1,397
Views
2
CrossRef citations to date
0
Altmetric
Review Article

VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes

, , , &
Pages 1277-1296 | Received 29 Nov 2017, Accepted 21 Apr 2018, Published online: 03 Jun 2018

References

  • Asari S, Matzen S, Petersen MA, et al. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens. FEMS Microbiol Ecol. 2016;92:fiw070.
  • Ho YN, Mathew DC, Huang CC. Plant-microbe ecology: interactions of plants and symbiotic microbial communities. In: Yousaf Z. editor. Plant ecology – traditional approaches to recent trends. Rijeka: InTech;2017. p. 93–119.
  • Lugtenberg B, Rozen DE, Kamilova F. Wars between microbes on roots and fruits. F1000 Res. 2017;6:343.
  • Bulgarelli D, Rott M, Schlaeppi K, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 2012;488:91–95.
  • Kandel SL, Firrincieli A, Joubert PM, et al. An in vitro study of biocontrol and plant growth promotion potential of Salicaceae endophytes. Front Microbiol. 2017;8:386.
  • Lundberg DS, Lebeis SL, Paredes SH, et al. Defining the core Arabidopsis thaliana root microbiome. Nature 2012;488:86–90.
  • Vejan P, Abdullah R, Khadiran T, et al. Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules 2016;21:E573.
  • Amavizca E, Bashan Y, Ryu CM, et al. Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus. Sci Rep. 2017;7:41310.
  • Gao QM, Zhu SF, Kachroo P, et al. Signal regulators of systemic acquired resistance. Front Plant Sci. 2015;6:228.
  • Meldau DG, Meldau S, Hoang LH, et al. Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp. B55 promotes Nicotiana attenuate growth by enhancing sulfur nutrition. Plant Cell 2013;25:2731–2747.
  • Soleimani M, Shamsbakhsh M, Taghavi M, et al. Biological control of stem and root-rot of wheat caused by Biopolaris spp. by using antagonistic bacteria, fluorescent Pseudomonas and Bacillus spp. Jo F Biol Sci. 2005;5:347–353.
  • Zhang HM, Sun Y, Xie XT, et al. A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J. 2009;58:568–577.
  • Denance N, Sanchez-Vallet A, DGoffner D, et al. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci. 2013;4:155.
  • Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet. 2010;11:539–548.
  • Bailly A, Weisskopf L. Mining the volatilomes of plant-associated microbiota for new biocontrol solutions. Front Microbiol. 2017;8:1638.
  • Casarrubia S, Sapienza S, Fritz H, et al. Ecologically different fungi affect Arabidopsis development: contribution of soluble and volatile compounds. PLoS One 2016;11:e0168236.
  • Cordovez V, Mommer L, Moisan K, et al. Plant phenotypic and transcriptional changes induced by volatiles from the fungal root pathogen Rhizoctonia solani. Front Plant Sci. 2017;8:1262.
  • Dutta S, Mehrotra RC, Paul S, et al. Remarkable preservation of terpenoids and record of volatile signalling in plant-animal interactions from Miocene amber. Sci Rep. 2017;7:10940.
  • Hacquard S. Commentary: microbial small talk: volatiles in fungal-bacterial interactions. Front Microbiol. 2017;8:1.
  • Kwon YS, Ryu CM, Lee S, et al. Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta 2010;232:1355–1370.
  • Ossowicki A, Jafra S, Garbeva P. The antimicrobial volatile power of the rhizospheric isolate Pseudomonas donghuensis P482. PLoS One 2017;12:e0174362.
  • Radhakrishnan R, Hashem A, Abd Allah EF. Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol. 2017;8:667.
  • Rybakova D, Rack-Wetzlinger U, Cernava T, et al. Aerial warfare: a volatile dialogue between the plant pathogen Verticillium longisporum and its antagonist Paenibacillus polymyxa. Front Plant Sci. 2017;8:1294.
  • Ryu CM, Farag MA, Hu CH, et al. Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 2003;100:4927–4932.
  • Schmidt R, de Jager V, Zuhlke D, et al. Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Sci Rep. 2017;7:862.
  • Schmidt R, Etalo DW, de Jager V, et al. Microbial small talk: volatiles in fungal-bacterial interactions. Front Microbiol. 2016;6:1495.
