2,185
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Advancements in mammalian cell transient gene expression (TGE) technology for accelerated production of biologics

ORCID Icon, , &
Pages 918-940 | Received 06 Apr 2017, Accepted 09 Dec 2017, Published online: 02 Jan 2018

References

  • Kim TK, Eberwine JH. Mammalian cell transfection: the present and the future. Anal Bioanal Chem. 2010;397:3173–3178.
  • Bandaranayake AD, Almo SC. Recent advances in mammalian protein production. FEBS Lett. 2014;588:253–260.
  • Nallet S, Amacker M, Westerfeld N, et al. Respiratory syncytial virus subunit vaccine based on a recombinant fusion protein expressed transiently in mammalian cells. Vaccine. 2009;27:6415–6419.
  • Mignaqui AC, Ruiz V, Perret S, et al. Transient gene expression in serum-free suspension-growing mammalian cells for the production of foot-and-mouth disease virus empty capsids. PLoS One. 2013;8:1–9.
  • Raymond C, Tom R, Perret S, et al. A simplified polyethylenimine-mediated transfection process for large-scale and high-throughput applications. Methods. 2011;55:44–51.
  • Tuvesson O, Uhe C, Rozkov A, et al. Development of a generic transient transfection process at 100 L scale. Cytotechnology. 2008;56:123–136.
  • Graham FL, van der Eb AJ. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973;52:456–467.
  • Graham FL, Smiley J, Russell WC, et al. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977;36:59–72.
  • Lau JT, Pittenger MF, Cleveland DW. Reconstruction of appropriate tubulin and actin gene regulation after transient transfection of cloned beta-tubulin and beta-actin genes. Mol Cell Biol. 1985;5:1611–1620.
  • Felgner PL, Gadek TR, Holm M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA. 1987;84:7413–7417.
  • Pear WS, Nolan GP, Scott ML, et al. Production of high-titer helper-free retroviruses by transient transfection (retroviral packaging cells/gene therapy). Cell Biol. 1993;90:8392–8396.
  • Wick PF, Senter RA, Parsels LA, et al. Transient transfection studies of secretion in bovine chromaffin cells and PC12 cells: generation of kainate-sensitive chromaffin cells. J Biol Chem. 1993;268:10983–10989.
  • Pahl HL, Burn TC, Tenen DG. Optimization of transient transfection into human myeloid cell lines using a luciferase reporter gene. Exp Hematol. 1991;19:1038–1041.
  • Blasey HD, Aubry J-P, Mazzei GJ, et al. Large scale transient expression with COS cells. Cytotechnology. 1996;18:183–192.
  • Boussif O, Lezoualc’h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995;92:7297–7301.
  • Schlaeger EJ, Christensen K. Transient gene expression in mammalian cells grown in serum-free suspension culture. Cytotechnology. 1999;30:71–83.
  • Almo SC, Love JD. Better and faster: improvements and optimization for mammalian recombinant protein production. Curr Opin Struct Biol. 2014;26:39–43.
  • Derouazi M, Girard P, Van Tilborgh F, et al. Serum-free large-scale transient transfection of CHO cells. Biotechnol Bioeng. 2004;87:537–545.
  • Ausubel LJ, Hall C, Sharma A, et al. Production of CGMP-grade lentiviral vectors. Bioprocess Int. 2012;10:32–43.
  • Grieger JC, Soltys SM, Samulski RJ. Production of recombinant adeno-associated virus vectors using suspension HEK293 cells and continuous harvest of vector from the culture media for GMP FIX and FLT1 clinical vector. Mol Ther. 2016;24:287–297.
  • Clément N, Grieger JC. Manufacturing of recombinant adeno-associated viral vectors for clinical trials. Mol Ther Methods Clin Dev. 2016;3:16002.
  • Merten OW, Gaillet B. Viral vectors for gene therapy and gene modification approaches. Biochem Eng J. 2016;108:98–115.
  • Jäger V, Büssow K, Schirrmann T. Transient recombinant protein expression in mammalian cells. Anim Cell Cult. 2015;9:27–64.
  • Schwarzer J, Rapp E, Hennig R, et al. Glycan analysis in cell culture-based influenza vaccine production: influence of host cell line and virus strain on the glycosylation pattern of viral hemagglutinin. Vaccine. 2009;27:4325–4336.
  • Dumont J, Euwart D, Mei B, et al. Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol. 2015;1:1–13.
