883
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Insight into carrageenases: major review of sources, category, property, purification method, structure, and applications

, , , , , & show all
Pages 1261-1276 | Received 15 Nov 2017, Accepted 21 Apr 2018, Published online: 15 May 2018

References

  • Campo VL, Kawano DF, Silva Júnior DBD, et al. Carrageenans: biological properties, chemical modifications and structural analysis - a review. Carbohyd Polym. 2009;77:167–180.
  • Usov AI. Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydrocolloids. 1998;12:301–308.
  • Aliste AJ, Vieira FF, Mastro NLD. Radiation effects on agar, alginates and carrageenan to be used as food additives. Radiat Physics Chem. 2000;57:305–308.
  • Weiner ML. Food additive carrageenan: part II: a critical review of carrageenan in vivo safety studies. Crit Rev Toxicol. 2014;44:244–269.
  • Bonnaud M, Weiss J, Mcclements DJ. Interaction of a food-grade cationic surfactant (Lauric arginate) with food-grade biopolymers (pectin, carrageenan, xanthan, alginate, dextran, and chitosan). J Agric Food Chem. 2010;58:9770–9777.
  • Yu G, Guan H, Ioanoviciu AS, et al. Structural studies on kappa-carrageenan derived oligosaccharides. Carbohydr Res. 2002;337:433–440.
  • Arfors KE, Ley K. Sulfated polysaccharides in inflammation. J Lab Clin Med. 1993;121:201–202.
  • Yao Z, Wu H, Zhang S, et al. Enzymatic preparation of κ-carrageenan oligosaccharides and their anti-angiogenic activity. Carbohyd Polym. 2014;101:359–367.
  • Suzuki N, Kitazato K, Takamatsu J, et al. Antithrombotic and anticoagulant activity of depolymerized fragment of the glycosaminoglycan extracted from Stichopus japonicus Selenka. Thromb Haemost. 1991;65:369–373.
  • Hu X, Jiang X, Aubree E, et al. Preparation and in vivo. Antitumor activity of κ-carrageenan oligosaccharides. Pharm Biol. 2006;44:646–650.
  • Trincone A. Short bioactive marine oligosaccharides: diving into recent literature. Curr Biotechnol. 2015;4:212–222.
  • Sun T, Tao H, Zhou D, et al. The effects of different degradation methods on antioxidant activities of κ-carrageenan oligosaccharides. Food Ferment Ind. 2009;24–27.
  • Yuan H, Li N, Gao X, et al. Preparation and in vitro antioxidant activity of kappa-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives. Carbohydr Res. 2005;340:685–692.
  • Mou H, Jiang X, Guan H. A κ-carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti-tumor activity. J Appl Phycol. 2003;15:297–303.
  • Michel G, Nyvalcollen P, Barbeyron T, et al. Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases. Appl Microbiol Biotechnol. 2006;71:23–33.
  • Mchugh DJ. Production and utilization of products from commercial seaweeds. J Bacteriol. 1987;176:460–468.
  • Knutsen SH, Grasdalen H. Analysis of carrageenans by enzymic degradation, gel filtration and 1 H NMR spectroscopy. Carbohyd Polym. 1992;19:199–210.
  • Funami T, Hiroe M, Noda S, et al. Influence of molecular structure imaged with atomic force microscopy on the rheological behavior of carrageenan aqueous systems in the presence or absence of cations. Food Hydrocolloid. 2007;21:617–629.
  • Liu L. Influence of microwave irradiation on properties of carrageenan. Guangdong Chem Ind. 2003;16–19.
  • Zhou YJ, Zhang YC, Zhang DL, et al. Ultrasonic assisted extraction of alkali treatment effect on carrageenan. Food Sci Tech. 2016;41:91–94.
  • Zhou GF, Sun YP, Xin H, et al. In vivo antitumor and immunomodulation activities of different molecular weight Lambda-Carrageenans from Chondrus ocellatus. Pharmacol Res. 2004;50:47–53.
  • Cáceres PJ, Carlucci MJ, Damonte EB, et al. Carrageenans from Chilean samples of Stenogramme interrupta (Phyllophoraceae): structural analysis and biological activity. Phytochemistry. 2000;53:81–86.