  • Tahir HAS, Gu Q, Wu H, et al. Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci Rep. 2017;7:40481.
  • Tahir HAS, Gu Q, Wu HJ, et al. Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front Microbiol. 2017;8:171.
  • Tahir HAS, Gu Q, Wu H, et al. Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles. BMC Plant Biol. 2017;17:133.
  • Zamioudis C, Mastranesti P, Dhonukshe P, et al. Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. Plant Physiol. 2013;162:304–318.
  • Lemfack MC, Gohlke BO, Toguem SMT, et al. mVOC 2.0: a database of microbial volatiles. Nucleic Acids Res. 2018;46:D1261–D1265.
  • Lemfack MC, Nickel J, Dunkel M, et al. mVOC: a database of microbial volatiles. Nucl Acids Res. 2014;42:D744–D748.
  • Maffei ME. Sites of synthesis, biochemistry and functional role of plant volatiles. S. Afr J Bot. 2010;76:612–631.
  • Maffei ME, Gertsch J, Appendino G. Plant volatiles: production, function and pharmacology. Nat Prod Rep. 2011;28:1359–1380.
  • Bailly A, Groenhagen U, Schulz S, et al. The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant J. 2014;80:758–771.
  • Bitas V, Kim HS, Bennett JW, et al. Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. MPMI 2013;26:835–843.
  • Kanchiswamy CN, Malnoy M, Maffei ME. Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends Plant Sci. 2015;20:206–211.
  • Han SH, Lee SJ, Moon JH, et al. GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol Plant Microbe Interact. 2006;19:924–930.
  • Schulz-Bohm K, Geisen S, Wubs ERJ, et al. The prey's scent – volatile organic compound mediated interactions between soil bacteria and their protist predators. Isme J. 2017;11:817–820.
  • Kai M, Haustein M, Molina F, et al. Bacterial volatiles and their action potential. Appl Microbiol Biotechnol. 2009;81:1001–1012.
  • Lee S, Yap M, Behringer G, et al. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol Biotechnol. 2016;3:7.
  • Minerdi D, Bossi S, Maffei ME, et al. Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol Ecol. 2011;76:342–351.
  • Park YS, Dutta S, Ann M, et al. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochem Biophys Res Commun. 2015;461:361–365.
  • Piechulla B, Degenhardt J. The emerging importance of microbial volatile organic compounds. Plant Cell Environ. 2014;37:811–812.
  • Raya-Gonzalez J, Velazquez-Becerra C, Barrera-Ortiz S, et al. N,N-dimethyl hexadecylamine and related amines regulate root morphogenesis via jasmonic acid signaling in Arabidopsis thaliana. Protoplasma 2017;254:1399–1410.
  • Shikano I, Rosa C, Tan CW, et al. Tritrophic interactions: microbe-mediated plant effects on insect herbivores. Annu Rev Phytopathol. 2017;55:313–331.
  • Bunge M, Araghipour N, Mikoviny T, et al. On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry. Appl Environ Microbiol. 2008;74:2179–2186.
  • Del Giudice L, Massardo DR, Pontieri P, et al. The microbial community of vetiver root and its involvement into essential oil biogenesis. Environ Microbiol. 2008;10:2824–2841.
  • Hung R, Lee S, Bennett JW. Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol. 2013;6:19–26.
  • Junker RR, Loewel C, Gross R, et al. Composition of epiphytic bacterial communities differs on petals and leaves. Plant Biol. 2011;13:918–924.
  • Kai M, Crespo E, Cristescu SM, et al. Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Appl Microbiol Biotechnol. 2010;88:965–976.
  • Karamanoli K, Menkissoglu-Spiroudi U, Bosabalidis AM, et al. Bacterial colonization of the phyllosphere of nineteen plant species and antimicrobial activity of their leaf secondary metabolites against leaf associated bacteria. Chemoecology 2005;15:59–67.
  • Kai M, Piechulla B. Plant growth promotion due to rhizobacterial volatiles-an effect of CO2? FEBS Lett. 2009;583:3473–3477.
  • Farag MA, Ryu CM, Sumner LW, et al. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 2006;67:2262–2268.