  • Berntzen G, Lunde E, Flobakk M, et al. Prolonged and increased expression of soluble Fc receptors, IgG and a TCR-Ig fusion protein by transiently transfected adherent 293E cells. J Immunol Methods. 2005;298:93–104.
  • Sena-Esteves M, Tebbets JC, Steffens S, et al. Optimized large-scale production of high titer lentivirus vector pseudotypes. J Virol Methods. 2004;122:131–139.
  • Shen CF, Lanthier S, Jacob D, et al. Process optimization and scale-up for production of rabies vaccine live adenovirus vector (AdRG1.3). Vaccine. 2012;30:300–306.
  • Jäger V, Bussow K, Wagner A, et al. High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells. BMC Biotechnol. 2013;13:52.
  • Venereo-Sanchez A, Gilbert R, Simoneau M, et al. Hemagglutinin and neuraminidase containing virus-like particles produced in HEK-293 suspension culture: an effective influenza vaccine candidate. Vaccine. 2016;34:3371–3380.
  • Walsh G. Biopharmaceutical benchmarks 2014. Nat Biotechnol. 2014;32:992–1000.
  • Steger K, Brady J, Wang W, et al. CHO-S antibody titers >1 gram/liter using flow electroporation-mediated transient gene expression followed by rapid migration to high-yield stable cell lines. J Biomol Screen. 2015;20:545–551.
  • Daramola O, Stevenson J, Dean G, et al. A high-yielding CHO transient system: coexpression of genes encoding EBNA-1 and GS enhances transient protein expression. Biotechnol Prog. 2014;30:132–141.
  • Rajendra Y, Kiseljak D, Baldi L, et al. A simple high-yielding process for transient gene expression in CHO cells. J Biotechnol. 2011;153:22–26.
  • Zustiak MP, Jose L, Xie Y, et al. Enhanced transient recombinant protein production in CHO cells through the co-transfection of the product gene with Bcl-xL. Biotechnol J. 2014;9:1164–1174.
  • Baldi L, Hacker DL, Adam M, et al. Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol Lett. 2007;29:677–684.
  • Felberbaum RS. The baculovirus expression vector system: a commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol J. 2015;10:702–714.
  • Grady LM, Bai P, Weller SK. HSV-1 protein expression using recombinant baculoviruses. Methods Mol Biol. 2014;1144:293–304.
  • Roest S, Kapps-Fouthier S, Klopp J, et al. Transfection of insect cell in suspension for efficient baculovirus generation. MethodsX. 2016;3:371–377.
  • Shen X, Hacker DL, Baldi L, et al. Virus-free transient protein production in Sf9 cells. J Biotechnol. 2013;171:61–70.
  • Shen X, Pitol AK, Bachmann V, et al. A simple plasmid-based transient gene expression method using high five cells. J Biotechnol. 2015;216:67–75.
  • Buchs M, Kim E, Pouliquen Y, et al. High-throughput insect cell protein expression applications. Methods Mol Biol. 2009;498:199–227.
  • Genzel Y. Designing cell lines for viral vaccine production: where do we stand? Biotechnol J. 2015;10:728–740.
  • Fischer S, Charara N, Gerber A, et al. Transient recombinant protein expression in a human amniocyte cell line: the CAP-T® cell system. Biotechnol Bioeng. 2012;109:2250–2261.
  • Subramanian S, Kim JJ, Harding F, et al. Scaleable production of adenoviral vectors by transfection of adherent PER.C6 cells. Biotechnol Prog. 2007;23:1210–1217.
  • Olivier S, Jacoby M, Brillon C, et al. EB66 cell line, a duck embryonic stem cell-derived substrate for the industrial production of therapeutic monoclonal antibodies with enhanced ADCC activity. MAbs. 2010;2:405–415.
  • Cho MS, Yee H, Chan S. Establishment of a human somatic hybrid cell line for recombinant protein production. J Biomed Sci. 2002;9:631–638.
  • Fliedl L, Kaisermayer C. Transient gene expression in HEK293 and vero cells immobilised on microcarriers. J Biotechnol. 2011;153:15–21.
  • Durocher Y, Perret S, Kamen A. High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res. 2002;30:E9.
  • Girard P, Derouazi M, Baumgartner G, et al. 100-Liter transient transfection. Cytotechnology. 2002;38:15–21.
  • Pham PL, Perret S, Doan HC, et al. Large-scale transient transfection of serum-free suspension-growing HEK293 EBNA1 cells: peptone additives improve cell growth and transfection efficiency. Biotechnol Bioeng. 2003;84:332–342.
