1,528
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Nutrient removal and biomass production: advances in microalgal biotechnology for wastewater treatment

, , & ORCID Icon
Pages 1244-1260 | Received 20 Nov 2017, Accepted 20 Apr 2018, Published online: 17 May 2018

References

  • Peters NE, Meybeck M. Water quality degradation effects on freshwater availability: impacts of human activities. Water Int. 2000;25:185–193.
  • Ledda C, Schievano A, Scaglia B, et al. Integration of microalgae production with anaerobic digestion of dairy cattle manure: an overall mass and energy balance of the process. J Clean Prod. 2016;112:103–112.
  • Wang JH, Zhang TY, Dao GH, et al. Microalgae-based advanced municipal wastewater treatment for reuse in water bodies. Appl Microbiol Biotechnol. 2017;101:2659–2675.
  • Han F, Huang J, Li Y, et al. Enhancement of microalgal biomass and lipid productivities by a model of photoautotrophic culture with heterotrophic cells as seed. Bioresour Technol. 2012;118:431–437.
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306.
  • Ma C, Wen H, Xing D, et al. Molasses wastewater treatment and lipid production at low temperature conditions by a microalgal mutant Scenedesmus sp. Z-4. Biotechnol Biofuels. 2017;10:111.
  • Gu Y, Li Y, Li X, et al. Energy self-sufficient wastewater treatment plants: feasibilities and challenges. Energy Procedia. 2017;105:3741–3751.
  • Khiewwijit R, Temmink H, Rijnaarts H, et al. Energy and nutrient recovery for municipal wastewater treatment: how to design a feasible plant layout? Environ Modell Softw. 2015;68:156–165.
  • Diniz GS, Silva AF, Araújo OQF, et al. The potential of microalgal biomass production for biotechnological purposes using wastewater resources. J Appl Phycol. 2017;29:821–832.
  • Oswald WJ, Gotaas HB. Photosynthesis in sewage treatment. Trans Amer Soc Civil Eng. 1957;122:73–97.
  • Pawar S. Effectiveness mapping of open raceway pond and tubular photobioreactors for sustainable production of microalgae biofuel. Renew Sustain Energy Rev. 2016;62:640–653.
  • Han SF, Jin WB, Tu RJ, et al. Biofuel production from microalgae as feedstock: current status and potential. Crit Rev Biotechnol. 2015;35:255–268.
  • Kumar K, Mishra SK, Shrivastav A, et al. Recent trends in the mass cultivation of algae in raceway ponds. Renew Sustain Energy Rev. 2015;51:875–885.
  • Liu C, Subashchandrabose S, Ming H, et al. Phycoremediation of dairy and winery wastewater using Diplosphaera sp. MM1. J Appl Phycol. 2016;28:3331–3341.
  • Liu C, Subashchandrabose SR, Megharaj M, et al. Diplosphaera sp. MM1 - A microalga with phycoremediation and biomethane potential. Bioresour Technol. 2016;218:1170–1177.
  • Subramaniyam V, Subashchandrabose SR, Ganeshkumar V, et al. Cultivation of Chlorella on brewery wastewater and nano-particle biosynthesis by its biomass. Bioresour Technol. 2016;211:698–703.
  • Park JBK, Craggs RJ, Shilton AN. Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol. 2011;102:35–42.
  • Pittman JK, Dean AP, Osundeko O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol. 2011;102:17–25.
  • Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv. 2011;29:686–702.
  • Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sustain Energy Rev. 2013;19:360–369.
  • Chen CY, Yeh KL, Aisyah R, et al. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol. 2011;102:71–81.
  • Wiley PE, Campbell JE, McKuin B. Production of biodiesel and biogas from algae: a review of process train options. Water Environ Res. 2011;83:326–338.
  • Rawat I, Ranjith Kumar R, Mutanda T, et al. Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy. 2011;88:3411–3424.
  • Kesaano M, Sims RC. Algal biofilm based technology for wastewater treatment. Algal Res. 2014;5:231–240.
  • Olguín EJ. Dual purpose microalgae–bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotech Adv. 2012;30:1031–1046.
  • Pires JCM, Alvim-Ferraz MCM, Martins FG, et al. Wastewater treatment to enhance the economic viability of microalgae culture. Environ Sci Pollut Res. 2013;20:5096–5105.