  • Ryu CM, Farag MA, Hu CH, et al. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 2004;134:1017–1026.
  • Spinelli F, Cellini A, Vanneste JL, et al. Emission of volatile compounds by Erwinia amylovora: biological activity in vitro and possible exploitation for bacterial identification. Trees 2012;26:141–152.
  • Zhang H, Kim MS, Sun Y, et al. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. MPMI 2008;21:737–744.
  • Cellini A, Biondi E, Blasioli S, et al. Early detection of bacterial diseases in apple plants by analysis of volatile organic compounds profiles and use of electronic nose. Ann Appl Biol. 2016;168:409–420.
  • Fincheira P, Venthur H, Mutis A, et al. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species. Microbiol Res. 2016;193:39–47.
  • Paul D, Park KS. Identification of volatiles produced by Cladosporium cladosporioides CL-1, a fungal biocontrol agent that promotes plant growth. Sensors 2013;13:13969–13977.
  • Naznin HA, Kiyohara D, Kimura M, et al. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS One 2014;9:e86882.
  • Splivallo R, Novero M, Bertea CM, et al. Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol. 2007;175:417–424.
  • Ledger T, Rojas S, Timmermann T, et al. Volatile-mediated effects predominate in Paraburkholderia phytofirmansgrowth promotion and salt stress tolerance of Arabidopsis thaliana. Front Microbiol. 2016;7:1838.
  • Kishimoto K, Matsui K, Ozawa R. Volatile 1-octen-3-ol induces a defensive response in Arabidopsis thaliana. J Gen Plant Pathol. 2007;73:35.
  • Chitarra GS, Abee T, Rombouts FM, et al. Germination of Penicillium paneum conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor. Appl Environ Microbiol. 2004;70:2823–2829.
  • Gutierrez-Luna FM, Lopez-Bucio J, Altamirano-Hernandez J, et al. Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 2010;51:75–83.
  • Zhou JY, Li X, Zheng JY, et al. Volatiles released by endophytic Pseudomonas fluorescens promoting the growth and volatile oil accumulation in Atractylodes lancea. Plant Physiol Bioch. 2016;101:132–140.
  • De Vrieze M, Pandey P, Bucheli TD, et al. Volatile organic compounds from native potato-associated Pseudomonas as potential anti-oomycete agents. Front Microbiol. 2015;6:1295.
  • Blom D, Fabbri C, Connor EC, et al. Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol. 2011;13:3047–3058.
  • Rudrappa T, Biedrzycki ML, Kunjeti SG, et al. The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun Integr Biol. 2010;3:130–138.
  • Song GC, Ryu CM. Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. IJMS 2013;14:9803–9819.
  • Contreras-Cornejo HA, Macias-Rodriguez L, Cortes-Penagos C, et al. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 2009;149:1579–1592.
  • Zhang H, Kim MS, Krishnamachari V, et al. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 2007;226:839–851.
  • Minerdi D, Bossi S, Gullino ML, et al. Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol. 2009;11:844–854.
  • Ulloa-Benitez A, Medina-Romero YM, Sanchez-Fernandez RE, et al. Phytotoxic and antimicrobial activity of volatile and semi-volatile organic compounds from the endophyte Hypoxylon anthochroum strain Blaci isolated from Bursera lancifolia (Burseraceae). J Appl Microbiol. 2016;121:380–400.
  • Bailly A. The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav. 2012;7:79–85.
  • Bhattacharyya D, Garladinne M, Lee YH. Volatile indole produced by Rhizobacterium Proteus vulgaris JBLS202 stimulates growth of Arabidopsis thaliana through auxin, cytokinin, and brassinosteroid pathways. J Plant Growth Regul. 2015;34:158–168.
  • Kai M, Piechulla B. Impact of volatiles of the rhizobacteria Serratia odorifera on the moss Physcomitrellapatens. Plant Signal Behav. 2010;5:444–446.
  • Lo Cantore P, Giorgio A, Iacobellis NS. Bioactivity of volatile organic compounds produced by Pseudomonas tolaasii. Front Microbiol. 2015;6:1082.
