1,945
Views
48
CrossRef citations to date
0
Altmetric
Review Article

NADPH metabolism: a survey of its theoretical characteristics and manipulation strategies in amino acid biosynthesis

ORCID Icon, &
Pages 1061-1076 | Received 06 Jun 2017, Accepted 20 Jan 2018, Published online: 25 Feb 2018

References

  • Massey KA, Blakeslee CH, Pitkow HS. A review of physiological and metabolic effects of essential amino acids. Amino Acids. 1998;14:271–300.
  • Zhu GY, Zhu X, Xiao ZB, et al. A review of amino acids extraction from animal waste biomass and reducing sugars extraction from plant waste biomass by a clean method. Biomass Conv Bioref. 2015;5:12.
  • Becker J, Wittmann C. Systems and synthetic metabolic engineering for amino acid production – the heartbeat of industrial strain development. Curr Opin Biotechnol. 2012;23:718–726.
  • Shi YJ, Shi Y. Metabolic enzymes and coenzymes in transcription metabolism – a direct link between and transcription? Trends Genet. 2004;20:445–452.
  • Chen XL, Li SB, Liu LM. Engineering redox balance through cofactor systerms. Trends Biotechnol. 2014;32:337–343.
  • Ying WH. NAD(+)/NADH and NADP(+)/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Sign. 2008;10:179–206.
  • Celton M, Sanchez I, Goelzer A, et al. A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation. Bmc Genomics. 2012;13:317.
  • Wang YP, San KY, Bennett GN. Cofactor engineering for advancing chemical biotechnology. Curr Opin Biotech. 2013;24:994–999.
  • Pollak N, Dolle C, Ziegler M. The power to reduce: pyridine nucleotides-small molecules with a multitude of functions. Biochem J. 2007;402:205–218.
  • Lindner SN, Niederholtmeyer H, Schmitz K, et al. Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production. Appl Microbiol Biotechnol. 2010;87:583–593.
  • Shi F, Li K, Huan XJ, et al. Expression of NAD(H) Kinase and Glucose-6-Phosphate Dehydrogenase Improve NADPH Supply and L-isoleucine Biosynthesis in Corynebacterium glutamicum ssp lactofermentum. Appl Biochem Biotechnol. 2013;171:504–521.
  • Singh R, Lemire J, Mailloux RJ, et al. A novel strategy involved anti-oxidative defense: the conversion of NADH into NADPH by a metabolic network. PLoS One. 2008;3:e2682.
  • Fuhrer T, Sauer U. Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism. J Bacteriol. 2009;191:2112–2121.
  • Wittmann C, de Graaf A. Metabolic flux analysis in Corynebacterium glutamicum. Boca Raton (FL): CRC Press; 2005.
  • Magni G, Orsomando G, Raffaelli N. Structural and functional properties of NAD kinase, a key enzyme in NADP biosynthesis. Mini Rev Med Chem. 2006;6:739–746.
  • Xu JZ, Zhang JL, Guo YF, et al. Improvement of cell growth and l-lysine production by genetically modified Corynebacterium glutamicum during growth on molasses. J Ind Microbiol Biotechnol. 2013;40:1423–1432.
  • Jensen JVK, Eberhardt D, Wendisch VF. Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine. J Biotechnol. 2015;214:85–94.
  • Kim SY, Lee J, Lee SY. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine. Biotechnol Bioeng. 2015;112:416–421.
  • Hao N, Mu J, Hu N, et al. Improvement of L-citrulline production in Corynebacterium glutamicum by ornithine acetyltransferase. J Ind Microbiol Biot. 2015;42:307–313.
  • Mei J, Xu N, Ye C, et al. Reconstruction and analysis of a genome-scale metabolic network of Corynebac-terium glutamicum S9114. Gene. 2016;575:615–622.
  • Shi F, Li K, Li YF. Comparative proteome analysis of global effect of POS5 and zwf-ppnK overexpression in L-isoleucine producing Corynebacterium glutamicum ssp lactofermentum. Biotechnol Lett. 2015;37:1063–1071.