  • Wright JL, Jordan M, Wurm FM. Transfection of partially purified plasmid DNA for high level transient protein expression in HEK293-EBNA cells. J Biotechnol. 2003;102:211–221.
  • Backliwal G, Hildinger M, Chenuet S, et al. Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions. Nucleic Acids Res. 2008;36:e96.
  • Kuystermans D, Al-rubeai M. Antibody expression and production. Cell Eng. 2011;7:25–52.
  • Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine) and its role in gene delivery. J Control Release. 1999;60:149–160.
  • Neu M, Fischer D, Kissel T. Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J Gene Med. 2005;7:992–1009.
  • Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev. 2009;109:259–302.
  • Lungwitz U, Breunig M, Blunk T, et al. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm. 2005;60:247–266.
  • Godbey WT, Wu KK, Mikos AG. Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J Biomed Mater Res. 1998;45:268–275.
  • Jeong JH, Song SH, Lim DW, et al. DNA transfection using linear poly(ethylenimine) prepared by controlled acid hydrolysis of poly(2-ethyl-2-oxazoline). J Control Release. 2001;73:391–399.
  • Fischer D, Bieber T, Li Y, et al. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res. 1999;16:1273–1279.
  • Gebhart CL, Kabanov AV. Evaluation of polyplexes as gene transfer agents. J Control Release. 2001;73:401–416.
  • Kadlecova Z, Nallet S, Hacker DL, et al. Poly(ethyleneimine)-mediated large-scale transient gene expression: influence of molecular weight, polydispersity and N-propionyl groups. Macromol Biosci. 2012;12:628–636.
  • Van Gaal EVB, Van Eijk R, Oosting RS, et al. How to screen non-viral gene delivery systems in vitro? J Control Release. 2011;154:218–232.
  • Yamano S, Dai J, Moursi AM. Comparison of transfection efficiency of nonviral gene transfer reagents. Mol Biotechnol. 2010;46:287–300.
  • Dunlap D, Maggi A, Soria MR, et al. Nanoscopic structure of DNA condensed for gene delivery. Nucleic Acids Res. 1997;25:3095–3101.
  • Zhang C, Yadava P, Hughes J. Polyethylenimine strategies for plasmid delivery to brain-derived cells. Methods. 2004;33:144–150.
  • Thomas M, Lu JJ, Ge Q, et al. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc Natl Acad Sci USA. 2005;102:5679–5684.
  • Delafosse L, Xu P, Durocher Y. Comparative study of polyethylenimines for transient gene expression in mammalian HEK293 and CHO cells. J Biotechnol. 2016;227:103–111.
  • Gabrielson NP, Pack DW. Acetylation of polyethylenimine enhances gene delivery via weakened polymer/DNA interactions. Biomacromolecules. 2006;7:2427–2435.
  • Kafil V, Omidi Y. Cytotoxic impacts of linear and branched polyethylenimine nanostructures in A431 cells. BioImpacts. 2011;1:23–30.
  • Moghimi SM, Symonds P, Murray JC, et al. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther. 2005;11:990–995.
  • Parhamifar L, Larsen AK, Hunter AC, et al. Polycation cytotoxicity: a delicate matter for nucleic acid therapy—focus on polyethylenimine. Soft Matter. 2010;6:4001.
  • Cervera L, Gutiérrez-Granados S, Martínez M, et al. Generation of HIV-1 Gag VLPs by transient transfection of HEK 293 suspension cell cultures using an optimized animal-derived component free medium. J Biotechnol. 2013;166:152–165.
  • Gutiérrez-Granados S, Cervera L, Segura MM, et al. Optimized production of HIV-1 virus-like particles by transient transfection in CAP-T cells. Appl Microbiol Biotechnol. 2015;100:3935–3947.
  • Bollin F, Dechavanne V, Chevalet L. Design of experiment in CHO and HEK transient transfection condition optimization. Protein Expr Purif. 2011;78:61–68.
  • Galbraith DJ, Tait AS, Racher AJ, et al. Control of culture environment for improved polyethylenimine-mediated transient production of recombinant monoclonal antibodies by CHO cells. Biotechnol Prog. 2006;22:753–762.
  • Won YY, Sharma R, Konieczny SF. Missing pieces in understanding the intracellular trafficking of polycation/DNA complexes. J Control Release. 2009;139:88–93.
  • Selby LI, Cortez-Jugo CM, Such GK, et al. Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. Wires Nanomed Nanobiotechnol. 2017;9:e1452.