  • Groenhagen U, Baumgartner R, Bailly A, et al. Production of bioactive volatiles by different Burkholderia ambifaria strains. J Chem Ecol. 2013;39:1343–1345.
  • Astrom B. Role of bacterial cyanide production in differential reaction of plant cultivars to deleterious rhizosphere Pseudomonads. Plant Soil 1991;133:93–100.
  • Blom D, Fabbri C, Eberl L, et al. Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. Appl Environ Microbiol. 2011;77:1000–1008.
  • Flores-Vargas RD, O'Hara GW. Isolation and characterization of rhizosphere bacteria with potential for biological control of weeds in vineyards. J Appl Microbiol. 2006;100:946–954.
  • Kremer RJ, Souissi T. Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr Microbiol. 2001;43:182–186.
  • Zeller SL, Brandl H, Schmid B. Host-plant selectivity of rhizobacteria in a crop/weed model system. PLoS One 2007;2:e846.
  • Weise T, Kai M, Piechulla B. Bacterial ammonia causes significant plant growth inhibition. PLoS One 2013;8:e63538.
  • Gusarov I, Nudler E. NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proc Natl Acad Sci U S A 2005;102:13855–13860.
  • Sasaki Y, Oguchi H, Kobayashi T, et al. Nitrogen oxide cycle regulates nitric oxide levels and bacterial cell signaling. Sci Rep. 2016;6:22038
  • Shatalin K, Gusarov I, Avetissova E, et al. Bacillus anthracis-derived nitric oxide is essential for pathogen virulence and survival in macrophages. Proc Natl Acad Sci U S A 2008;105:1009–1013.
  • Mirabella R, Rauwerda H, Allmann S, et al. WRKY40 and WRKY6 act downstream of the green leaf volatile E-2-hexenal in Arabidopsis. Plant J. 2015;83:1082–1096.
  • Choi HK, Song GC, Yi HS, et al. Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper. J Chem Ecol. 2014;40:882–892.
  • Felten J, Kohler A, Morin E, et al. The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol. 2009;151:1991–2005.
  • El-Hasan A, Buchenauer H. Actions of 6-Pentyl-alpha-pyrone in controlling seedling blight incited by Fusarium moniliforme and inducing defence responses in maize. J Phytopathol. 2009;157:697–707.
  • Garnica-Vergara A, Barrera-Ortiz S, Munoz-Parra E, et al. The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol. 2016;209:1496–1512.
  • Kottb M, Gigolashvili T, Grosskinsky DK, et al. Trichoderma volatiles effecting Arabidopsis: from inhibition to protection against phytopathogenic fungi. Front Microbiol. 2015;6:995.
  • Wenke K, Wanke D, Kilian J, et al. Volatiles of two growth-inhibiting rhizobacteria commonly engage AtWRKY18 function. Plant J. 2012;70:445–459.
  • De Munk WJ. Bud necrosis, a storage disease in tulips. 111. The influence of ethylene and mites. Neth J Plant Pathol. 1972;78:168–178.
  • Graham JH, Linderman RG. Ethylene production by ectomycorrhizal fungi, Fusarium oxysporum f. sp. pini, and by aseptically synthesized ectomycorrhizae and Fusarium-infected Douglas-fir roots. Can J Microbiol. 1980;26:1340–1347.
  • Spinelli F, Noferini M, Vanneste JL, et al. Potentials of the electronic nose for the diagnosis of bacterial and fungal diseases in fruit trees. EPPO Bull. 2010;40:59–67.
  • Splivallo R, Fischer U, Gobel C, et al. Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol. 2009;150:2018–2029.
  • Hunziker L, Bonisch D, Groenhagen U, et al. Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of phytophthora infestans. Appl Environ Microbiol. 2015;81:821–830.
  • Velazquez-Becerra C, Macias-Rodriguez LI, Lopez-Bucio J, et al. A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro. Plant Soil 2011;339:329–340.
  • Vaishnav A, Kumari S, Jain S, et al. PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol. 2016;56:1274–1288.
  • Vespermann A, Kai M, Piechulla B. Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol. 2007;73:5639–5641.
  • Vaishnav A, Kumari S, Jain S, et al. Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J Appl Microbiol. 2015;119:539–551.