  • Zeng X, Guo X, Su G, et al. Bioprocess considerations for microalgal-based wastewater treatment and biomass production. Renew Sustain Energy Rev. 2015;42:1385–1392.
  • Koller M, Salerno A, Tuffner P, et al. Characteristics and potential of micro-algal cultivation strategies: a review. J Clean Prod. 2012;37:377–388.
  • Chen G, Zhao L, Qi Y. Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Appl Energy. 2015;137:282–291.
  • Gross M, Jarboe D, Wen Z. Biofilm-based algal cultivation systems. Appl Microbiol Biotechnol. 2015;99:5781–5789.
  • Wu YH, Hu HY, Yu Y, et al. Microalgal species for sustainable biomass/lipid production using wastewater as resource: a review. Renew Sustain Energy Rev. 2014;33:675–688.
  • Hoh D, Watson S, Kan E. Algal biofilm reactors for integrated wastewater treatment and biofuel production: a review. Chem Eng J. 2016;287:466–473.
  • Zhou W, Chen P, Min M, et al. Environment-enhancing algal biofuel production using wastewaters. Renew Sustain Energy Rev. 2014;36:256–269.
  • Mehrabadi A, Craggs R, Farid MM. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production. Bioresour Technol. 2015;184:202–214.
  • McGinn PJ, Dickinson KE, Bhatti S, et al. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth Res. 2011;109:231–247.
  • Venkata Mohan S, Rohit MV, Chiranjeevi P, et al. Heterotrophic microalgae cultivation to synergize biodiesel production with waste remediation: progress and perspectives. Bioresour Technol. 2015;184:169–178.
  • Oswald WJ. Large-scale algal culture systems (engineering aspects). Micro-algal biotechnology. In: Borowitzka LJ, Borowitzka MA, editors. Microalgal biotechnology. Cambridge: Cambridge University Press; 1988. p. 357–395.
  • Shen Y, Yang T, Zhu W, et al. Wastewater treatment and biofuel production through attached culture of Chlorella vulgaris in a porous substratum biofilm reactor. J Appl Phycol. 2017;29:833–841.
  • Beltrán-Rocha JC, Barceló-Quintal ID, García-Martínez M, et al. Polishing of municipal secondary effluent using native microalgae consortia. Water Sci Technol. 2017;75:1693–1701.
  • Arias DM, Uggetti E, García-Galán MJ, et al. Cultivation and selection of cyanobacteria in a closed photobioreactor used for secondary effluent and digestate treatment. Sci Tot Environ. 2017;587–588:157–167.
  • Zeriouh O, Reinoso-Moreno JV, López-Rosales L, et al. Biofouling in photobioreactors for marine microalgae. Critic Rev Biotech. 2017;37:1006–1023.
  • Lu Q, Zhou W, Min M, et al. Mitigating ammonia nitrogen deficiency in dairy wastewaters for algae cultivation. Bioresour Technol. 2016;201:33–40.
  • Hernández D, Riaño B, Coca M, et al. Microalgae cultivation in high rate algal ponds using slaughterhouse wastewater for biofuel applications. Chem Eng J. 2016;285:449–458.
  • Arbib Z, Ruiz J, Álvarez-Díaz P, et al. Long-term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecol Eng. 2013;52:143–153.
  • Huo S, Wang Z, Zhu S, et al. Cultivation of Chlorella zofingiensis in bench-scale outdoor ponds by regulation of pH using dairy wastewater in winter, South China. Bioresour Technol. 2012;121:76–82.
  • Posadas E, del Mar Morales M, Gomez C, et al. Influence of pH and CO2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chem Eng J. 2015;265:239–248.
  • Sutherland DL, Turnbull MH, Broady PA, et al. Effects of two different nutrient loads on microalgal production, nutrient removal and photosynthetic efficiency in pilot-scale wastewater high rate algal ponds. Water Res. 2014;66:53–62.
  • Kim BH, Kang Z, Ramanan R, et al. Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater. J Microbiol Biotechnol. 2014;24:1123–1132.
  • Posadas E, Muñoz A, García‐González MC, et al. A case study of a pilot high rate algal pond for the treatment of fish farm and domestic wastewaters. J Chem Technol Biotechnol. 2015;90:1094–1101.
  • Choi HJ, Lee SM. Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater. Bioprocess Biosyst Eng. 2015;38:761–766.
