361
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Exploiting mAb structure characteristics for a directed QbD implementation in early process development

ORCID Icon, ORCID Icon & ORCID Icon
Pages 957-970 | Received 26 Mar 2017, Accepted 15 Dec 2017, Published online: 07 Mar 2018

References

  • Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. MAbs. 2015;7:9–14.
  • Fischer S, Handrick R, Otte K. The art of CHO cell engineering: a comprehensive retrospect and future perspectives. Biotechnol Adv. 2015;33:1878–1896.
  • Jain E, Kumar A. Upstream processes in antibody production: evaluation of critical parameters. Biotechnol Adv. 2008;26:46–72.
  • Teixeira AP, Oliveira R, Alves PM, et al. Advances in on-line monitoring and control of mammalian cell cultures: supporting the PAT initiative. Biotechnol Adv. 2009;27:726–732.
  • Hammerschmidt N, Tscheliessnig A, Sommer R, et al. Economics of recombinant antibody production processes at various scales: Industry-standard compared to continuous precipitation. Biotechnol J. 2014;9:766–775.
  • Hou Y, Jiang CP, Shukla AA, et al. Improved process analytical technology for protein a chromatography using predictive principal component analysis tools. Biotechnol Bioeng.. 2011;108:59–68.
  • Rathore AS. QbD/PAT for bioprocessing: moving from theory to implementation. Curr Opin Chem Eng. 2014;6:1–8.
  • Zurdo J, Arnell A, Obrezanova O, et al. Early implementation of QbD in biopharmaceutical development: a practical example. Biomed Res Int. 2015;2015:605427.
  • Rathore AS, Winkle H. Quality by design for biopharmaceuticals. Nat Biotechnol. 2009;27:26–34.
  • Rathore AS. Roadmap for implementation of quality by design (QbD) for biotechnology products. Trends Biotechnol. 2009;27:546–553.
  • Sadowski MI, Grant C, Fell TS. Harnessing QbD, programming languages, and automation for reproducible biology. Trends Biotechnol. 2016;34:214–227.
  • Glassey J, Gernaey KV, Clemens C, et al. Process analytical technology (PAT) for biopharmaceuticals. Biotechnol J. 2011;6:369–377.
  • Simon LL, Pataki H, Marosi G, et al. Assessment of recent process analytical technology (PAT) trends: a multiauthor review. Organic Process Res Dev. 2015;19:3–62.
  • Mercier SM, Diepenbroek B, Wijffels RH, et al. Multivariate PAT solutions for biopharmaceutical cultivation: current progress and limitations. Trends Biotechnol. 2014;32:329–336.
  • Eon-Duval A, Broly H, Gleixner R. Quality attributes of recombinant therapeutic proteins: an assessment of impact on safety and efficacy as part of a quality by design development approach. Biotechnol Progress. 2012;28:608–622.
  • Boyd PN, Lines AC, Patel AK. The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol Immunol. 1995;32:1311–1318.
  • Raju TS, Jordan RE. Galactosylation variations in marketed therapeutic antibodies. Mabs. 2012;4:385–391.
  • Costa AR, Rodrigues ME, Henriques M, et al. Glycosylation: impact, control and improvement during therapeutic protein production. Crit Rev Biotechnol. 2014;34:281–299.
  • Krummen L. Lessons learned from two case studies in the FDA QBD Biotech Pilot. Case study presentation at CMC Forum Europe 2013, 2013.
  • Kildegaard HF, Fan YZ, Sen JW, et al. Glycoprofiling effects of media additives on IgG produced by CHO cells in fed-batch bioreactors. Biotechnol Bioeng. 2016;113:359–366.
  • Rathore AS, Kumar Singh S, Pathak M, et al. Fermentanomics: relating quality attributes of a monoclonal antibody to cell culture process variables and raw materials using multivariate data analysis. Biotechnol Progress. 2015;31:1586–1599.