  • Kopatz I, Remy JS, Behr JP. A model for non-viral gene delivery: through syndecan adhesion molecules and powered by actin. J Gene Med. 2004;6:769–776.
  • Carpentier E, Paris S, Kamen AA, et al. Limiting factors governing protein expression following polyethylenimine-mediated gene transfer in HEK293-EBNA1 cells. J Biotechnol. 2007;128:268–280.
  • Gabrielson NP, Pack DW. Efficient polyethylenimine-mediated gene delivery proceeds via a caveolar pathway in HeLa cells. J Control Release. 2009;136:54–61.
  • Han X, Fang Q, Yao F, et al. The heterogeneous nature of polyethylenimine–DNA complex formation affects transient gene expression. Cytotechnology. 2009;60:63–75.
  • Cervera L, González-Domínguez I, Segura MM, et al. Intracellular characterization of Gag VLP production by transient transfection of HEK 293 cells. Biotechnol Bioeng. 2017;114:2507–2517.
  • Bieber T, Meissner W, Kostin S, et al. Intracellular route and transcriptional competence of polyethylenimine–DNA complexes. J Control Release. 2002;82:441–454.
  • Benjaminsen RV, Mattebjerg MA, Henriksen JR, et al. The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther. 2013;21:149–157.
  • Hong S, Leroueil PR, Janus EK, et al. Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconjug Chem. 2006;17:728–734.
  • Suh J, Wirtz D, Hanes J. Efficient active transport of gene nanocarriers to the cell nucleus. Proc Natl Acad Sci USA. 2003;100:3878–3882.
  • Tait AS, Brown CJ, Galbraith DJ, et al. Transient production of recombinant proteins by Chinese hamster ovary cells using polyethyleneimine/DNA complexes in combination with microtubule disrupting anti-mitotic agents. Biotechnol Bioeng. 2004;88:707–721.
  • Grosjean F, Batard P, Jordan M, et al. S-phase synchronized CHO cells show elevated transfection efficiency and expression using CaPi. Cytotechnology. 2002;38:57–62.
  • Brunner S, Sauer T, Carotta S, et al. Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther. 2000;7:401–407.
  • Dean D, Strong D, Zimmer W. Nuclear entry of nonviral vectors. Gene Ther. 2005;12:881–890.
  • Grosse S, Thévenot G, Monsigny M, et al. Which mechanism for nuclear import of plasmid DNA complexed with polyethylenimine derivatives? J Gene Med. 2006;8:845–851.
  • Tseng WC, Haselton FR, Giorgio TD. Mitosis enhances transgene expression of plasmid delivered by cationic liposomes. Biochim Biophys Acta – Gene Struct Expr. 1999;1445:53–64.
  • Jordan M, Köhne C, Wurm FM. Calcium-phosphate mediated DNA transfer into HEK-293 cells in suspension: control of physicochemical parameters allows transfection in stirred media. Transfection and protein expression in mammalian cells. Cytotechnology. 1998;26:39–47.
  • Geisse S. Reflections on more than 10 years of TGE approaches. Protein Expr Purif. 2009;64:99–107.
  • Park JY, Lim B-P, Lee K, et al. Scalable production of adeno-associated virus type 2 vectors via suspension transfection. Biotechnol Bioeng. 2006;94:416–430.
  • Majzoub RN, Ewert KK, Safinya CR. Cationic liposome-nucleic acid nanoparticle assemblies with applications in gene delivery and gene silencing. Philos Trans A Math Phys Eng Sci. 2016;374:20150129.
  • Li L, Shivakumar R, Feller S, et al. Highly efficient, large volume flow electroporation. Technol Cancer Res Treat. 2002;1:341–349.
  • Dang JM, Leong KW. Natural polymers for gene delivery and tissue engineering B. Adv Drug Deliv Rev. 2006;58:487–499.
  • Püngel S, Veiczi M, Welsink T, et al. INVect – a novel polycationic reagent for transient transfection of mammalian cells. BMC Proc. 2013;7:P26.
  • Thomas M, Klibanov AM. Enhancing polyethylenimine's delivery of plasmid DNA into mammalian cells. Proc Natl Acad Sci USA. 2002;99:14640–14645.
  • Muller N, Derouazi M, Van Tilborgh F, et al. Scalable transient gene expression in Chinese hamster ovary cells in instrumented and non-instrumented cultivation systems. Biotechnol Lett. 2007;29:703–711.
  • Cervera L, Fuenmayor J, González-Domínguez I, et al. Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures. Appl Microbiol Biotechnol. 2015;99:9935–9949.