  • Tan X, Chu H, Zhang Y, et al. Chlorella pyrenoidosa cultivation using anaerobic digested starch processing wastewater in an airlift circulation photobioreactor. Bioresour Technol. 2014;170:538–548.
  • Yang IS, Salama ES, Kim JO, et al. Cultivation and harvesting of microalgae in photobioreactor for biodiesel production and simultaneous nutrient removal. Energy Convers Manag. 2016;117:54–62.
  • Xu J, Zhao Y, Zhao G, et al. Nutrient removal and biogas upgrading by integrating freshwater algae cultivation with piggery anaerobic digestate liquid treatment. Appl Microbiol Biotechnol. 2015;99:6493–6501.
  • Van Den Hende S, Beelen V, Bore G, et al. Up-scaling aquaculture wastewater treatment by microalgal bacterial flocs: from lab reactors to an outdoor raceway pond. Bioresour Technol. 2014;159:342–354.
  • Wang H, Xiong H, Hui Z, et al. Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresour Technol. 2012;104:215–220.
  • Woertz I, Feffer A, Lundquist T, et al. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng. 2009;135:1115–1122.
  • Kong Qx, Li L, Martinez B, et al. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol. 2010;160:9–18.
  • Miao MS, Yao XD, Shu L, et al. Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with synthetic domestic wastewater. Int Biodeterior Biodegrad. 2016;113:120–125.
  • Ji MK, Yun HS, Hwang BS, et al. Mixotrophic cultivation of Nephroselmis sp. using industrial wastewater for enhanced microalgal biomass production. Ecol Eng. 2016;95:527–533.
  • Min M, Hu B, Mohr MJ, et al. Swine manure-based pilot-scale algal biomass production system for fuel production and wastewater treatment—a case study. Appl Biochem Biotechnol. 2014;172:1390–1406.
  • Richmond A. Biological principles of mass cultivation. In: Richmond A, editor. Handbook of microalgal culture: biotechnology and applied phycology. Hoboken (NJ): Wiley-Blackwell; 2004. p. 125–177.
  • Sforza E, Ramos-Tercero EA, Gris B, et al. Integration of Chlorella protothecoides production in wastewater treatment plant: from lab measurements to process design. Algal Res. 2014;6:223–233.
  • Küçük K, Tevatia R, Sorgüven E, et al. Bioenergetics of growth and lipid production in Chlamydomonas reinhardtii. Energy. 2015;83:503–510.
  • Tevatia R, Demirel Y, Blum P. Kinetic modeling of photoautotropic growth and neutral lipid accumulation in terms of ammonium concentration in Chlamydomonas reinhardtii. Bioresour Technol. 2012;119:419–424.
  • Kok HW. A thermodynamic analysis of photosynthesis: quantum requirement and theoretical biomass growth rates [master’s thesis]. Johannesburg, South Africa: University of the Witwatersrand; 2012.
  • Ebeling JM, Timmons MB, Bisogni JJ. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture. 2006;257:346–358.
  • Cuellar-Bermudez SP, Aleman-Nava GS, Chandra R, et al. Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Res. 2017;24:438–449.
  • Min M, Wang L, Li Y, et al. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Appl Biochem Biotechnol. 2011;165:123–137.
  • Gupta PL, Lee SM, Choi HJ. A mini review: photobioreactors for large-scale algal cultivation. World J Microbiol Biotechnol. 2015;31:1409–1417.
  • Park JB, Craggs RJ. Algal production in wastewater treatment high rate algal ponds for potential biofuel use. Water Sci Technol. 2011;63:2403–2410.
  • Aslan S, Kapdan IK. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng. 2006;28:64–70.
  • Wang M, Kuo-Dahab WC, Dolan S, et al. Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment. Bioresour Technol. 2014;154:131–137.
  • Lee K, Lee CG. Effect of light/dark cycles on wastewater treatments by microalgae. Biotechnol Bioprocess Eng. 2001;6:194–199.
  • Arcila JS, Buitrón G. Microalgae‐bacteria aggregates: effect of the hydraulic retention time on the municipal wastewater treatment, biomass settleability and methane potential. J Chem Technol Biotechnol. 2016;91:2862–2870.
  • Cromar NJ, Fallowfield HJ. Effect of nutrient loading and retention time on performance of high rate algal ponds. J Appl Phycol. 1997;9:301–309.
  • Wang L, Min M, Li Y, et al. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol. 2010;162:1174–1186.