  • Green A, Glassey J. Multivariate analysis of the effect of operating conditions on hybridoma cell metabolism and glycosylation of produced antibody. J Chem Technol Biotechnol. 2015;90:303–313.
  • del Val IJ, Kontoravdi C, Nagy JM. Towards the implementation of quality by design to the production of therapeutic monoclonal antibodies with desired glycosylation patterns. Biotechnol Progress. 2010;26:1505–1527.
  • Bhambure R, Kumar K, Rathore AS. High-throughput process development for biopharmaceutical drug substances. Trends Biotechnol. 2011;29:127–135.
  • Rouiller Y, Bielser JM, Bruhlmann D, et al. Screening and assessment of performance and molecule quality attributes of industrial cell lines across different fed-batch systems. Biotechnol Progress. 2016;32:160–170.
  • Rouiller Y, Perilleux A, Collet N, et al. A high-throughput media design approach for high performance mammalian fed-batch cultures. MAbs. 2013;5: 501–511.
  • Rouiller Y, Perilleux A, Vesin MN, et al. Modulation of mAb quality attributes using microliter scale fed-batch cultures. Biotechnol Progress. 2014;30:571–583.
  • Tai M, Ly A, Leung I, et al. Efficient high-throughput biological process characterization: Definitive screening design with the Ambr250 bioreactor system. Biotechnol Progress. 2015;31:1388–1395.
  • Khalaf R, Heymann J, LeSaout X, et al. Model-based high-throughput design of ion exchange protein chromatography. J Chromatogr A. 2016;1459:67–77.
  • Bhambure R, Rathore AS. Chromatography process development in the quality by design paradigm I: Establishing a high-throughput process development platform as a tool for estimating “characterization space” for an ion exchange chromatography step. Biotechnol Progress. 2013;29:403–414.
  • Leardi R. Experimental design in chemistry: A tutorial. Anal Chim Acta. 2009;652:161–172.
  • Sommeregger W, Sissolak B, Kandra K, et al. Quality by control: Towards model predictive control of mammalian cell culture bioprocesses. Biotechnol J. 2017;12. DOI:10.1002/biot.201600546
  • Zimmermann HF, Hentschel N. Proposal on how to conduct a biopharmaceutical process failure mode and effect analysis (FMEA) as a risk assessment tool. PDA J Pharm Sci Technol. 2011;65:506–512.
  • Zurdo J. Surviving the valley of death. Eur Biopharm Rev. 2013;195:50–54.
  • Dehmer M, Varmuza Bonchev KD, et al. Statistical modelling of molecular descriptors in QSAR/QSPR, in Quantitative and network biology v 2. 2012, Weinheim: Wiley-Blackwell.
  • Dudek AZ, Arodz T, Galvez J. Computational methods in developing quantitative structure-activity relationships (QSAR): a review. CCHTS. 2006;9:213–228.
  • Du QS, Huang RB, Chou KC. Recent advances in QSAR and their applications in predicting the activities of chemical molecules, peptides and proteins for drug design. CPPS. 2008;9:248–259.
  • Zhou P, Chen X, Wu YQ, et al. Gaussian process: an alternative approach for QSAM modeling of peptides. Amino Acids. 2010;38:199–212.
  • Ladiwala A, Rege K, Breneman CM, et al. A priori prediction of adsorption isotherm parameters and chromatographic behavior in ion-exchange systems. Proc Natl Acad Sci USA. 2005;102:11710–11715.
  • Yang T, Breneman CM, Cramer SM. Investigation of multi-modal high-salt binding ion-exchange chromatography using quantitative structure-property relationship modeling. J Chromatogr A. 2007;1175:96–105.
  • Yang T, Sundling MC, Freed AS, et al. Prediction of pH-dependent chromatographic behavior in ion-exchange systems. Anal Chem. 2007;79:8927–8939.
  • Insaidoo FK, Rauscher MA, Smithline SJ, et al. Targeted purification development enabled by computational biophysical modeling. Biotechnol Progress. 2015;31:154–164.