  • Xie Q, Xinyong G, Xianjin C, et al. PEI/DNA formation affects transient gene expression in suspension Chinese hamster ovary cells via a one-step transfection process. Cytotechnology. 2013;65:263–271.
  • Rajendra Y, Kiseljak D, Baldi L, et al. Transcriptional and post-transcriptional limitations of high-yielding, PEI-mediated transient transfection with CHO and HEK-293E cells. Biotechnol Prog. 2015;31:541–549.
  • De Los Milagros Bassani Molinas M, Beer C, Hesse F, et al. Optimizing the transient transfection process of HEK-293 suspension cells for protein production by nucleotide ratio monitoring. Cytotechnology. 2014;66:493–514.
  • Baldi L, Muller N, Picasso S, et al. Transient gene expression in suspension HEK-293 cells: application to large-scale protein production. Biotechnol Prog. 2005;21:148–153.
  • Rajendra Y, Kiseljak D, Manoli S, et al. Role of non-specific DNA in reducing coding DNA requirement for transient gene expression with CHO and HEK-293E cells. Biotechnol Bioeng. 2012;109:2271–2278.
  • Rajendra Y, Hougland MD, Alam R, et al. A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line: process development and product quality assessment. Biotechnol Bioeng. 2015;112:977–986.
  • Stettler M, Zhang X, Hacker DL, et al. Novel orbital shake bioreactors for transient production of CHO derived IgGs. Biotechnol Prog. 2007;23:1340–1346.
  • Backliwal G, Hildinger M, Hasija V, et al. High-density transfection with HEK-293 cells allows doubling of transient titers and removes need for a priori DNA complex formation with PEI. Biotechnol Bioeng. 2008;99:721–727.
  • Haldankar R, Li D, Saremi Z, et al. Serum-free suspension large-scale transient transfection of CHO cells in WAVE bioreactors. Mol Biotechnol. 2006;34:191–199.
  • Abbott WM, Middleton B, Kartberg F, et al. Optimisation of a simple method to transiently transfect a CHO cell line in high-throughput and at large scale. Protein Expr Purif. 2015;116:113–119.
  • van der Loo JCM, Swaney WP, Grassman E, et al. Scale-up and manufacturing of clinical-grade self-inactivating γ-retroviral vectors by transient transfection. Gene Ther. 2012;19:246–254.
  • Aydin H, Azimi FC, Cook JD, et al. A convenient and general expression platform for the production of secreted proteins from human cells. J Vis Exp. 2012;65:e4041.
  • Merten O-W, Charrier S, Laroudie N, et al. Large-scale manufacture and characterization of a lentiviral vector produced for clinical ex vivo gene therapy application. Hum Gene Ther. 2011;22:343–356.
  • Ansorge S, Lanthier S, Transfiguracion J, et al. Development of a scalable process for high-yield lentiviral vector production by transient transfection of HEK293 suspension cultures. J Gene Med. 2009;11:868–876.
  • Ye J, Kober V, Tellers M, et al. High-level protein expression in scalable CHO transient transfection. Biotechnol Bioeng. 2009;103:542–551.
  • Rosser MP, Xia W, Hartsell S, et al. Transient transfection of CHO-K1-S using serum-free medium in suspension: a rapid mammalian protein expression system. Protein Expr Purif. 2005;40:237–243.
  • Segura MM, Garnier A, Durocher Y, et al. Production of lentiviral vectors by large-scale transient transfection of suspension cultures and affinity chromatography purification. Biotechnol Bioeng. 2007;98:789–799.
  • Carter J, Zhang J, Dang TL, et al. Fusion partners can increase the expression of recombinant interleukins via transient transfection in 2936E cells. Protein Sci. 2010;19:357–362.
  • Gutiérrez-Granados S, Farràs Q, Hein K, et al. Production of HIV virus-like particles by transient transfection of CAP-T cells at bioreactor scale avoiding medium replacement. J Biotechnol. 2017;263:11–20.
  • Zhao Y, Bishop B, Clay JE, et al. Automation of large scale transient protein expression in mammalian cells. J Struct Biol. 2011;175:209–215.
  • Powers AD, Piras BA, Clark RK, et al. Development and optimization of AAV hFIX particles by transient transfection in an iCELLis® fixed bed bioreactor. Hum Gene Ther Methods. 2016;27:112–121.
  • Sun X, Hia HC, Goh PE, et al. High-density transient gene expression in suspension-adapted 293 EBNA1 cells. Biotechnol Bioeng. 2008;99:108–116.