  • Son HF, Kim IK, Kim KJ. Structural insights into domain movement and cofactor specificity of glutamate dehydrogenase from Corynebacterium glutamicum. Biochem Biophys Res Commun. 2015;459:387–392.
  • Blumenthal KM, Smith EL. Alternative substrates for glutamate dehydrogenases. Biochem Biophys Res Commun. 1975;62:78–84.
  • Wang Q, Min C, Yan TT, et al. Production of glutamine synthetase in Escherichia coli using SUMO fusion partner and application to l-glutamine synthesis. World J Microbiol Biotechnol. 2011;27:2603–2610.
  • Woods DR, Reid SJ. Recent developments on the regulation and structure of glutamine synthetase enzymes from selected bacterial groups. Fems Microbiol Rev. 1993;11:273–284.
  • Hong NN, Yang G, Li J, et al. Rapid Determination of l-Glutamine using Engineered Escherichia coli Overexpressing Glutamine Synthetase. Appl Biochem Biotechnol. 2009;158:398–407.
  • Cao Y, Duan Z, Shi Z. Effect of biotin on transcription levels of key enzymes and glutamate efflux in glutamate fermentation by Corynebacterium glutamicum. World J Microbiol Biotechnol. 2014;30:461–468.
  • Qin TY, Hu XQ, Hu JY, et al. Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce l-methionine. Biotechnol Appl Bioc. 2015;62:563–573.
  • Aoki R, Wada M, Takesue N, et al. Enhanced glutamic acid production by a H+-ATPase-defective mutant of Corynebacterium glutamicum. Biosci Biotech Bioch. 2005;69:1466–1472.
  • Yao WJ, Deng XZ, Liu MA, et al. Expression and localization of the Corynebacterium glutamicum NCgl1221 protein encoding an L-glutamic acid exporter. Microbiol Res. 2009;164:680–687.
  • Jensen JVK, Wendisch VF. Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum. Microb Cell Fact. 2013;12:63.
  • Wendisch VF, Jorge JMP, Perez-Garcia F, et al. Updates on industrial production of amino acids using Corynebacterium glutamicum. World J Microbiol Biotechnol. 2016;32:105.
  • Man ZW, Rao ZM, Xu MJ, et al. Improvement of the intracellular environment for enhancing L-arginine production of Corynebacterium glutamicum by inactivation of H2O2-forming flavin reductases and optimization of ATP supply. Metab Eng. 2016;38:310–321.
  • Xu JZ, Zhang JL, Guo YF, et al. Genetically modifying aspartate aminotransferase and aspartate ammonia-lyase affects metabolite accumulation in L-lysine producing strain derived from Corynebacterium glutamicum ATCC13032. J Mol Catal B-Enzym. 2015;113:82–89.
  • Rahman MM, Qin ZQ, Dou WF, et al. Over-expression of NAD kinase in Corynebacterium crenatum and its impact on L-arginine biosynthesis. Trop J Pharm Res. 2012;11:909–916.
  • Park SH, Kim HU, Kim TY, et al. Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nat Commun. 2014;5:4618.
  • Chen M, Chen X, Wan F, et al. Effect of Tween 40 and DtsR1 on L-arginine overproduction in Coryne-bacterium crenatum. Microb Cell Fact. 2015;14:119.
  • Huang YY, Li C, Zhang H, et al. Monomeric Corynebacterium glutamicum N-acetyl glutamate kinase maintains sensitivity to L-arginine but has a lower intrinsic catalytic activity. Appl Microbiol Biotechnol. 2016;100:1789–1798.
  • Xu M, Rao Z, Yang J, et al. Heterologous and homologous expression of the arginine biosynthetic argC ∼ H cluster from Corynebacterium crenatum for improvement of (L) – arginine production. J Ind Microbiol Biotechnol. 2012;39:495–502.
  • Lubitz D, Jorge JMP, Perez-Garcia F, et al. Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2016;100:8465–8474.
  • Jin JH, Choi KK, Jung US, et al. Regulatory analysis of amino acid synthesis pathway in Escherichia coli: aspartate family. Enzyme Microb Tech. 2004;35:694–706.