  • Buyel JF, Woo JA, Cramer SM, et al. The use of quantitative structure-activity relationship models to develop optimized processes for the removal of tobacco host cell proteins during biopharmaceutical production. J Chromatogr A. 2013;1322:18–28.
  • Sharma VK, Patapoff TW, Kabakoff B, et al. In silico selection of therapeutic antibodies for development: viscosity, clearance, and chemical stability. Proc Natl Acad Sci USA. 2014;111:18601–18606.
  • Sydow JF, Lipsmeier F, Larraillet V, et al. Structure-based prediction of asparagine and aspartate degradation sites in antibody variable regions. PLoS One. 2014;9:e100736.
  • Hechinger M, Leonhard K, Marquardt W. What is wrong with quantitative structure-property relations models based on three-dimensional descriptors? J Chem Inf Model. 2012;52:1984–1993.
  • Zhou P, Tian FF, Wu YQ, et al. Quantitative Sequence-Activity Model (QSAM): applying qsar strategy to model and predict bioactivity and function of peptides, proteins and nucleic acids. CAD. 2008;4:311–321.
  • Sneath PH. Relations between chemical structure and biological activity in peptides. J Theor Biol. 1966;12:157–195.
  • Kidera A, Konishi Y, Oka M, et al. Statistical-analysis of the physical-properties of the 20 naturally-occurring amino-acids. J Protein Chem. 1985;4:23–55.
  • Hellberg S, Sjostrom M, Wold S. The prediction of bradykinin potentiating potency of pentapeptides. An example of a peptide quantitative structure-activity relationship. Acta Chem Scand. 1986;40:135–140.
  • Hellberg S, Sjostrom M, Skagerberg B, et al. Peptide quantitative structure-activity-relationships, a multivariate approach. J Med Chem. 1987;30:1126–1135.
  • Sandberg M, Eriksson L, Jonsson J, et al. New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem. 1998;41:2481–2491.
  • Tian FF, Zhou P, Li ZL. T-scale as a novel vector of topological descriptors for amino acids and its application in QSARs of peptides. J Mol Struct. 2007;830:106–115.
  • Collantes ER, Dunn WJ. Amino-acid side-chain descriptors for quantitative structure-activity relationship studies of peptide analogs. J Med Chem. 1995;38:2705–2713.
  • van Westen GJP, Swier RF, Cortes-Ciriano I, et al. Benchmarking of protein descriptor sets in proteochemometric modeling (part 2): modeling performance of 13 amino acid descriptor sets. J Cheminf. 2013;5:42.
  • van Westen GJP, Swier RF, Wegner JK, et al. Benchmarking of protein descriptor sets in proteochemometric modeling (part 1): comparative study of 13 amino acid descriptor sets. J Cheminf. 2013;5:41.
  • Obrezanova O, Arnell A, de la Cuesta RG, et al. Aggregation risk prediction for antibodies and its application to biotherapeutic development. Mabs. 2015;7:352–363.
  • Doytchinova IA, Walshe V, Borrow P, et al. Towards the chemometric dissection of peptide - HLA-A*0201 binding affinity: comparison of local and global QSAR models. J Comput Aided Mol Des. 2005;19:203–212.
  • Gasteiger E, Hoogland C, Gattiker CA, et al. Protein identification and analysis tools on the ExPASy server. In: Walker JM, editor. The proteomics protocols handbook. New York (NY): Humana Press; 2005. p. 571–607.
  • Li W, Cowley A, Uludag M, et al. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 2015;43:W580–W584.
  • Liao C, Sitzmann M, Pugliese A, et al. Software and resources for computational medicinal chemistry. Future Med Chem. 2011;3:1057–1085.
  • Breneman CM, Thompson TR, Rhem M, et al. Electron-density modeling of large systems using the transferable atom equivalent method. Comput Chem. 1995;19:161.
  • Tugcu N, Song MH, Breneman CM, et al. Prediction of the effect of mobile-phase salt type on protein retention and selectivity in anion exchange systems. Anal Chem. 2003;75:3563–3572.