  • Panlasigui LN, Baello OQ, Dimatangal JM, et al. Blood cholesterol and lipid-lowering effects of carrageenan on human volunteers. Asia Pac J Clin Nutr. 2003;12:209–214.
  • Skea GL, Mountfort DO, Clements KD. Contrasting digestive strategies in four New Zealand herbivorous fishes as reflected by carbohydrase activity profiles. Comp Biochem Phys A. 2007;146:63–70.
  • Mori T. On a carbohydrase acting on the mucilage from chondrus ocellatus holmes (I). Nippon Nōgeikagaku Kaishi. 1939;15:1070–1074.
  • Greer CW, Yaphe W. Enzymatic analysis of carrageenans: structure of carrageenan from Eucheuma nudum. Hydrobiologia. 1984;116–117:563–567.
  • Gauthier G, Gauthier M, Christen R. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twe. Int J Syst Bacteriol. 1995;45:755–761.
  • Jouanneau D, Boulenguer P, Mazoyer J, et al. Enzymatic degradation of hybrid iota-/nu-carrageenan by Alteromonas fortis iota-carrageenase. Carbohydr Res. 2010;345:934–940.
  • Xiaoyan XU, Shangyong LI, Yang X, et al. Cloning and characterization of a new κ-carrageenase gene from marine bacterium pseudoalteromonas sp. QY203. J Ocean Univ China. 2015;14:1082–1086.
  • Li S, Jia P, Wang L, et al. Purification and characterization of a new thermostable κ-carrageenase from the marine bacterium Pseudoalteromonas sp. QY203. J Ocean Univ China. 2013;12:155–159.
  • Duan GF, Bei SU, Han F, et al. Purification and characterization of a κ-carrageenase from marine pseudoalteromonas sp. QY202. J Ocean U China. 2010;40:95–100.
  • Ziayoddin M, Lalitha J, Shinde M. Increased production of carrageenase by Pseudomonas aeruginosa ZSL-2 using Taguchi experimental design. Int Lett Nat Sci. 2014;17:194–207.
  • Ohta Y, Hatada Y. A novel enzyme, lambda-carrageenase, isolated from a deep-sea bacterium. J Biochem. 2006;140:475–481.
  • Weigl J, Yaphe W. The enzymic hydrolysis of carrageenan by Pseudomonas carrageenovora: purification of a kappa-carrageenase. Can J Microbiol. 2011;12:939–947.
  • Khambhaty Y, Mody K, Jha B. Purification and characterization of κ-carrageenase from a novel γ-proteobacterium, Pseudomonas elongata (MTCC 5261) syn. Microbulbifer elongatus comb. Biotechnol Bioprocess Eng. 2007;12:668–675.
  • Liu GL, Li Y, Chi Z, et al. Purification and characterization of κ-carrageenase from the marine bacterium Pseudoalteromonas porphyrae for hydrolysis of κ-carrageenan. Process Biochem. 2011;46:265–271.
  • Zhou MH, Ma JS, Li J, et al. A κ-carrageenase from a newly isolated pseudoalteromonas-like bacterium, WZUC10. Biotechnol Bioproc E. 2008;13:545–551.
  • Mclean MW, Williamson FB. kappa-Carrageenase from Pseudomonas carrageenovora. Eur J Biochem. 1979;93:553–558.
  • Ma YX, Dong SL, Jiang XL, et al. Purification and characterization of κ-carrageenase from marine bacterium mutant strain pseudoalteromonas sp. Aj5-13 and its degraded products. J Food Biochem. 2010;34:661–678.
  • Kobayashi T, Uchimura K, Koide O, et al. Genetic and biochemical characterization of the Pseudoalteromonas tetraodonis alkaline κ-carrageenase. Biosci Biotech Biochem. 2012;76:506–511.
  • Feixue S, Yuexin M, Ying W, et al. Purification and characterization of novel κ-carrageenase from marine Tamlana sp. HC4. Chin J Oceanol Limn. 2010;28:1139–1145.
  • Yamaguchi K, Araki T, Aoki T, et al. Algal cell wall-degrading enzymes from viscera of marine animals. Nihon Suisan Gakkai Shi. 1989;55:105–110.
  • Zhu B, Ning L. Purification and characterization of a new κ-carrageenase from the marine bacterium Vibrio sp. NJ-2. J Microbiol Biotechnol. 2015;26:255–262.