  • Macias-Rubalcava ML, Hernandez-Bautista BE, Oropeza F, et al. Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba. J Chem Ecol. 2010;36:1122–1131.
  • Santoro MV, Zygadlo J, Giordano W, et al. Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Bioch. 2011;49:1177–1182.
  • Audrain B, Farag MA, Ryu CM, et al. Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev. 2015;39:222–233.
  • D'Alessandro M, Erb M, Ton J, et al. Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ. 2014;37:813–826.
  • Ditengou FA, Muller A, Rosenkranz M, et al. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat Commun. 2015;6:6279.
  • Piechulla B, Lemfack MC, Kai M. Effects of discrete bioactive microbial volatiles on plants and fungi. Plant Cell Environ. 2017;40:2042–2067.
  • Chung JH, Song GC, Ryu CM. Sweet scents from good bacteria: case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol Biol. 2016;90:677–687.
  • Farag MA, Song GC, Park YS, et al. Biological and chemical strategies for exploring inter- and intra-kingdom communication mediated via bacterial volatile signals. Nat Protoc. 2017;12:1359–1377.
  • Imam J, Variar M., Shukla P. Role of enzymes and proteins in plant-microbe interaction: A study of M. oryzae versus rice. In: Shukla P, Pletschke BI. editors. Advances in enzyme biotechnology. New Delhi: Springer India; 2013. p. 137–145.
  • Kai M, Effmert U, Piechulla B. Bacterial-plant-interactions: approaches to unravel the biological function of bacterial volatiles in the rhizosphere. Front Microbiol. 2016;7:108.
  • Werner S, Polle A, Brinkmann N. Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms. Appl Microbiol Biotechnol. 2016;100:8651–8665.
  • Delory BM, Delaplace P, Fauconnier ML, et al. Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions? Plant Soil. 2016;402:1–26.
  • Rasmann S, Bennett A, Biere A, et al. Root symbionts: powerful drivers of plant above- and belowground indirect defenses. Insect Sci. 2017;24:947–960.
  • Huang XF, Chaparro JM, Reardon KF, et al. Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 2014;92:267–275.
  • Imam J, Singh PK, Shukla P. Plant microbe interactions in post genomic era: perspectives and applications. Front Microbiol. 2016;7:1488.
  • Huang CJ, Tsay JF, Chang SY, et al. Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Manage Sci. 2012;68:1306–1310.
  • Cheng X, Cordovez V, Etalo DW, et al. Role of the GacS sensor kinase in the regulation of volatile production by plant growth-promoting Pseudomonas fluorescens SBW25. Front Plant Sci. 2016;7:1706.
  • Cho SM, Kang BR, Han SH, et al. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. MPMI 2008;21:1067–1075.
  • Choudhary DK, Johri BN. Interactions of Bacillus spp. and plants-with special reference to induced systemic resistance (ISR). Microbiol Res. 2009;164:493–513.
  • Imam J, Nitin M. Toppo NN ea. A comprehensive overview on application of bioinformatics and computational statistics in rice genomics toward an amalgamated approach for improving acquaintance base. In: Kavi Kishor. PB, Bandopadhyay R, Suravajhala P, editors. Agricultural bioinformatics. New Delhi: Springer India; 2014. p. 89–107.
  • Park CH, Kim TW, Son SH, et al. Brassinosteroids control AtEXPA5 gene expression in Arabidopsis thaliana. Phytochemistry. 2010;71:380–387.
  • Martinez-Medina A, Van Wees SCM, Pieterse CMJ. Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant Cell Environ. 2017;40:2691–2705.
  • Sanchez-Lopez AM, Bahaji A, De Diego N, et al. Arabidopsis responds to Alternaria alternata volatiles by triggering plastid phosphoglucose isomerase-independent mechanisms. Plant Physiol. 2016;172:1989–2001.
  • Bitas V, McCartney N, Li N, et al. Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling. Front Microbiol. 2015;6:1248.
  • Sanchez-Lopez AM, Baslam M, De Diego N, et al. Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action. Plant Cell Environ. 2016;39:2592–2608.
  • Delaplace P, Delory BM, Baudson C, et al. Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv. BMC Plant Biol. 2015;15:195.
  • Rijavec T, Lapanje A. Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Front Microbiol. 2016;7:1785.