  • Couto EA, Calijuri ML, Assemany PP, et al. Effect of depth of high-rate ponds on the assimilation of CO2 by microalgae cultivated in domestic sewage. Environ Technol. Forthcoming [cited 2017 Aug 16]; [9 p.]. DOI:10.1080/09593330.2017.1364302.
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev. 2010;14:217–232.
  • Putt R, Singh M, Chinnasamy S, et al. An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer. Bioresour Technol. 2011;102:3240–3245.
  • Pires J, Alvim-Ferraz M, Martins F, et al. Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sustain Energy Rev. 2012;16:3043–3053.
  • Langley NM, Harrison STL, van Hille RP. A critical evaluation of CO2 supplementation to algal systems by direct injection. Biochem Eng J. 2012;68:70–75.
  • Abinandan S, Bhattacharya R, Shanthakumar S. Efficacy of Chlorella pyrenoidosa and Scenedesmus abundans for nutrient removal in rice mill effluent (paddy soaked water). Internat J Phytoremed. 2015;17:377–381.
  • Torres EM, Hess D, McNeil BT, et al. Impact of inorganic contaminants on microalgae productivity and bioremediation potential. Ecotoxicol Environ Saf. 2017;139:367–376.
  • Ramakrishnan B, Megharaj M, Venkateswarlu K, et al. The impacts of environmental pollutants on microalgae and cyanobacteria. Crit Rev Environ Sci Technol. 2010;40:699–821.
  • Gutzeit G, Lorch D, Weber A, et al. Bioflocculent algal–bacterial biomass improves low-cost wastewater treatment. Water Sci Technol. 2005;52:9–18.
  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, et al. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotech Adv. 2011;29:896–907.
  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, et al. Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Internat. 2013;51:59–72.
  • Zhang Y, Su H, Zhong Y, et al. The effect of bacterial contamination on the heterotrophic cultivation of Chlorella pyrenoidosa in wastewater from the production of soybean products. Water Res. 2012;46:5509–5516.
  • Liang Z, Liu Y, Ge F, et al. Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae–bacteria combined system of Chlorella vulgaris and Bacillus licheniformis. Chemosphere. 2013;92:1383–1389.
  • Su Y, Mennerich A, Urban B. Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res. 2011;45:3351–3358.
  • Su Y, Mennerich A, Urban B. Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: influence of algae and sludge inoculation ratios. Bioresour Technol. 2012;105:67–73.
  • Van Den Hende S, Carré E, Cocaud E, et al. Treatment of industrial wastewaters by microalgal bacterial flocs in sequencing batch reactors. Bioresour Technol. 2014;161:245–254.
  • Ramanan R, Kim BH, Cho DH, et al. Algae–bacteria interactions: evolution, ecology and emerging applications. Biotech Adv. 2016;34:14–29.
  • White HK, Reimers CE, Cordes EE, et al. Quantitative population dynamics of microbial communities in plankton-fed microbial fuel cells. Isme J. 2009;3:635–600.
  • Gajda I, Greenman J, Melhuish C, et al. Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomass Bioenergy. 2015;82:87–93.
  • Luo S, Berges JA, He Z, et al. Algal-microbial community collaboration for energy recovery and nutrient remediation from wastewater in integrated photobioelectrochemical systems. Algal Res. 2017;24:527–539.
  • Brennan L, Owende P. Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev. 2010;14:557–577.
  • Abinandan S, Shanthakumar S. Challenges and opportunities in application of microalgae (Chlorophyta) for wastewater treatment: a review. Renew Sustain Energy Rev. 2015;52:123–132.
  • Osundeko O, Pittman JK. Implications of sludge liquor addition for wastewater-based open pond cultivation of microalgae for biofuel generation and pollutant remediation. Bioresour Technol. 2014;152:355–363.
  • Farooq W, Lee YC, Ryu BG, et al. Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour Technol. 2013;132:230–238.
  • Hena S, Fatihah N, Tabassum S, et al. Three stage cultivation process of facultative strain of Chlorella sorokiniana for treating dairy farm effluent and lipid enhancement. Water Res. 2015;80:346–356.
  • Zhou W, Li Y, Min M, et al. Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Appl Energ. 2012;98:433–440.
  • Ma X, Zheng H, Addy M, et al. Cultivation of Chlorella vulgaris in wastewater with waste glycerol: strategies for improving nutrients removal and enhancing lipid production. Bioresour Technol. 2016;207:252–261.