  • Sun Y, Liu Y, Jiang K, et al. Electrospray ionization mass spectrometric analysis of κ-carrageenan oligosaccharides obtained by degradation with κ-carrageenase from Pedobacter hainanensis. J Agric Food Chem. 2014;62:2398–2405.
  • Wang L, Li S, Zhang S, et al. A new κ-carrageenase CgkS from marine bacterium Shewanella sp. Kz7. J Ocean Univ China. 2015;14:759–763.
  • Michel G, Labourel A, Thomas F, editors, et al. Treasure hunting in the genome of the marine bacterium Zobellia galactanivorans: discovery of novel enzymes for the bioconversion of algal polysaccharides. Polymerix. 2012;322–323.
  • Thomas F, Bordron P, Eveillard D, et al. Gene expression analysis of zobellia galactanivorans during the degradation of algal polysaccharides reveals both substrate-specific and shared transcriptome-wide responses. Front Microbiol. 2017;8:1808–1821.
  • Matard-Mann M, Bernard T, Leroux C, et al. Structural insights into marine carbohydrate degradation by family GH16 kappa-carrageenases. J Biol Chem. 2017;292:19919–19934.
  • Yao Z, Wang F, Gao Z, et al. Characterization of a κ-carrageenase from marine Cellulophaga lytica strain N5-2 and analysis of its degradation products. Int J Mol Sci. 2013;14:24592–24602.
  • Cui H, Peng Y, Zhao B, et al. Cloning, identification and characterization of a novel κ-carrageenase from marine bacterium Cellulophaga lytica strain N5-2. Int J Biol Macromol. 2017;105:505–519.
  • Mou H, Jiang X, Liu Z, et al. Structural analysis of kappa-carrageenan oligosaccharides released by carrageenase from marine cytophaga mca-2. J Food Biochemistry. 2010;28:245–260.
  • Sarwar G, Matayoshi S, Oda H. Purification of a kappa-carrageenase from marine Cytophaga species. Microbiol Immunol. 1987;31:869–877.
  • Kang S, Kim JK. Reuse of red seaweed waste by a novel bacterium, Bacillus sp. SYR4 isolated from a sandbar. World J Microbiol Biotechnol. 2015;31:209–217.
  • Youssef AS, Beltagy EA, El-Shenawy MA, et al. Production of k-carrageenase by Cellulosimicrobium cellulans isolated from Egyptian Mediterranean coast. Afr J Microbiol Res. 2012;6:6618–6628.
  • Beltagy EA, Youssef AS, El-Shenawy MA, et al. Purification of kappa (k)-carrageenase from locally isolated Cellulosimicrobium cellulans. Afr J Microbiol Res. 2012;11:11438–11446.
  • Su M, Duan G, Chai W, et al. Purification, cloning, characterization and essential amino acid residues analysis of a new κ-carrageenase from cellulophaga sp. QY3. PLoS One. 2013;8:1–11.
  • Ma S, Tan YL, Yu WG, et al. Cloning, expression and characterization of a new ι-carrageenase from marine bacterium, Cellulophaga sp. Biotechnol Lett. 2013;35:1617–1622.
  • Hatada Y, Mizuno M, Li Z, et al. Hyper-production and characterization of the ι-carrageenase useful for ι-carrageenan oligosaccharide production from a deep-sea bacterium, microbulbifer thermotolerans JAMB-A94 T, and Insight into the unusual catalytic mechanism. Mar Biotechnol. 2011;13:411–422.
  • Li S, Hao J, Sun M. Cloning and characterization of a new cold-adapted and thermo-tolerant ι-carrageenase from marine bacterium Flavobacterium sp. YS-80-122. Int J Biol Macromol. 2017;102:1059–1065.
  • Shen J, Chang Y, Dong S, et al. Cloning, expression and characterization of a ι-carrageenase from marine bacterium Wenyingzhuangia fucanilytica: a biocatalyst for producing ι-carrageenan oligosaccharides. J Biotechnol. 2017;259:103–109.
  • Michel G, Chantalat L, Fanchon E, et al. The iota-carrageenase of Alteromonas fortis. A beta-helix fold-containing enzyme for the degradation of a highly polyanionic polysaccharide. J Biol Chem. 2001;276:40202–40209.
