1,922
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Biotechnological potential of microbial consortia and future perspectives

ORCID Icon, , , , &
Pages 1209-1229 | Received 27 Nov 2017, Accepted 19 Apr 2018, Published online: 15 May 2018

References

  • Kouzuma A, Kato S, Watanabe K. Microbial interspecies interactions: recent findings in syntrophic consortia. Front Microbiol. 2015;6:477.
  • Brenner K, You L, Arnold FH. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 2008;26:483–489.
  • Tecon R, Or D. Cooperation in carbon source degradation shapes spatial self-organization of microbial consortia on hydrated surfaces. Sci Rep. 2017;7:43726.
  • Erbilgin O, Bowen BP, Kosina SM, et al. Dynamic substrate preferences predict metabolic properties of a simple microbial consortium. BMC Bioinformatics. 2017;18:57.
  • Bhatia SK, Kim YH, Kim HJ, et al. Biotransformation of lysine into cadaverine using barium alginate-immobilized Escherichia coli overexpressing CadA. Bioprocess Biosyst Eng. 2015;38:2315–2322.
  • Bhatia SK, Mehta PK, Bhatia RK, et al. Optimization of arylacetonitrilase production from Alcaligenes sp. MTCC 10675 and its application in mandelic acid synthesis. Appl Microbiol Biotechnol. 2014;98:83–94.
  • Venters M, Carlson RP, Gedeon T, et al. Effects of spatial localization on microbial consortia growth. PLoS One. 2017;12:e0168592.
  • Papone T, Paungbut M, Leesing R. Producing of microbial oil by mixed culture of microalgae and oleaginous yeast using sugarcane molasses as carbon substrate. JOCET. 2016;4:253–256.
  • Mejias Carpio IE, Franco DC, Zanoli Sato MI, et al. Biostimulation of metal-resistant microbial consortium to remove zinc from contaminated environments. Sci Total Environ. 2016;550:670–675.
  • Kim HJ, Kim YH, Shin JH, et al. Optimization of direct lysine decarboxylase biotransformation for cadaverine production with whole-cell biocatalysts at high lysine concentration. J Microbiol Biotechnol. 2015;25:1108–1113.
  • Kim J, Seo H-M, Bhatia SK, et al. Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli. Sci Rep. 2017;7:39768.
  • Bernstein HC, Carlson RP. Microbial consortia engineering for cellular factories: in vitro to in silico systems. Comput Struct Biotechnol J. 2012;3:e201210017.
  • Bhatia SK, Yi D-H, Kim Y-H, et al. Development of semi-synthetic microbial consortia of Streptomyces coelicolor for increased production of biodiesel (fatty acid methyl esters). Fuel. 2015;159:189–196.
  • Hays SG, Patrick WG, Ziesack M, et al. Better together: engineering and application of microbial symbioses. Curr Opin Biotechnol. 2015;36:40–49.
  • Tan J, Zuniga C, Zengler K. Unraveling interactions in microbial communities – from co-cultures to microbiomes. J Microbiol. 2015;53:295–305.
  • Wintermute EH, Silver PA. Dynamics in the mixed microbial concourse. Genes Dev. 2010;24:2603–2614.
  • Shong J, Diaz MRJ, Collins CH. Towards synthetic microbial consortia for bioprocessing. Curr Opin Biotechnol. 2012;23:798–802.
  • Blainey PC. The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol Rev. 2013;37:407–427.
  • Valm AM, Welch JLM, Rieken CW, et al. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc Nat Acad Sci. 2011;108:4152–4157.
  • Eiteman MA, Lee SA, Altman R, et al. A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose. Biotechnol Bioeng. 2009;102:822–827.
  • Wu P, Wang G, Wang G, et al. Butanol production under microaerobic conditions with a symbiotic system of Clostridium acetobutylicum and Bacillus cereus. Microb Cell Fact. 2016;15:8.
  • Bernstein HC, Paulson SD, Carlson RP. Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. J Biotechnol. 2012;157:159–166.
  • Shou W, Ram S, Vilar JMG. Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci USA. 2007;104:1877–1882.
  • Dwidar M, Kim S, Jeon BS, et al. Co-culturing a novel Bacillus strain with Clostridium tyrobutyricum ATCC 25755 to produce butyric acid from sucrose. Biotechnol Biofuels. 2013;6:1754–6834.