  • Warner CM. Rapid, large-scale production of full-length, human-like monoclonal antibodies [doctoral thesis]. Keck Graduate Institute of Applied Life Sciences; 2012.
  • Cheng L, Sun X, Yi X, et al. Large-scale plasmid preparation for transient gene expression. Biotechnol Lett. 2011;33:1559–1564.
  • Püngel S, Veiczi M, Beckmann TF, et al. Reconciling pillars of transient gene expression: from DNA prep via media, reagent and cell line development to holistic process optimization. BMC Proc. 2015;9:P18.
  • Schmid G, Schlaeger E, Wipf B. Non-GMP plasmid production for transient transfection in bioreactors. Cytotechnology. 2001;35:157–164.
  • Wright JL, Jordan M, Wurm FM. Extraction of plasmid DNA using reactor scale alkaline lysis and selective precipitation for scalable transient transfection. Cytotechnology. 2001;35:165–173.
  • Fuenmayor J, Cervera L, Gutiérrez-Granados S, et al. Transient gene expression optimization and expression vector comparison to improve HIV-1 VLP production in HEK293 cell lines. Appl Microbiol Biotechnol. 2017 [cited Nov 4]. DOI:10.1007/s00253-017-8605-x
  • Ramírez EA, Velázquez D, Lara AR. Enhanced plasmid DNA production by enzyme-controlled glucose release and an engineered Escherichia coli. Biotechnol Lett. 2016;38:651–657.
  • Kunaparaju R, Liao M, Sunstrom N-A. Epi-CHO, an episomal expression system for recombinant protein production in CHO cells. Biotechnol Bioeng. 2005;91:670–677.
  • Pichler J, Galosy S, Mott J, et al. Selection of CHO host cell subclones with increased specific antibody production rates by repeated cycles of transient transfection and cell sorting. Biotechnol Bioeng. 2011;108:386–394.
  • Macaraeg NF, Reilly DE, Wong AW. Use of an anti-apoptotic CHO cell line for transient gene expression. Biotechnol Prog. 2013;29:1050–1058.
  • Cain K, Peters S, Hailu H, et al. A CHO cell line engineered to express XBP1 and ERO1-L a has increased levels of transient protein expression. Biotechnol Prog. 2013;29:697–706.
  • Vink T, Oudshoorn-Dickmann M, Roza M, et al. A simple, robust and highly efficient transient expression system for producing antibodies. Methods. 2014;65:5–10.
  • Wulhfard S, Tissot S, Bouchet S, et al. Mild hypothermia improves transient gene expression yields several fold in Chinese hamster ovary cells. Biotechnol Prog. 2008;24:458–465.
  • Davami F, Baldi L, Rajendra Y, et al. Peptone supplementation of culture medium has variable effects on the productivity of CHO cells. Int J Mol Cell Med. 2014;3:146–156.
  • Pham PL, Perret S, Cass B, et al. Transient gene expression in HEK293 cells: peptone addition posttransfection improves recombinant protein synthesis. Biotechnol Bioeng. 2005;90:332–344.
  • Sun X, Goh PE, Wong KTK, et al. Enhancement of transient gene expression by fed-batch culture of HEK 293 EBNA1 cells in suspension. Biotechnol Lett. 2006;28:843–848.
  • Cervera L, Gutiérrez-Granados S, Berrow NS, et al. Extended gene expression by medium exchange and repeated transient transfection for recombinant protein production enhancement. Biotechnol Bioeng. 2015;112:934–946.
  • Brender E. Gene therapy industrial strength. Nature. 2016;537:S57–S59.
  • Brescia BA. Personalized medicine and public health, a clinical testing perspective. Bioprocess Int. 2006;4:24–29.
  • Robinson J. Precision biomanufacturing. Med Mak. 2015;715:504.
  • Grabherr R, Reichl U. Editorial: can modern vaccine technology pursue the success of traditional vaccine manufacturing? Biotechnol J. 2015;10:657–658.
  • Milián E, Julien T, Biaggio R, et al. Accelerated mass production of influenza virus seed stocks in HEK-293 suspension cell cultures by reverse genetics. Vaccine. 2017;35:3423–3430.
  • Whitford WG. Single-use systems as principal components in bioproduction. Bioprocess Int. 2010;8:34–42.
  • Pais DAM, Carrondo MJT, Alves PM, et al. Towards real-time monitoring of therapeutic protein quality in mammalian cell processes. Curr Opin Biotechnol. 2014;30:161–167.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.