  • Guibet M, Colin S, Barbeyron T, et al. Degradation of lambda-carrageenan by Pseudoalteromonas carrageenovora lambda-carrageenase: a new family of glycoside hydrolases unrelated to kappa- and iota-carrageenases. Biochem J. 2007;404:105–114.
  • Li J, Hu Q, Seswitazilda D. Purification and characterization of a thermostable λ-carrageenase from a hot spring bacterium, Bacillus sp. Biotechnol Lett. 2014;36:1669–1674.
  • Barbeyron T, Flament D, Michel G, et al. The sulphated-galactan hydrolases, agarases and carrageenases: structural biology and molecular evolution. Cahiers De Biologie Marine. 2001;42:169–183.
  • Michel G, Chantalat L, Duee E, et al. The kappa-carrageenase of P. carrageenovora features a tunnel-shaped active site: a novel insight in the evolution of Clan-B glycoside hydrolases. Structure. 2001;9:513–525.
  • Barbeyron T, Michel G, Potin P, et al. iota-Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of kappa-carrageenases. J Biol Chem. 2000;275:35499–35505.
  • Henrissat B, Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochem J. 1996;316: 695–696.
  • Xiao A, Xu C, Lin Y, et al. Preparation and characterization of κ-carrageenase immobilized onto magnetic iron oxide nanoparticles. Electron J Biotechn. 2016;19:1–7.
  • Liu Z, Li G, Mo Z, et al. Molecular cloning, characterization, and heterologous expression of a new κ-carrageenase gene from marine bacterium Zobellia sp. ZM-2. Appl Microbiol Biotechnol. 2013;97:10057–10067.
  • Dyrset N, Lystad KQ, Levine DW. Development of a fermentation process for production of a κ-carrageenase from Pseudomonas carrageenovora. Enzyme Microb Tech. 1997;20:418–423.
  • Khambhaty Y, Mody K, Jha B, et al. Statistical optimization of medium components for κ-carrageenase production by Pseudomonas elongata. Enzyme Microb Tech. 2007;40:813–822.
  • Guo J, Zhang L, Lu X, et al. Medium optimization and fermentation kinetics for κ-carrageenase production by Thalassospira sp. Fjfst-332. Molecules. 2016;21:1479–1496.
  • Guo J, Zheng Z, Chen C, et al. Enhanced production of κ-carrageenase and κ-carrageenan oligosaccharides through immobilization of thalassospira sp. Fjfst-332 with magnetic Fe3O4-chitosan microspheres. J Agric Food Chem. 2017;65:7934–7943.
  • Liu Z, Lin T, Chen Y, et al. Efficient extracellular production of κ-carrageenase in Escherichia coli: effects of wild-type signal sequence and process conditions on extracellular secretion. J Biotechnol. 2014;185:8–14.
  • Zhao Y, Chi Z, Xu Y, et al. High-level extracellular expression of κ-carrageenase in Brevibacillus choshinensis for the production of a series of κ-carrageenan oligosaccharides. Process Biochem. 2017;64:83–92.
  • Yu Y, Liu Z, Yang M, et al. Characterization of full-length and truncated recombinant κ-carrageenase expressed in Pichia pastoris. Front Microbiol. 2017;8:1544–1556.
  • Xu C, Lin Y, Ni H, et al. Characterization of immobilized carrageenase on superparamagnetic nanoparticles for oligosaccharide preparation. Nanosci Nanotechnol Lett. 2015;7:855–860.
  • Zhu B, Ni F, Ning L, et al. Cloning and biochemical characterization of a novel κ-carrageenase from newly isolated marine bacterium Pedobacter hainanensis NJ-02. Int J Biol Macromol. 2017;108:1331–1338.
  • Kobayashi T, Koide O, Mori K, et al. Phylogenetic and enzymatic diversity of deep subseafloor aerobic microorganisms in organics- and methane-rich sediments off Shimokita Peninsula. Extremophiles. 2008;12:519–527.
  • Smith J, Mountfort D, Falshaw R. A zymogram method for detecting carrageenase activity. Anal Biochem. 2005;347:336–338.
  • Miller GL. Use of dinitrosalycylic acid as reagent for the determination of reducing sugars. Anal Chem. 1959;31:426–428.