  • Pérez J, Muñoz-Dorado J, Braña AF, et al. Myxococcus xanthus induces actinorhodin overproduction and aerial mycelium formation by Streptomyces coelicolor. Microb Biotechnol. 2011;4:175–183.
  • Wang Z, Yan M, Chen X, et al. Mixed culture of Saccharomyces cerevisiae and Acetobacter pasteurianus for acetic acid production. Biochem Eng J. 2013;79:41–45.
  • Hibbing ME, Fuqua C, Parsek MR, et al. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 2010;8:15–25.
  • Schellenberger J, Que R, Fleming RM, et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc. 2011;6:1290–1307.
  • Bertrand S, Schumpp O, Bohni N, et al. Detection of metabolite induction in fungal co-cultures on solid media by high-throughput differential ultra-high pressure liquid chromatography–time-of-flight mass spectrometry fingerprinting. J Chromatogr A. 2013;1292:219–228.
  • Doud DFR, Woyke T. Novel approaches in function-driven single-cell genomics. FEMS Microbiol Rev. 2017;41:538–548.
  • Martinez-Garcia M, Brazel DM, Swan BK, et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia. PLoS One. 2012;7:e35314.
  • Mohan R, Sanpitakseree C, Desai AV, et al. A microfluidic approach to study the effect of bacterial interactions on antimicrobial susceptibility in polymicrobial cultures. RSC Adv. 2015;5:35211–35223.
  • Stanley CE, Stockli M, van Swaay D, et al. Probing bacterial-fungal interactions at the single cell level. Integr Biol. 2014;6:935–945.
  • Bollmann A, Lewis K, Epstein SS. Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl Environ Microbiol. 2007;73:6386–6390.
  • Patel JD, Parmar M, Patel P, et al. Dynamism of antimicrobial activity of actinomycetes: a case study from undisturbed microbial niche. Adv Microbiol. 2014;06:11.
  • Mohammad N, Alam MZ, Kabashi NA. Development of composting process of oil palm industrial wastes by multi-enzymatic fungal system. J Mater Cycles Waste Manag. 2013;15:348–356.
  • Wang Z, Cao G, Zheng J, et al. Developing a mesophilic co-culture for direct conversion of cellulose to butanol in consolidated bioprocess. Biotechnol Biofuels. 2015;8:015–0266.
  • Gich FB, Amer E, Figueras JB, et al. Assessment of microbial community structure changes by amplified ribosomal DNA restriction analysis (ARDRA). Int Microbiol. 2000;3:103–106.
  • Schmidt JK, Konig B, Reichl U. Characterization of a three bacteria mixed culture in a chemostat: evaluation and application of a quantitative terminal-restriction fragment length polymorphism (T-RFLP) analysis for absolute and species specific cell enumeration. Biotechnol Bioeng. 2007;96:738–756.
  • Han KI, Kim YH, Hwang SG, et al. Bacterial community dynamics of salted and fermented shrimp based on denaturing gradient gel electrophoresis. J Food Sci. 2014;79:M2516–22.
  • Gulitz A, Stadie J, Ehrmann M, et al. Comparative phylobiomic analysis of the bacterial community of water kefir by 16S rRNA gene amplicon sequencing and ARDRA analysis. J Appl Microbiol. 2013;114:1082–1091.
  • Clement BG, Kehl LE, DeBord KL, et al. Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities. J Microbiol Methods. 1998;31:135–142.
  • Nelson JD, Boehme SE, Reimers CE, et al. Temporal patterns of microbial community structure in the Mid-Atlantic Bight. FEMS Microbiol Ecol. 2008;65:484–493.
  • Lord NS, Kaplan CW, Shank P, et al. Assessment of fungal diversity using terminal restriction fragment (TRF) pattern analysis: comparison of 18S and ITS ribosomal regions. FEMS Microbiol Ecol. 2002;42:327–337.
  • Douterelo I, Boxall JB, Deines P, et al. Methodological approaches for studying the microbial ecology of drinking water distribution systems. Water Res. 2014;65:134–156.