  • Varner J, Ramkrishna D. Metabolic engineering from a cybernetic perspective: aspartate family of amino acids. Metab Eng. 1999;1:88–116.
  • Sugiyama A, Kato H, Nishioka T, et al. Overexpression and purification of asparagine synthetase from Escherichia coli. Biosci Biotechnol Biochem. 1992;56:376–379.
  • Dong XY, Quinn PJ, Wang XY. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of L-threonine. Biotechnol Adv. 2011;29:11–23.
  • Dong XY, Zhao Y, Hu JY, et al. Attenuating L-lysine production by deletion of ddh and lysE and their effect on L-threonine and L-isoleucine production in Corynebacterium glutamicum. Enzyme Microb Tech. 2016;93–94:70–78.
  • Lee JH, Jung SC, Bui LM, et al. Improved production of L-threonine in Escherichia coli by use of a DNA scaffold system. Appl Environ Microb. 2013;79:774–782.
  • Okamoto K, Kino K, Ikeda M. Hyperproduction of L-threonine by an Escherichia coli mutant with impaired L-threonine uptake. Biosci Biotech Bioch. 1997;61:1877–1882.
  • Diesveld R, Tietze N, Furst O, et al. Activity of exporters of Escherichia coli in Corynebacterium glutamicum, and their use to increase L-threonine production. J Mol Microbiol Biotechnol. 2009;16:198–207.
  • Lee HC, Kim JS, Jang W, et al. High NADPH/NADP(+) ratio improves thymidine production by a metabolically engineered Escherichia coli strain. J Biotechnol. 2010;149:24–32.
  • Lee KH, Park JH, Kim TY, et al. Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol. 2007;3:149.
  • Lee JH, Sung BH, Kim MS, et al. Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production. Microb Cell Fact. 2009;8:2.
  • Xie X, Liang Y, Liu H, et al. Modification of glycolysis and its effect on the production of L-threonine in Escherichia coli. J Ind Microbiol Biotechnol. 2014;41:1007–1015.
  • Kromer JO, Wittmann C, Schroder H, et al. Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum. Metab Eng. 2006;8:353–369.
  • Li H, Wang BS, Li YR, et al. Metabolic engineering of Escherichia coli W3110 for the production of l-methionine. J Ind Microbiol Biotechnol. 2017;44:75–88.
  • Kawano Y, Ohtsu I, Tamakoshi A, et al. Involvement of the yciW gene in L-cysteine and L-methionine metabolism in Escherichia coli. J Biosci Bioeng. 2015;119:310–313.
  • Park JH, Lee KH, Kim TY, et al. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. P Natl Acad Sci USA. 2007;104:7797–7802.
  • Mustafi N, Grunberger A, Kohlheyer D, et al. The development and application of a single-cell biosensor for the detection of L-methionine and branched-chain amino acids. New Biotechnol. 2012;29:S68–S68.
  • Yin LH, Hu XQ, Xu DQ, et al. Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum. Metab Eng. 2012;14:542–550.
  • Guo Y, Han M, Xu J, et al. Analysis of acetohydroxyacid synthase variants from branched-chain amino acids-producing strains and their effects on the synthesis of branched-chain amino acids in Corynebacterium glutamicum. Protein Expr Purif. 2015;109:106–112.
  • Shi F, Huan XJ, Wang XY, et al. Overexpression of NAD kinases improves the L-isoleucine biosynthesis in Corynebacterium glutamicum ssp lactofermentum. Enzyme Microb Tech. 2012;51:73–80.
  • Vogt M, Krumbach K, Bang WG, et al. The contest for precursors: channelling L-isoleucine synthesis in Corynebacterium glutamicum without byproduct formation. Appl Microbiol Biotechnol. 2015;99:791–800.
  • Yin L, Shi F, Hu X, et al. Increasing L-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE. J Appl Microbiol. 2013;114:1369–1377.
  • Zhao JX, Hu XQ, Li Y, et al. Overexpression of ribosome elongation factor G and recycling factor increases lisoleucine production in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2015;99:4795–4805.