  • Østgaard K, Wangen BF, Knutsen SH, et al. Large-scale production and purification of κ-carrageenase from Pseudomonas carrageenovora for applications in seaweed biotechnology. Enzyme Microb Tech. 1993;15:326–333.
  • Yuan H, Song J. Preparation, structural characterization and in vitro antitumor activity of kappa-carrageenan oligosaccharide fraction from Kappaphycus striatum. J Appl Phycol. 2005;17:7–13.
  • Sun Y, Yang B, Wu Y, et al. Structural characterization and antioxidant activities of κ-carrageenan oligosaccharides degraded by different methods. Food Chem. 2015;178:311–318.
  • Wang W, Zhang P, Hao C, et al. In vitro inhibitory effect of carrageenan oligosaccharide on influenza A H1N1 virus. Antiviral Res. 2011;92:237–246.
  • Pérez-Riverol A, Ramos AP, Díaz LFM, et al. In vitro antiviral activity of aqueous extract from red seaweed tricleocarpa fragilis to influenza a virus. Revista Cubana Farmacia. 2014;48:316–328.
  • Yuan H, Song J, Li X, et al. Enhanced immunostimulatory and antitumor activity of different derivatives of κ-carrageenan oligosaccharides from Kappaphycus striatum. J Appl Phycol. 2011;23:59–65.
  • Thomson AW, Fowler EF. Carrageenan: a review of its effects on the immune system. Agents Actions. 1981;11:265–273.
  • Zablackis E, Vreeland V, Kloareg B. Isolation of protoplasts from kappaphycus alvarezii var. tambalang (Rhodophyta) and Secretion of ι-carrageenan fragments by cultured cells. J Exp Bot. 1993;44:1515–1522.
  • Gross W. Preparation of protoplasts from the carrageenophyte Gigartina corymbifera (Kütz.) J. Ag. (Rhodophyta). J Microbiol Meth. 1990;12:217–223.
  • Gall YL, Braud JP, Kloareg B. Protoplast production in Chondrus crispus gametophytes (gigartinales, rhodophyta). Plant Cell Rep. 1990;8:582–585.
  • Anastyuk SD, Barabanova AO, Correc G, et al. Analysis of structural heterogeneity of κ/β-carrageenan oligosaccharides from Tichocarpus crinitus by negative-ion ESI and tandem MALDI mass spectrometry. Carbohyd Polym. 2011;86:546–554.
  • Guibet M, Kervarec N, Génicot S, et al. Complete assignment of 1 H and 13 C NMR spectra of Gigartina skottsbergii λ-carrageenan using carrabiose oligosaccharides prepared by enzymatic hydrolysis. Carbohyd Res. 2006;341:1859–1869.
  • Antonopoulos A, Favetta P, Lafosse M, et al. Characterisation of iota-carrageenans oligosaccharides with high-performance liquid chromatography coupled with evaporative light scattering detection. J Chromatogr A. 2004;1059:83–87.
  • Pedersen G, Hagen HA, Asferg L, et al., inventor; Novo Nordisk, assignee. Removal of printing paste thickener and excess dye after textile printing. United States patent US 5,405,414A. 1995.
  • Kang DH, You SK, Joo YC, et al. Synergistic effect of the enzyme complexes comprising agarase, carrageenase and neoagarobiose hydrolase on degradation of the red algae. Bioresour Technol. 2018;250:666–672.
  • Calteau A, Jeudy A, Préchoux A, et al. Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria. Nat Commun. 2017;8:1685.
  • Chauhan PS, Saxena A. Bacterial carrageenases: an overview of production and biotechnological applications. Biotech. 2016;6:1–18.
  • Martin M, Portetelle D, Michel G, et al. Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Appl Microbiol Biotechnol. 2014;98:2917–2935.
  • Arnosti C. Microbial extracellular enzymes and the marine carbon cycle. Annu Rev Mar Sci. 2011;3:401–425.
  • Swain MR, Natarajan V, Krishnan C. Marine enzymes and microorganisms for bioethanol production. Adv Food Nutr Res. 2017;80:181.
  • Imran M, Poduval PB, Ghadi SC. Bacterial degradation of algal polysaccharides in marine ecosystem. Singapore: Springer; 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.