  • Luxmy B, Nakajima F, Yamamoto K. Analysis of bacterial community in membrane-separation bioreactors by fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) techniques. Water Sci Technol. 2000;41:259–268.
  • Godheja J, Shekhar SK, Modi DR. Advances in molecular biology approaches to guage microbial communities and bioremediation at contaminated sites. Int J Environ Bioremediat Biodegrad. 2014;2:167–177.
  • Parolin C, Giordani B, Ñahui Palomino RA, et al. Design and validation of a DNA-microarray for phylogenetic analysis of bacterial communities in different oral samples and dental implants. Sci Rep. 2017;7:6280.
  • Kleinsteuber S, Riis V, Fetzer I, et al. Population dynamics within a microbial consortium during growth on diesel fuel in saline environments. Appl Environ Microbiol. 2006;72:3531–3542.
  • Subramani R, Aalbersberg W. Marine actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol Res. 2012;167:571–580.
  • Rutledge PJ, Challis GL. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol. 2015;13:509–523.
  • Bhatia SK, Lee B-R, Sathiyanarayanan G, et al. Biomass-derived molecules modulate the behavior of Streptomyces coelicolor for antibiotic production. 3 Biotech. 2016;6:223.
  • Dashti Y, Grkovic T, Abdelmohsen UR, et al. Production of induced secondary metabolites by a co-culture of sponge-associated actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Mar Drugs. 2014;12:3046–3059.
  • Bhatia SK, Lee B-R, Sathiyanarayanan G, et al. Medium engineering for enhanced production of undecylprodigiosin antibiotic in Streptomyces coelicolor using oil palm biomass hydrolysate as a carbon source. Bioresour Technol. 2016;217:141–149.
  • Frisvad JC, Rank C, Nielsen KF, et al. Metabolomics of Aspergillus fumigatus. Med Mycol. 2009;47:S53–S71.
  • Rateb ME, Hallyburton I, Houssen WE, et al. Induction of diverse secondary metabolites in Aspergillus fumigatus by microbial co-culture. RSC Adv. 2013;3:14444–14450.
  • Jestoi M. Emerging fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin. A review. Crit Rev Food Sci Nutr. 2008;48:21–49.
  • Wang J-p, Lin W, Wray V, et al. Induced production of depsipeptides by co-culturing Fusarium tricinctum and Fusarium begoniae. Tetrahedron Lett. 2013;54:2492–2496.
  • Seipke RF, Kaltenpoth M, Hutchings MI. Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev. 2012;36:862–876.
  • Traxler MF, Watrous JD, Alexandrov T, et al. Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. MBio. 2013;4:00459–00413.
  • Simon S, Athanasiov PA, Jain R, et al. Desferrioxamine-related ocular toxicity: a case report. Indian J Ophthalmol. 2012;60:315.
  • Dayani PN, Bishop MC, Black K, et al. Desferoxamine (DFO)-mediated iron chelation: rationale for a novel approach to therapy for brain cancer. J Neurooncol. 2004;67:367–377.
  • Zuck KM, Shipley S, Newman DJ. Induced production of N-formyl alkaloids from Aspergillus fumigatus by co-culture with Streptomyces peucetius. J Nat Prod. 2011;74:1653–1657.
  • Charusanti P, Fong NL, Nagarajan H, et al. Exploiting adaptive laboratory evolution of Streptomyces clavuligerus for antibiotic discovery and overproduction. PLoS One. 2012;7:e33727.
  • Barger SR, Hoefler BC, Cubillos-Ruiz A, et al. Imaging secondary metabolism of Streptomyces sp. Mg1 during cellular lysis and colony degradation of competing Bacillus subtilis. Antonie Van Leeuwenhoek. 2012;102:435–445.
  • Schaberle TF, Orland A, Konig GM. Enhanced production of undecylprodigiosin in Streptomyces coelicolor by co-cultivation with the corallopyronin A-producing myxobacterium, Corallococcus coralloides. Biotechnol Lett. 2014;36:641–648.
  • Shalin T, Sindhu R, Binod P, et al. Mixed cultures fermentation for the production of poly-sz-hydroxybutyrate. Braz Arch Biol Technol. 2014;57:644–652.