  • Yin LH, Zhao JX, Chen C, et al. Enhancing the carbon flux and NADPH supply to increase L-isoleucine production in Corynebacterium glutamicum. Biotechnol Bioproc Eng. 2014;19:132–142.
  • Wittmann C, Becker J. The L-lysine story: from metabolic pathways to industrial production. Amino Acid Biosynth. 2007;5:39–70.
  • Becker J, Zelder O, Hafner S, et al. From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng. 2011;13:159–168.
  • Xu JZ, Han M, Zhang JL, et al. Improvement of L-lysine production combines with minimization of by-products synthesis in Corynebacterium glutamicum. J Chem Technol Biotechnol. 2014;89:1924–1933.
  • Xu JZ, Han M, Zhang JL, et al. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway. Amino Acids. 2014;46:2165–2175.
  • Xu JZ, Han M, Ren XD, et al. Modification of aspartokinase III and dihydrodipicolinate synthetase increases the production of L-lysine in Escherichia coli. Biochem Eng J. 2016;114:82–89.
  • Kind S, Becker J, Wittmann C. Increased lysine production by flux coupling of the tricarboxylic acid cycle and the lysine biosynthetic pathway-metabolic engineering of the availability of succinyl-CoA in Corynebacterium glutamicum. Metab Eng. 2013;15:184–195.
  • Becker J, Buschke N, Bucker R, et al. Systems level engineering of Corynebacterium glutamicum – Reprogramming translational efficiency for superior production. Eng Life Sci. 2010;10:430–438.
  • Lindner SN, Seibold GM, Henrich A, et al. Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Appl Environ Microbiol. 2011;77:3571–3581.
  • Meiswinkel TM, Rittmann D, Lindner SN, et al. Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum. Bioresource Technol. 2013;145:254–258.
  • Neuner A, Wagner I, Sieker T, et al. Production of L-lysine on different silage juices using genetically engineered Corynebacterium glutamicum. J Biotechnol. 2013;163:217–224.
  • Takeno S, Murata R, Kobayashi R, et al. Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production. Appl Environ Microb. 2010;76:7154–7160.
  • Martinez I, Zhu JF, Lin H, et al. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab Eng. 2008;10:352–359.
  • Chou HH, Marx CJ, Sauer U. Transhydrogenase promotes the robustness and evolvability of E. coli deficient in NADPH production. PLos Genet. 2015;11:e1005007.
  • Bommareddy RR, Chen Z, Rappert S, et al. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab Eng. 2014;25:30–37.
  • Takeno S, Hori K, Ohtani S, et al. L-Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene. Metab Eng. 2016;37:1–10.
  • Kabus A, Georgi T, Wendisch VF, et al. Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Appl Microbiol Biotechnol. 2007;75:47–53.
  • Park JH, Lee SY. Metabolic pathways and fermentative production of L-aspartate family amino acids. Biotechnol J. 2010;5:560–577.
  • Georgi T, Rittmann D, Wendisch VF. Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase. Metab Eng. 2005;7:291–301.
  • Becker J, Klopprogge C, Zelder O, et al. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microb. 2005;71:8587–8596.
  • Spaans SK, Weusthuis RA, van der Oost J, et al. NADPH-generating systems in bacteria and archaea. Front Microbiol. 2015;6:742.
  • Singh R, Mailloux RJ, Puiseux-Dao S, et al. Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens. J Bacteriol. 2007;189:6665–6675.
  • Li M, Guo WB, Chen XH. A novel NADPH-dependent reductase of Sulfobacillus acidophilus TPY phenol hydroxylase: expression, characterization, and functional analysis. Appl Microbiol Biotechnol. 2016;100:10417–10428.
  • Saliola M, Tramonti A, Lanini C, et al. Intracellular NADPH levels affect the oligomeric state of the glucose 6-phosphate dehydrogenase. Eukaryotic Cell. 2012;11:1503–1511.
  • Moritz B, Striegel K, de Graaf AA, et al. Changes of pentose phosphate pathway flux in vivo in Corynebacterium glutamicum during leucine-limited batch cultivation as determined from intracellular metabolite concentration measurements. Metab Eng. 2002;4:295–305.