  • Lee CS, Oh HS, Oh HM, et al. Two-phase photoperiodic cultivation of algal–bacterial consortia for high biomass production and efficient nutrient removal from municipal wastewater. Bioresour Technol. 2016;200:867–875.
  • Perez-Garcia O, Escalante FME, de-Bashan LE, et al. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 2011;45:11–36.
  • Li Y, Fei X, Deng X. Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum. Biomass Bioener. 2012;42:199–211.
  • Berner F, Heimann K, Sheehan M. Microalgal biofilms for biomass production. J Appl Phycol. 2015;27:1793–1804.
  • Schnurr PJ, Allen DG. Factors affecting algae biofilm growth and lipid production: a review. Renew Sustain Energy Rev. 2015;52:418–429.
  • Singh R, Paul D, Jain RK. Biofilms: implications in bioremediation. Trends Microbiol. 2006;14:389–397.
  • Xiao R, Zheng Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotech Adv. 2016;34:1225–1244.
  • Delattre C, Pierre G, Laroche C, et al. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotech Adv. 2016;34:1159–1179.
  • Qureshi N, Annous BA, Ezeji TC, et al. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Fact. 2005;4:24.
  • Fitch MW, Pearson N, Richards G, et al. Biological fixed-film systems. Water Environ Res. 1998;70:495–518.
  • Schnurr PJ, Espie GS, Allen DG. Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. Bioresour Technol. 2013;136:337–344.
  • Gao F, Yang ZH, Li C, et al. A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresour Technol. 2015;179:8–12.
  • Posadas E, García-Encina PA, Soltau A, et al. Carbon and nutrient removal from centrates and domestic wastewater using algal–bacterial biofilm bioreactors. Bioresour Technol. 2013;139:50–58.
  • Tao Q, Gao F, Qian CY, et al. Enhanced biomass/biofuel production and nutrient removal in an algal biofilm airlift photobioreactor. Algal Res. 2017;21:9–15.
  • Zamalloa C, Boon N, Verstraete W. Decentralized two-stage sewage treatment by chemical–biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor. Bioresour Technol. 2013;130:152–160.
  • Sukačová K, Trtílek M, Rataj T. Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment. Water Res. 2015;71:55–63.
  • Kesaano M, Gardner RD, Moll K, et al. Dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms. Bioresour Technol. 2015;180:7–15.
  • Boelee N, Janssen M, Temmink H, et al. Nutrient removal and biomass production in an outdoor pilot-scale phototrophic biofilm reactor for effluent polishing. Appl Biochem Biotechnol. 2014;172:405–422.
  • Wingender J, Neu TR, Flemming HC. What are bacterial extracellular polymeric substances? Microbial extracellular polymeric substances. Berlin: Springer; 1999. p. 1–19.
  • Christenson LB, Sims RC. Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by‐products. Biotechnol Bioeng. 2012;109:1674–1684.
  • Blanken W, Janssen M, Cuaresma M, et al. Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor. Biotechnol Bioeng. 2014;111:2436–2445.
  • Adey WH, Loveland K. Dynamic aquaria: building living ecosystems. Cambridge (MA): Academic Press; 2011.
  • Mulbry W, Kondrad S, Pizarro C, et al. Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour Technol. 2008;99:8137–8142.
  • Pizarro C, Mulbry W, Blersch D, et al. An economic assessment of algal turf scrubber technology for treatment of dairy manure effluent. Ecol Eng. 2006;26:321–327.
  • D’Aiuto P, Patt J, Albano J, et al. Algal turf scrubbers: periphyton production and nutrient recovery on a South Florida citrus farm. Ecol Eng. 2015;75:404–412.
  • Craggs RJ, Adey WH, Jenson KR, et al. Phosphorus removal from wastewater using an algal turf scrubber. Water Sci Technol. 1996;33:191–198.
  • Grima EM, Belarbi EH, Fernández FA, et al. Recovery of microalgal biomass and metabolites: process options and economics. Biotech Adv. 2003;20:491–515.
  • Vandamme D, Foubert I, Muylaert K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol. 2013;31:233–239.
  • Ge S, Champagne P. Nutrient removal, microalgal biomass growth, harvesting and lipid yield in response to centrate wastewater loadings. Water Res. 2016;88:604–612.