  • Bhatia SK, Yoon JJ, Kim HJ, et al. Engineering of artificial microbial consortia of Ralstonia eutropha and Bacillus subtilis for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production from sugarcane sugar without precursor feeding. Bioresour Technol. 2018;257:92–101.
  • Simova ED, Frengova GI, Beshkova DM. Exopolysaccharides produced by mixed culture of yeast Rhodotorula rubra GED10 and yogurt bacteria (Streptococcus thermophilus 13a + Lactobacillus bulgaricus 2-11). J Appl Microbiol. 2004;97:512–519.
  • Leesing R, Baojungharn R, Papone T. Microbial oil production by mixed culture of microalgae Chlorella sp. KKU-S2 and yeast Torulaspora maleeae Y30.  Int J Biotechnol Bioeng. 2012;6:22.
  • Salimi F, Mahadevan R. Characterizing metabolic interactions in a clostridial co-culture for consolidated bioprocessing. BMC Biotechnol. 2013;13:1472–6750.
  • Xin F, He J. Characterization of a thermostable xylanase from a newly isolated Kluyvera species and its application for biobutanol production. Bioresour Technol. 2013;135:309–315.
  • Wen Z, Wu M, Lin Y, et al. Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans. Microb Cell Fact. 2014;13:92.
  • Minty J, Singer M, Scholz S, et al. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci USA. 2013;110:14592–14597.
  • Wang A, Gao L, Ren N, et al. Bio-hydrogen production from cellulose by sequential co-culture of cellulosic hydrogen bacteria of Enterococcus gallinarum G1 and Ethanoigenens harbinense B49. Biotechnol Lett. 2009;31:1321–1326.
  • Chen P, Wang Y, Yan L, et al. Feasibility of biohydrogen production from industrial wastes using defined microbial co-culture. Biol Res. 2015;48:24.
  • Pachapur VL, Sarma SJ, Brar SK, et al. Biohydrogen production by co-fermentation of crude glycerol and apple pomace hydrolysate using co-culture of Enterobacter aerogenes and Clostridium butyricum. Bioresour Technol. 2015;193:297–306.
  • Sabra W, Dietz D, Zeng A. Substrate-limited co-culture for efficient production of propionic acid from flour hydrolysate. Appl Microbiol Biotechnol. 2013;97:5771–5777.
  • Buzzini P. Batch and fed-batch carotenoid production by Rhodotorula glutinis-Debaryomyces castellii co-cultures in corn syrup. J Appl Microbiol. 2001;90:843–847.
  • Simova ED, Frengova GI, Beshkova DM. Effect of aeration on the production of carotenoid pigments by Rhodotorula rubra-lactobacillus casei subsp. casei co-cultures in whey ultrafiltrate. Z Naturforsch, C, J Biosci. 2003;58:225–229.
  • Yadav JS, Bezawada J, Ajila CM, et al. Mixed culture of Kluyveromyces marxianus and Candida krusei for single-cell protein production and organic load removal from whey. Bioresour Technol. 2014;164:119–127.
  • Rajoka MI, Ahmed S, Hashmi AS, et al. Production of microbial biomass protein from mixed substrates by sequential culture fermentation of Candida utilis and Brevibacterium lactofermentum. Ann Microbiol. 2012;62:1173–1179.
  • Baldrian P. Increase of laccase activity during interspecific interactions of white-rot fungi. FEMS Microbiol Ecol. 2004;50:245–253.
  • Crowe JD, Olsson S. Induction of laccase activity in Rhizoctonia solani by antagonistic Pseudomonas fluorescens strains and a range of chemical treatments. Appl Environ Microbiol. 2001;67:2088–2094.
  • Fossi BT, Tavea F, Fontem LA, et al. Microbial interactions for enhancement of α-amylase production by Bacillus amyloliquefaciens 04BBA15 and Lactobacillus fermentum 04BBA19. Biotechnol Rep. 2014;4:99–106.
  • Abdullah R, Naeem N, Aftab M, et al. Enhanced production of alpha amylase by exploiting novel bacterial co-culture technique employing solid state fermentation. Iran J Sci Technol Trans A: Sci. 2016;40:1–8.
  • Stoilova I, Gargova S, Krastanov A. Production of enzymes by mixed culture from micelial fungi in solid-state fermentation. Biotechnol Biotechnol Equip. 2005;19:103–108.
