient photodynamic therapy in vivo. Chem Commun. 2017;53:2339–2342.
  • Bharathiraja S, Seo H, Manivasagan P, et al. In vitro photodynamic effect of phycocyanin against breast cancer cells. Molecules. 2016;21:1470.
  • Bharathiraja S, Manivasagan P, Oh YO, et al. Astaxanthin conjugated polypyrrole nanoparticles as a multimodal agent for photo-based therapy and imaging. Int J Pharm. 2017;517:216–225.
  • Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012;335:1458–1462.
  • Viatora JA, Svaasandb LO, Aguilara G, et al. Photoacoustic measurement of epidermal melanin. Proc SPIE. 2003;4960:14–20.
  • Wei CW, Huang SW, Wang CRC, et al. Photoacoustic flow measurements based on wash-in analysis of gold nanorods. IEEE Trans Ultrason Ferroelectr Freq Control. 2007;54:1131–1141.
  • Nguyen VP, Park S, Oh J, et al. Biocompatible astaxanthin as novel contrast agent for biomedical imaging. J Biophotonics. 2016;10:1053–1061.
  • Bharathiraja S, Manivasagan P, Quang Bui N, et al. Cytotoxic induction and photoacoustic imaging of breast cancer cells using astaxanthin-reduced gold nanoparticles. Nanomaterials. 2016;6:1–11.
  • Braiman-Wiksman L, Solomonik I, Spira R, et al. Novel insights into wound healing sequence of events. Toxicol Pathol. 2007;35:767–779.
  • Meephansan J, Rungjang A, Yingmema W, et al. Effect of astaxanthin on cutaneous wound healing. Clin Cosmet Investig Dermatol. 2017;10:259–265.
  • Mizuta M, Hirano S, Hiwatashi N, et al. Effect of astaxanthin on vocal fold wound healing. Laryngoscope. 2014;124:1–7.
  • Fang Q, Guo S, Zhou H, et al. Astaxanthin protects against early burn-wound progression in rats by attenuating oxidative stress-induced inflammation and mitochondria-related apoptosis. Sci Rep. 2017;7:1–13.
  • Madhyastha H, Radha K, Nakajima Y, et al. uPA dependent and independent mechanisms of wound healing by C-phycocyanin. J Cell Mol Med. 2008;12:2691–2703.
  • Gur CS, Erdogan DK, Onbasılar I, et al. In vitro and in vivo investigations of the wound healing effect of crude Spirulina extract and C-phycocyanin. J Med Plants Res. 2013;7:425–433.
  • Madhyastha H, Madhyastha R, Nakajima Y, et al. Regulation of growth factors‐associated cell migration by C‐phycocyanin scaffold in dermal wound healing. Clin Exp Pharmacol Physiol. 2012;39:13–19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.