  • Shi W, Zhu L, Chen Q, et al. Synergy of flocculation and flotation for microalgae harvesting using aluminium electrolysis. Bioresour Technol. 2017;233:127–133.
  • Wang H, Hill RT, Zheng T, et al. Effects of bacterial communities on biofuel-producing microalgae: stimulation, inhibition and harvesting. Crit Rev Biotechnol. 2016;36:341–352.
  • Zhang X, Hu Q, Sommerfeld M, et al. Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresour Technol. 2010;101:5297–5304.
  • Vandamme D, Foubert I, Fraeye I, et al. Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation. Bioresour Technol. 2012;124:508–511.
  • Liu J, Zhu Y, Tao Y, et al. Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnol Biofuels. 2013;6:1.
  • Anthony RJ, Ellis JT, Sathish A, et al. Effect of coagulant/flocculants on bioproducts from microalgae. Bioresour Technol. 2013;149:65–70.
  • Gerde JA, Yao L, Lio J, et al. Microalgae flocculation: impact of flocculant type, algae species and cell concentration. Algal Res. 2014;3:30–35.
  • Lee AK, Lewis DM, Ashman PJ. Energy requirements and economic analysis of a full-scale microbial flocculation system for microalgal harvesting. Chem Eng Res Design. 2010;88:988–996.
  • Barros AI, Gonçalves AL, Simões M, et al. Harvesting techniques applied to microalgae: a review. Renew Sustain Energy Rev. 2015;41:1489–1500.
  • Gutiérrez R, Passos F, Ferrer I, et al. Harvesting microalgae from wastewater treatment systems with natural flocculants: effect on biomass settling and biogas production. Algal Res. 2015;9:204–211.
  • Rahman A, Anthony RJ, Sathish A, et al. Effects of wastewater microalgae harvesting methods on polyhydroxybutyrate production. Bioresour Technol. 2014;156:364–367.
  • Hamid SHA, Lananan F, Din WNS, et al. Harvesting microalgae, Chlorella sp. by bio-flocculation of Moringa oleifera seed derivatives from aquaculture wastewater phytoremediation. Int Biodeterior Biodegrad. 2014;95:270–275.
  • Zheng H, Gao Z, Yin J, et al. Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Bioresour Technol. 2012;112:212–220.
  • Rubio J, Souza M, Smith R. Overview of flotation as a wastewater treatment technique. Min Eng. 2002;15:139–155.
  • Laamanen CA, Ross GM, Scott JA. Flotation harvesting of microalgae. Renew Sustain Energy Rev. 2016;58:75–86.
  • Velasquez-Orta S, Garcia-Estrada R, Monje-Ramirez I, et al. Microalgae harvesting using ozoflotation: effect on lipid and FAME recoveries. Biomass Bioenerg. 2014;70:356–363.
  • Bilad MR, Vandamme D, Foubert I, et al. Harvesting microalgal biomass using submerged microfiltration membranes. Bioresour Technol. 2012;111:343–352.
  • Kanchanatip E, Su BR, Tulaphol S, et al. Fouling characterization and control for harvesting microalgae Arthrospira (Spirulina) maxima using a submerged, disc-type ultrafiltration membrane. Bioresour Technol. 2016;209:23–30.
  • Nurra C, Clavero E, Salvadó J, et al. Vibrating membrane filtration as improved technology for microalgae dewatering. Bioresour Technol. 2014;157:247–253.
  • Ríos SD, Salvadó J, Farriol X, et al. Antifouling microfiltration strategies to harvest microalgae for biofuel. Bioresour Technol. 2012;119:406–418.
  • Ozkan A, Kinney K, Katz L, et al. Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Technol. 2012;114:542–548.
  • Gross M, Henry W, Michael C, et al. Development of a rotating algal biofilm growth system for attached microalgae growth within situ biomass harvest. Bioresour Technol. 2013;150:195–201.
  • Zhang J, Hu B. A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresour Technol. 2012;114:529–535.
  • Shanshan L, Zhijiang D, Xiaodan W, et al. Pelletization behavior of fungal Chlorella sp. Symbiosis system. Res J Biotech. 2013;8:56–59.
  • Xie S, Sun S, Dai SY, et al. Efficient coagulation of microalgae in cultures with filamentous fungi. Algal Res. 2013;2:28–33.