  • Kipigroch K, Janosz-Rajczyk M, Wykrota L. Biosorption of heavy metals with the use of mixed algal population. Arch Environ Protect. 2012;38:3–10.
  • Jacques RJ, Okeke BC, Bento FM, et al. Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol. 2008;99:2637–2643.
  • Komukai-Nakamura S, Sugiura K, Yamauchi-Inomata Y, et al. Construction of bacterial consortia that degrade Arabian light crude oil. J Ferment Bioeng. 1996;82:570–574.
  • Patowary K, Patowary R, Kalita MC, et al. Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites. Front Microbiol. 2016;7:1092.
  • Luvuyo N, Nwodo UU, Mabinya LV, et al. Studies on bioflocculant production by a mixed culture of Methylobacterium sp. Obi and Actinobacterium sp. Mayor. BMC Biotechnol. 2013;13:62.
  • Cosa S, Okoh A. Bioflocculant production by a consortium of two bacterial species and its potential application in industrial wastewater and river water treatment. Pol J Environ Stud. 2014;23:689–696.
  • Yang Y-H, Jeon J-M, Yi DH, et al. Application of a non-halogenated solvent, methyl ethyl ketone (MEK) for recovery of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(HB-co-HV)] from bacterial cells. Biotechnol Bioproc E. 2015;20:291–297.
  • Riedel SL, Jahns S, Koenig S, et al. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. J Biotechnol. 2015;214:119–127.
  • Sathiyanarayanan G, Bhatia SK, Song H-S, et al. Production and characterization of medium-chain-length polyhydroxyalkanoate copolymer from Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620. Int J Biol Macromol. 2017;97:710–720.
  • Bhatia S, Yi DH, Kim HJ, et al. Overexpression of succinyl‐CoA synthase for poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) production in engineered Escherichia coli BL21 (DE3). J Appl Microbiol. 2015;119:724–735.
  • Jeon J-M, Brigham CJ, Kim Y-H, et al. Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Appl Microbiol Biotechnol. 2014;98:5461–5469.
  • Bhatia SK, Kim J-H, Kim M-S, et al. Production of (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer from coffee waste oil using engineered Ralstonia eutropha. Bioprocess Biosyst Eng. 2017;41:229–235.
  • Bhatia SK, Shim Y-H, Jeon J-M, et al. Starch based polyhydroxybutyrate production in engineered Escherichia coli. Bioprocess Biosyst Eng. 2015;38:1479–1484.
  • Jeon J-M, Kim H-J, Bhatia SK, et al. Application of acetyl-CoA acetyltransferase (AtoAD) in Escherichia coli to increase 3-hydroxyvalerate fraction in poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Bioprocess Biosyst Eng. 2017;1–9: 781–789.
  • Löwe H, Hobmeier K, Moos M, et al. Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB. Biotechnol Biofuels. 2017;10:190.
  • Serafim LS, Lemos PC, Oliveira R, et al. Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnol Bioeng. 2004;87:145–160.
  • Dionisi D, Majone M, Papa V, et al. Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Biotechnol Bioeng. 2004;85:569–579.
  • Dionisi D, Majone M, Vallini G, et al. Effect of the applied organic load rate on biodegradable polymer production by mixed microbial cultures in a sequencing batch reactor. Biotechnol Bioeng. 2006;93:76–88.
  • Ujang Z, Salim M, Md Din M, et al. Intracellular biopolymer productions using mixed microbial cultures from fermented POME. Water Sci Technol. 2007;56: 179–185.
  • Volova TG, Boyandin AN, Vasiliev AD, et al. Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym Degrad Stab. 2010;95:2350–2359.
  • Briese BH, Jendrossek D, Schlegel HG. Degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by aerobic sewage sludge. FEMS Microbiol Lett. 1994;117:107–111.
  • Bhatia SK, Kumar N, Bhatia RK. Stepwise bioprocess for exopolysaccharide production using potato starch as carbon source. 3 Biotech. 2015;5:735–739.
  • Sathiyanarayanan G, Bhatia SK, Kim HJ, et al. Metal removal and reduction potential of an exopolysaccharide produced by Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620. RSC Adv. 2016;6:96870–96881.