  • Ruklisha M, Paegle L, Denina I. L-valine biosynthesis during batch and fed-batch cultivations of Corynebacterium glutamicum: relationship between changes in bacterial growth rate and intracellular metabolism. Process Biochem. 2007;42:634–640.
  • Ohnishi J, Katahira R, Mitsuhashi S, et al. A novel gnd mutation leading to increased L-lysine production in Corynebacterium glutamicum. Fems Microbiol Lett. 2005;242:265–274.
  • Shi AQ, Zhu XN, Lu J, et al. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng. 2013;16:1–10.
  • Xu M, Qin J, Rao Z, et al. Effect of polyhydroxybutyrate (PHB) storage on L-arginine production in recombinant Corynebacterium crenatum using coenzyme regulation. Microb Cell Fact. 2016;15:15.
  • Kawai S, Mori S, Mukai T, et al. Inorganic polyphosphate/ATP-NAD kinase of Micrococcus flavus and Mycobacterium tuberculosis H37Rv. Biochem Biophys Res Commun. 2000;276:57–63.
  • Garavaglia S, Raffaelli N, Finaurini L, et al. A novel fold revealed by mycobacterium tuberculosis NAD kinase, a key allosteric enzyme in NADP biosynthesis. J Biol Chem. 2004;279:40980–40986.
  • Du QL, Long QX, Mao JX, et al. Characterization of a novel mutation in the overlap of tlyA and ppnK involved in capreomycin resistance in mycobacterium. IUBMB Life. 2014;66:405–414.
  • Jiang LY, Chen SG, Zhang YY, et al. Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine. Bmc Biotechnol. 2013;13:47.
  • Zerez CR, Moul DE, Gomez EG, et al. Negative modulation of Escherichia coli NAD kinase by NADPH and NADH. J Bacteriol. 1987;169:184–188.
  • Kawai S, Mori S, Mukai T, et al. Molecular characterization of Escherichia coli NAD kinase. Eur J Biochem. 2001;268:4359–4365.
  • Li ZJ, Cai L, Wu Q, et al. Overexpression of NAD kinase in recombinant Escherichia coli harboring the phbCAB operon improves poly(3-hydroxybutyrate) production. Appl Microbiol Biotechnol. 2009;83:939–947.
  • Zhang J, Gao X, Hong PH, et al. Enhanced production of poly-3-hydroxybutyrate by Escherichia coli over-expressing multiple copies of NAD kinase integrated in the host genome. Biotechnol Lett. 2015;37:1273–1278.
  • Cui YY, Ling C, Zhang YY, et al. Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering. Microb Cell Fact. 2014;13:21.
  • Boonstra B, Bjorklund L, French CE, et al. Cloning of the sth gene from Azotobacter vinelandii and construction of chimeric soluble pyridine nucleotide transhydrogenases. Fems Microbiol Lett. 2000;191:87–93.
  • Cao ZY, Song P, Xu Q, et al. Overexpression and biochemical characterization of soluble pyridine nucleotide transhydrogenase from Escherichia coli. Fems Microbiol Lett. 2011;320:9–14.
  • Jan J, Martinez I, Wang YP, et al. Metabolic engineering and transhydrogenase effects on NADPH availability in Escherichia coli. Biotechnol Progress. 2013;29:1124–1130.
  • He L, Xiao Y, Gebreselassie N, et al. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on C-13-metabolic flux analysis. Biotechnol Bioeng. 2014;111:575–585.
  • Rathnasingh C, Raj SM, Lee Y, et al. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J Biotechnol. 2012;157:633–640.
  • Blombach B, Riester T, Wieschalka S, et al. Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol. 2011;77:3300–3310.
  • Ida K, Ishii J, Matsuda F, et al. Eliminating the isoleucine biosynthetic pathway to reduce competitive carbon outflow during isobutanol production by Saccharomyces cerevisiae. Microb Cell Fact. 2015;14:62.
  • Cocaign-Bousquet M, Lindley ND. Pyruvate overflow and carbon flux within the central metabolic pathways of Corynebacterium-Glutamicum during growth on lactate. Enzyme Microb Tech. 1995;17:260–267.