  • Zhou W, Min M, Hu B, et al. Filamentous fungi assisted bio-flocculation: a novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells. Sep Pur Technol. 2013;107:158–165.
  • Wrede D, Taha M, Miranda AF, et al. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment. PLoS One. 2014;9:e113497.
  • Lei X, Chen Y, Shao Z, et al. Effective harvesting of the microalgae Chlorella vulgaris via flocculation–flotation with bioflocculant. Bioresour Technol. 2015;198:922–925.
  • Salim S, Vermuë M, Wijffels R. Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation. Bioresour Technol. 2012;118:49–55.
  • Milledge JJ, Heaven S. A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol. 2013;12:165–178.
  • Slade R, Bauen A. Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy. 2013;53:29–38.
  • Weissman JC, Goebel RP, Benemann JR. Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng. 1988;31:336–344.
  • Chiaramonti D, Prussi M, Casini D, et al. Review of energy balance in raceway ponds for microalgae cultivation: re-thinking a traditional system is possible. Appl Energy. 2013;102:101–111.
  • Yang J, Xu M, Zhang X, et al. Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol. 2011;102:159–165.
  • Davis R, Markham J, Kinchin C, et al. Process design and economics for the production of algal biomass: algal biomass production in open pond systems and processing through dewatering for downstream conversion. Golden (CO): NREL (National Renewable Energy Laboratory (NREL); 2016.
  • Nagarajan S, Chou SK, Cao S, et al. An updated comprehensive techno-economic analysis of algae biodiesel. Bioresour Technol. 2013;145:150–156.
  • Rogers JN, Rosenberg JN, Guzman BJ, et al. A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Res. 2014;4:76–88.
  • Flörke M, Kynast E, Bärlund I, et al. Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: a global simulation study. Global Environ Change. 2013;23:144–156.
  • Sato T, Qadir M, Yamamoto S, et al. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agri Wat Manage. 2013;130:1–13.
  • Qadir M, Wichelns D, Raschid-Sally L, et al. The challenges of wastewater irrigation in developing countries. Agri Water Manag. 2010;97:561–568.
  • Mo W, Zhang Q. Can municipal wastewater treatment systems be carbon neutral? J Environ Manag. 2012;112:360–367.
  • Mata TM, Mendes AM, Caetano NS, et al. Sustainability and economic evaluation of microalgae grown in brewery wastewater. Bioresour Technol. 2014;168:151–158.
  • Xin C, Addy MM, Zhao J, et al. Comprehensive techno-economic analysis of wastewater-based algal biofuel production: a case study. Bioresour Technol. 2016;211:584–593.
  • Abu-Ghosh S, Fixler D, Dubinsky Z, et al. Energy-input analysis of the life-cycle of microalgal cultivation systems and best scenario for oil-rich biomass production. Appl Energy. 2015;154:1082–1088.
  • Chen Y, Xu C, Vaidyanathan S. Microalgae: a robust “green bio-bridge” between energy and environment. Critic Rev Biotech. 2018;38:351–368.
  • Fang LL, Valverde-Perez B, Damgaard A, et al. Life cycle assessment as development and decision support tool for wastewater resource recovery technology. Water Res. 2016;88:538–549.
  • Richardson JW, Johnson MD, Zhang X, et al. A financial assessment of two alternative cultivation systems and their contributions to algae biofuel economic viability. Algal Res. 2014;4:96–104.
  • Davis RE, Fishman DB, Frank ED, et al. Integrated evaluation of cost, emissions, and resource potential for algal biofuels at the national scale. Environ Sci Technol. 2014;48:6035–6042.
  • Biofuels H. Food security. A report by the high level panel of expert on food security and nutrition of the committee on world food security. Rome, Italy: CFS; 2013.
  • Orfield ND, Keoleian GA, Love NG. A GIS based national assessment of algal bio-oil production potential through flue gas and wastewater co-utilization. Biomass Bioenergy. 2014;63:76–85.
  • Odjadjare EC, Mutanda T, Olaniran AO. Potential biotechnological application of microalgae: a critical review. Critic Rev Biotech. 2017;37:37–52.
  • Mu D, Min M, Krohn B, et al. Life cycle environmental impacts of wastewater-based algal biofuels. Environ Sci Technol. 2014;48:11696–11704.
  • Resurreccion EP, Colosi LM, White MA, et al. Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach. Bioresour Technol. 2012;126:298–306.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.