  • Nwodo UU, Green E, Okoh AI. Bacterial exopolysaccharides: functionality and prospects. IJMS. 2012;13:14002–14015.
  • Nicolaus B, Kambourova M, Oner ET. Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ Technol. 2010;31:1145–1158.
  • Freitas F, Alves VD, Reis MA. Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol. 2011;29:388–398.
  • Hector S, Willard K, Bauer R, et al. Diverse exopolysaccharide producing bacteria isolated from milled sugarcane: implications for cane spoilage and sucrose yield. PLoS One. 2016;10:e0145487.
  • Chen Z, Shi J, Yang X, et al. Isolation of exopolysaccharide-producing bacteria and yeasts from Tibetan kefir and characterisation of the exopolysaccharides. Int J Dairy Technol. 2016;69:410–417.
  • Han X, Yang Z, Jing X, et al. Improvement of the texture of yogurt by use of exopolysaccharide producing lactic acid bacteria. BioMed Res Int. 2016;2016:6.
  • Angelis S, Novak AC, Sydney EB, et al. Co-culture of microalgae, cyanobacteria, and macromycetes for exopolysaccharides production: process preliminary optimization and partial characterization. Appl Biochem Biotechnol. 2012;167:1092–1106.
  • More TT, Yan S, Tyagi RD, et al. Biopolymers production by mixed culture and their applications in water and wastewater treatment. Water Environ Res. 2015;87:533–546.
  • Bhatia SK, Kim S-H, Yoon J-J, et al. Current status and strategies for second generation biofuel production using microbial systems. Energy Convers Manage. 2017;148:1142–1156.
  • Bhatia SK, Bhatia RK, Yang Y-H. Biosynthesis of polyesters and polyamide building blocks using microbial fermentation and biotransformation. Rev Environ Sci Biotechnol. 2016;15:639–663.
  • Patel SKS, Kumar P, Singh M, et al. Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol. 2015;176:136–141.
  • Jeon JM, Park H, Seo HM, et al. Isobutanol production from an engineered Shewanella oneidensis MR-1. Bioprocess Biosyst Eng. 2015;38:2147–2154.
  • Kurosawa K, Plassmeier J, Sinskey AJ. Improved glycerol utilization by a triacylglycerol producing Rhodococcus opacus strain for renewable fuels. Biotechnol Biofuels. 2015;8:31.
  • Bhatia SK, Kim J, Song H-S, et al. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01. Bioresour Technol. 2017;233:99–109.
  • Bhatia SK, Bhatia RK, Yang Y-H. An overview of microdiesel—a sustainable future source of renewable energy. Renew Sust Energy Rev. 2017;79:1078–1090.
  • Kim H-J, Choi Y-K, Jeon HJ, et al. Growth promotion of Chlorella vulgaris by modification of nitrogen source composition with symbiotic bacteria, Microbacterium sp. HJ1. Biomass Bioenerg. 2015;74:213–219.
  • Wrede D, Taha M, Miranda AF, et al. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment. PLoS One. 2014;9:e113497.
  • Du R, Yan J, Li S, et al. Cellulosic ethanol production by natural bacterial consortia is enhanced by Pseudoxanthomonas taiwanensis. Biotechnol Biofuels. 2015;8:10.
  • Li L, Ai H, Zhang S, et al. Enhanced butanol production by coculture of Clostridium beijerinckii and Clostridium tyrobutyricum. Bioresour Technol. 2013;143:397–404.
  • Hsiao C-L, Chang J-J, Wu J-H, et al. Clostridium strain co-cultures for biohydrogen production enhancement from condensed molasses fermentation solubles. Int J Hydrogen Energy. 2009;34:7173–7181.
  • Kao P-M, Hsu B-M, Huang K-H, et al. Biohydrogen production by immobilized co-culture of Clostridium butyricum and Rhodopseudomonas palustris. Energy Procedia. 2014;61:834–837.
  • Mapari SA, Thrane U, Meyer AS. Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol. 2010;28:300–307.
  • Frengova GI, Emilina SD, Beshkova DM. Carotenoid production by lactoso-negative yeasts co-cultivated with lactic acid bacteria in whey ultrafiltrate. Z Naturforschung C. 2003;58:562–567.