  • Marx A, Hans S, Mockel B, et al. Metabolic phenotype of phosphoglucose isomerase mutants of Corynebac-terium glutamicum. J Biotechnol. 2003;104:185.
  • Chemler JA, Fowler ZL, McHugh KP, et al. Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab Eng. 2010;12:96–104.
  • Bartek T, Blombach B, Zonnchen E, et al. Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum. Biotechnol Progr. 2010;26:361–371.
  • Siedler S, Bringer S, Bott M. Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation. Appl Microbiol Biotechnol. 2011;92:929–937.
  • Fraenkel DG, Levisohn SR. Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase. J Bacteriol. 1967;93:1571–1578.
  • Scharte J, Schon H, Tjaden Z, et al. Isoenzyme replacement of glucose-6-phosphate dehydrogenase in the cytosol improves stress tolerance in plants. P Natl Acad Sci USA. 2009;106:8061–8066.
  • Kelley-Loughnane N, Biolsi SA, Gibson KM, et al. Purification, kinetic studies, and homology model of Escherichia coli fructose-1,6-bisphosphatase. Bba-Protein Struct M. 2002;1594:6–16.
  • Wang YP, San KY, Bennett GN. Improvement of NADPH bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains. Appl Microbiol Biotechnol. 2013;97:6883–6893.
  • Siedler S, Bringer S, Polen T, et al. NADPH-dependent reductive biotransformation with Escherichia coli and its pfkA deletion mutant: influence on global gene expression and role of oxygen supply. Biotechnol Bioeng. 2014;111:2067–2075.
  • Yamamoto S, Gunji W, Suzuki H, et al. Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions. Appl Environ Microbiol. 2012;78:4447–4457.
  • Zhang XM, Yao LP, Xu GQ, et al. Enhancement of fructose utilization from sucrose in the cell for improved L-serine production in engineered Corynebacterium glutamicum. Biochem Eng J. 2017;118:113–122.
  • Frunzke J, Engels V, Hasenbein S, et al. Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol Microbiol. 2008;67:305–322.
  • Hwang GH, Cho JY. Implication of gluconate kinase activity in L-ornithine biosynthesis in Corynebac-terium glutamicum. J Ind Microbiol Biotechnol. 2012;39:1869–1874.
  • Cho HS, Seo SW, Kim YM, et al. Engineering glyceraldehyde-3-phosphate dehydrogenase for switching control of glycolysis in Escherichia coli. Biotechnol Bioeng. 2012;109:2612–2619.
  • Hayashi M, Mizoguchi H, Shiraishi N, et al. Transcriptome analysis of acetate metabolism in Corynebacterium glutamicum using a newly developed metabolic array. Biosci Biotech Bioch. 2002;66:1337–1344.
  • Jiang LY, Zhang YY, Li Z, et al. Metabolic engineering of Corynebacterium glutamicum for increasing the production of L-ornithine by increasing NADPH availability. J Ind Microbiol Biotechnol. 2013;40:1143–1151.
  • Bartek T, Blombach B, Lang S, et al. Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebac-terium glutamicum. Appl Environ Microbiol. 2011;77:6644–6652.
  • Bastian S, Liu X, Meyerowitz JT, et al. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng. 2011;13:345–352.
  • Hong PH, Zhang J, Liu XJ, et al. Effect of NADH kinase on poly-3-hydroxybutyrate production by recombinant Escherichia coli. J Biosci Bioeng. 2016;122:685–688.
  • Hasegawa S, Uematsu K, Natsuma Y, et al. Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Appl Environ Microbiol. 2012;78:865–875.
  • Hasegawa S, Suda M, Uematsu K, et al. Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions. Appl Environ Microbiol. 2013;79:1250–1257.
  • Marx A, Eikmanns BJ, Sahm H, et al. Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase. Metab Eng. 1999;1:35–48.
  • Tape CJ. Systems biology analysis of heterocellular signaling. Trends Biotechnol. 2016;34:627–637.
  • Nanita SC, Kaldon LG. Emerging flow injection mass spectrometry methods for high-throughput quantitative analysis. Anal Bioanal Chem. 2016;408:23–33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.