  • Breneman CM, Sundling CM, Sukumar N, et al. New developments in PEST shape/property hybrid descriptors. J Comput Aided Mol Des. 2003;17:231–240.
  • Robinson JR, Karkov HS, Woo JA, et al. QSAR models for prediction of chromatographic behavior of homologous Fab variants. Biotechnol Bioeng. 2017;114:1231–1240.
  • Brandt JP, Patapoff TW, Aragon SR. Construction, MD simulation, and hydrodynamic validation of an all-atom model of a monoclonal IgG antibody. Biophys J. 2010;99:905–913.
  • Kortkhonjia E, Brandman R, Zhou JZ, et al. Probing antibody internal dynamics with fluorescence anisotropy and molecular dynamics simulations. MAbs. 2013;5:306–322.
  • Shahlaei M. Descriptor selection methods in quantitative structure-activity relationship studies: a review study. Chem Rev. 2013;113:8093–8103.
  • Stanczyk U, Jain LC. Feature selection for data and pattern recognition. 2014, New York, NY: Springer Berlin Heidelberg.
  • Yousefinejad S, Hemmateenejad B. Chemometrics tools in QSAR/QSPR studies: a historical perspective. Chemometr Intell Lab Syst. 2015;149:177–204.
  • Cramer RD. III. Partial least squares (PLS): its strengths and limitations. Perspect Drug Discov Design. 1993;1:269–278.
  • Sahiner B, Chan HP, Petrick N, et al. Feature selection and classifier performance in computer-aided diagnosis: the effect of finite sample size. Med Phys. 2000;27:1509–1522.
  • Dougherty ER, Hua J, Sima C. Performance of feature selection methods. Curr Genomics. 2009;10:365–374.
  • Sima C, Dougherty ER. What should be expected from feature selection in small-sample settings. Bioinformatics. 2006;22:2430–2436.
  • Xue L, Godden J, Gao H, et al. Identification of a preferred set of molecular descriptors for compound classification based on principal component analysis. J Chem Inf Comput Sci. 1999;39:699–704.
  • Pirhadi S, Shiri F, Ghasemi JB. Multivariate statistical analysis methods in QSAR. Rsc Adv. 2015;5:104635–104665.
  • Mitchell JB. Machine learning methods in chemoinformatics. Wiley Interdiscip Rev Comput Mol Sci. 2014;4:468–481.
  • Xu L, Zhang W-J. Comparison of different methods for variable selection. Analytica Chimica Acta. 2001;446:475–481.
  • Chen J, Yang T, Luo Q, et al. Investigation of protein retention in hydrophobic interaction chromatographic (HIC) systems using the preferential interaction theory and quantitative structure property relationship models. Reactive Funct Polym. 2007;67:1561–1569.
  • Rudnicki WR, Wrzesień M, Paja W. All relevant feature selection methods and applications. In: Stańczyk U, Jain LC, editors. Feature selection for data and pattern recognition. Berlin: Springer; 2015. p. 11–28.
  • Hawkins DM, Basak SC, Mills D. Assessing model fit by cross-validation. J Chem Inf Comput Sci. 2003;43:579–586.
  • Molinaro AM, Simon R, Pfeiffer RM. Prediction error estimation: a comparison of resampling methods. Bioinformatics. 2005;21:3301–3307.
  • Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol Inf. 2010;29:476–488.
  • Racz A, Bajusz D, Heberger K. Consistency of QSAR models: Correct split of training and test sets, ranking of models and performance parameters. Sar Qsar Environ Res. 2015;26:683–700.
  • Gramatica P. Principles of QSAR models validation: internal and external. Qsar Comb Sci. 2007;26:694–701.
  • Golbraikh A, Shen M, Xiao ZY, et al. Rational selection of training and test sets for the development of validated QSAR models. J Comput Aided Mol Des. 2003;17:241–253.
  • Hellberg S, Eriksson L, Jonsson J, et al. Minimum analogue peptide sets (MAPS) for quantitative structure-activity relationships. Int J Pept Protein Res. 1991;37:414–424.