  • Fang TJ, Wang J-M. Extractability of astaxanthin in a mixed culture of a carotenoid over-producing mutant of Xanthophyllomyces dendrorhous and Bacillus circulans in two-stage batch fermentation. Process Biochem. 2002;37:1235–1245.
  • Tesfaw A, Assefa F. Co-culture: a great promising method in single cell protein production. Biotechnol Mol Biol Rev. 2014;9:12–20.
  • Zhang HY, Piao XS, Li P, et al. Effects of single cell protein replacing fish meal in diet on growth performance, nutrient digestibility and intestinal morphology in Weaned Pigs. Asian Australas J Anim Sci. 2013;26:1320–1328.
  • Kunasundari B, Murugaiyah V, Kaur G, et al. Revisiting the single cell protein application of Cupriavidus necator H16 and recovering bioplastic granules simultaneously. PLoS One. 2013;8:e78528.
  • Yunus FN, Nadeem M, Rashid F. Single‐cell protein production through microbial conversion of lignocellulosic residue (wheat bran) for animal feed. J Inst Brew. 2015;121:553–557.
  • Mensah JKM, Twumasi P. Use of pineapple waste for single cell protein (SCP) production and the effect of substrate concentration on the yield. J Food Process Eng. 2016;40:e12478.
  • Strong PJ, Claus H. Laccase: a review of its past and its future in bioremediation. Crit Rev Environ Sci Technol. 2011;41:373–434.
  • Fokina O, Eipper J, Winandy L, et al. Improving the performance of a biofuel cell cathode with laccase-containing culture supernatant from Pycnoporus sanguineus. Bioresour Technol. 2015;175:445–453.
  • Cerqueira VS, Hollenbach EB, Maboni F, et al. Biodegradation potential of oily sludge by pure and mixed bacterial cultures. Bioresour Technol. 2011;102:11003–11010.
  • Yao J, Tian L, Wang Y, et al. Microcalorimetric study the toxic effect of hexavalent chromium on microbial activity of Wuhan brown sandy soil: an in vitro approach. Ecotoxicol Environ Saf. 2008;69:289–295.
  • Wang J, Chen C. The current status of heavy metal pollution and treatment technology development in China. Environ Technol Rev. 2015;4:39–53.
  • El-Bestawy E, Sabir J, Mansy AH, et al. Isolation, identification and acclimatization of Atrazine-resistant soil bacteria. Ann Agric Sci. 2013;58:119–130.
  • Maria S, Aqsa J, Yasir R. As(V) reduction, As(III) oxidation, and Cr(VI) reduction by multi-metal-resistant Bacillus subtilis, Bacillus safensis and Bacillus cereus species isolated from wastewater treatment plant. Geomicrobiol J. 2016;34:687–694.
  • Yuncu B, Sanin FD, Yetis U. An investigation of heavy metal biosorption in relation to C/N ratio of activated sludge. J Hazard Mater. 2006;137:990–997.
  • Ilamathi R, Nirmala G, Muruganandam L. Heavy metals biosorption in liquid solid fluidized bed by immobilized consortia in alginate beads. J Bioprocess Biotech. 2014;4:1.
  • Nascimento C, Magalhães DP, Brandão M, et al. Degradation and detoxification of three textile azo dyes by mixed fungal cultures from semi-arid region of Brazilian Northeast. Braz Arch Biol Technol. 2011;54:621–628.
  • Boopathy R. Factors limiting bioremediation technologies. Bioresour Technol. 2000;74:63–67.
  • Babu SV, Raghupathy S, Rajasimman M. Anaerobic treatment of textile dye wastewater using mixed culture in batch reactor. J Adv Chem Sci. 2016;2:233–236.
  • Haritash A, Kaushik C. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater. 2009;169:1–15.
  • Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int. 2011;2011:941810.
  • Kweon O, Kim SJ, Holland RD, et al. Polycyclic aromatic hydrocarbon metabolic network in Mycobacterium vanbaalenii PYR-1. J Bacteriol. 2011;193:4326–4337.
  • Wu M, Chen L, Tian Y, et al. Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media. Environ Pollut. 2013;178:152–158.
  • Liu W, Zhao C, Jiang J, et al. Bioflocculant production from untreated corn stover using Cellulosimicrobium cellulans L804 isolate and its application to harvesting microalgae. Biotechnol Biofuels. 2015;8:170.