  • O'Kennedy RD. Multivariate analysis of biological additives for growth media and feeds. BioProcess Int. 2016;14:18–29.
  • Cawley GC, Talbot NL. On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach Learn Res. 2010;11:2079–2107.
  • Efron B. Bootstrap methods - another look at the jackknife. Ann Statist. 1979;7:1–26.
  • Beleites C, Neugebauer U, Bocklitz T, et al. Sample size planning for classification models. Anal Chim Acta. 2013;760:25–33.
  • Dougherty ER, Sima C, Hanczar B, et al. Performance of error estimators for classification. CBIO. 2010;5:53–67.
  • Breiman L. Bagging predictors. Mach Learn. 1996;24:123–140.
  • Beleites C, Salzer R. Assessing and improving the stability of chemometric models in small sample size situations. Anal Bioanal Chem. 2008;390:1261–1271.
  • Chen J, Yang T, Cramer SM. Prediction of protein retention times in gradient hydrophobic interaction chromatographic systems. J Chromatogr A. 2008;1177:207–214.
  • Hastie T, Friedman J, Tibshirani R. The elements of statistical learning. 2nd ed. Berlin: Springer; 2009. Chapter 7, Model assessment and selection; p. 219–260.
  • Ballabio D, Consonni V. Classification tools in chemistry. Part 1: linear models. PLS-DA. Anal Methods. 2013;5:3790–3798.
  • Jurman G, Riccadonna S, Furlanello C. A comparison of MCC and CEN error measures in multi-class prediction. PloS One. 2012;7:e41882
  • Rücker C, Rücker G, Meringer M. y-Randomization and its variants in QSPR/QSAR. J Chem Inf Model. 2007;47:2345–2357.
  • Cherkasov A, Muratov EN, Fourches D, et al. QSAR modeling: where have you been? Where are you going to? J Med Chem. 2014;57:4977–5010.
  • Jiang WL, Kim S, Zhang XY, et al. The role of predictive biopharmaceutical modeling and simulation in drug development and regulatory evaluation. Int J Pharm. 2011;418:151–160.
  • Ladiwala A, Xia F, Luo Q, et al. Investigation of protein retention and selectivity in HIC systems using quantitative structure retention relationship models. Biotechnol Bioeng. 2006;93:836–850.
  • Woo J, Parimal S, Brown MR, et al. The effect of geometrical presentation of multimodal cation-exchange ligands on selective recognition of hydrophobic regions on protein surfaces. J Chromatogr A. 2015;1412:33–42.
  • Farid SS. Process economics of industrial monoclonal antibody manufacture. J Chromatogr B Anal Technol Biomed Life Sci. 2007;848:8–18.
  • Rodrigues de Azevedo C, von Stosch M, Costa MS, et al. Modeling of the burst release from PLGA micro- and nanoparticles as function of physicochemical parameters and formulation characteristics. Int J Pharm. 2017;532:229–240.
  • Brennan FR, Morton LD, Spindeldreher S, et al. Safety and immunotoxicity assessment of immunomodulatory monoclonal antibodies. Mabs. 2010;2:233–255.
  • Vazquez-Rey M, Lang DA. Aggregates in monoclonal antibody manufacturing processes. Biotechnol Bioeng. 2011;108:1494–1508.
  • Liu HF, Ma J, Winter C, et al. Recovery and purification process development for monoclonal antibody production. MAbs. 2010;2:480–499.
  • Mazzer AR, Perraud X, Halley J, et al. Protein A chromatography increases monoclonal antibody aggregation rate during subsequent low pH virus inactivation hold. J Chromatogr A. 2015;1415:83–90.
  • Li W, Prabakaran P, Chen WZ, et al. Antibody aggregation: insights from sequence and structure. Antibodies. 2016;5:19.
  • van den Berg RA, Hoefsloot HC, Westerhuis JA, et al. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 2006;7:142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.