  • Wang L, Ma F, Qu Y, et al. Characterization of a compound bioflocculant produced by mixed culture of Rhizobium radiobacter F2 and Bacillus sphaeicus F6. World J Microbiol Biotechnol. 2011;27:2559–2565.
  • Stewart EJ. Growing unculturable bacteria. J Bacteriol. 2012;194:4151–4160.
  • Brophy JAN, Voigt CA. Principles of genetic circuit design. Nat Methods. 2014;11:508–520.
  • Bhatia RK, Bhatia SK, Mehta PK, et al. Bench scale production of benzohydroxamic acid using acyl transfer activity of amidase from Alcaligenes sp. MTCC 10674. J Ind Microbiol Biotechnol. 2013;40:21–27.
  • Bhatia SK, Mehta PK, Bhatia RK, et al. An isobutyronitrile-induced bienzymatic system of Alcaligenes sp. MTCC 10674 and its application in the synthesis of alpha-hydroxyisobutyric acid. Bioprocess Biosyst Eng. 2013;36:613–625.
  • Bhatia SK, Mehta PK, Bhatia RK, et al. Purification and characterization of arylacetonitrile-specific nitrilase of Alcaligenes sp. MTCC 10675. Biotechnol Appl Biochem. 2014;61:459–465.
  • Seo J, Park T, Kwon I, et al. Characterization of cellulolytic and xylanolytic enzymes of Bacillus licheniformis JK7 isolated from the rumen of a native Korean goat. Asian Australas J Anim Sci. 2013;26:50.
  • Jamil B, Hasan F, Hameed A, et al. Isolation of Bacillus subtilis MH-4 from soil and its potential of polypeptidic antibiotic production. Pak J Pharm Sci. 2007;20:26–31.
  • Nölling J, Breton G, Omelchenko MV, et al. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol. 2001;183:4823–4838.
  • Leja K, Czaczyk K, Myszka K. Biotechnological synthesis of 1, 3-propanediol using Clostridium ssp. Afr J Biotechnol. 2011;10:11093–11101.
  • Zahoor A, Lindner SN, Wendisch VF. Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products. Comput Struct Biotechnol J. 2012;30:e201210004.
  • Sun L-H, Wang X-D, Dai J-Y, et al. Microbial production of 2, 3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl Microbiol Biotechnol. 2009;82:847–852.
  • Bhatia SK, Yang Y-H. Microbial production of volatile fatty acids: current status and future perspectives. Rev Environ Sci Bio/Technol. 2017;16:327–345.
  • Juengert JR, Borisova M, Mayer C, et al. Absence of ppGpp leads to increased mobilization of intermediately accumulated poly(3-hydroxybutyrate) in Ralstonia eutropha H16. Appl Environ Microbiol. 2017;83:00755-17.
  • Borodina I, Krabben P, Nielsen J. Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. Genome Res. 2005;15:820–829.
  • Lee BR, Bhatia SK, Song HS, et al. The role of NdgR in glycerol metabolism in Streptomyces coelicolor. Bioprocess Biosyst Eng. 2017;20:017–1813.
  • Han MJ, Kim NJ, Lee SY, et al. Extracellular proteome of Aspergillus terreus grown on different carbon sources. Curr Genet. 2010;56:369–382.
  • de Almeida Antunes Ferraz JL, Souza LO, Soares GA, et al. Enzymatic saccharification of lignocellulosic residues using cellulolytic enzyme extract produced by Penicillium roqueforti ATCC 10110 cultivated on residue of yellow mombin fruit. Bioresour Technol. 2017;248:214–220.
  • Gonçalves F, Colen G, Takahashi J. Yarrowia lipolytica and its multiple applications in the biotechnological industry. Sci World J. 2014;2014:476207.
  • Dmytruk K, Lyzak O, Yatsyshyn V, et al. Construction and fed-batch cultivation of Candida famata with enhanced riboflavin production. J Biotechnol. 2014;172:11–17.
  • Fonseca GG, Heinzle E, Wittmann C, et al. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol. 2008;79:339–354.
  • Salari R, Salari R. Investigation of the best Saccharomyces cerevisiae growth condition. Electron Physician. 2017;9:3592–3597.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.