  • Lisjak M, Teklic T, Wilson ID. ea. Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ. 2013;36:1607–1616.
  • Garcia-Mata C, Lamattina L. Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytol. 2010;188:977–984.
  • Jin ZP, Shen J, Qiao Z, et al. Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem Biophys Res Commun. 2011;414:481–486.
  • Jia H, Hu Y, Fan T, et al. Hydrogen sulfide modulates actin-dependent auxin transport via regulating ABPs results in changing of root development in Arabidopsis. Sci Rep. 2015;5:8251.
  • Rushton P, Somssich I, Ringler P, et al. WRKY transcription factors. Trends Plant Sci. 2010;15:247–258.
  • Wenke K, Piechulla B. The effects of volatile metabolites from rhizobacteria on Arabidopsis thaliana. In: Maheshwari DK, Saraf M, A. A, editors. Bacteria in agrobiology: crop productivity. Berlin Heidelberg: Springer Berlin Heidelberg; 2013. p. 379–400.
  • Fiddaman PJ, Rossall S. Effect of substrate on the production of antifungal volatiles from Bacillus subtilis. J Appl Bacteriol. 1994;76:395–405.
  • ]Jishma P, Hussain N, Chellappan R, et al. Strain-specific variation in plant growth promoting volatile organic compounds production by five different Pseudomonas spp. as confirmed by response of Vigna radiata seedlings. J Appl Microbiol. 2017;123:204–216.
  • Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J. 2008;413:217–226.
  • Mauch-Mani B, Baccelli I, Luna E, et al. Defense priming: an adaptive part of induced resistance. Annu Rev Plant Biol. 2017;68:485–512.
  • Zhang SQ, Klessig DF. MAPK cascades in plant defense signaling. Trends Plant Sci. 2001;6:520–527.
  • Meng XZ, Zhang SQ. MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol. 2013;51:245–266.
  • Hamel LP, Nicole MC, Duplessis S, et al. Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell 2012;24:1327–1351.
  • Yuan GL, Li HJ, Yang WC. The integration of Gβ and MAPK signaling cascade in zygote development. Sci Rep. 2017;7:8732.
  • Xu J, Zhang S. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci. 2015;20:56–64.
  • van Loon LC, Bakker PA, Pieterse CM. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol. 1998;36:453–483.
  • Van der Does D, Leon-Reyes A, Koornneef A, et al. Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell 2013;25:744–761.
  • Leng YQ, Zhong SB. The role of mitogen-activated protein (MAP) kinase signaling components in the fungal development, stress response and virulence of the fungal cereal pathogen Bipolaris sorokiniana. PLoS One 2015;10:e0128291.
  • Nie PP, Li X, Wang SN, et al. Induced Systemic Resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis. Front Plant Sci. 2017;8:238.
  • Wang D, Pajerowska-Mukhtar K, Culler AH, et al. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol. 2007;17:1784–1790.
  • Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot. 2007;100:681–697.
  • Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann Bot. 2013;111:1021–1058.
  • Antico CJ, Colon C, Banks T, et al. Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. Front Biol. 2012;7:48–56.
  • Kuhn H, Lorek J, Kwaaitaal M, et al. Key components of different plant defense pathways are dispensable for powdery mildew resistance of the Arabidopsismlo2 mlo6 mlo12 triple mutant. Front Plant Sci. 2017;8:1006.
  • McSteen P, Zhao Y. Plant hormones and signaling: common themes and new developments. Dev Cell 2008;14:467–473.
  • Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev. 2007;31:425–448.
  • Shaharoona B, Imran M, Arshad M, et al. Manipulation of ethylene synthesis in roots through bacterial ACC deaminase for improving nodulation in legumes. Crit Rev Plant Sci. 2011;30:279–291.
  • Iqbal N, Khan NA, Ferrante A, et al. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci. 2017;8:475.
  • Khalid A, Akhtar MJ, Mahmood MH, et al. Effect of substrate-dependent microbial ethylene production on plant growth. Microbiology 2006;75:231–236.
  • Cristescu SM, De Martinis D, Hekkert ST, et al. Ethylene production by Botrytis cinerea in vitro and in tomatoes. Appl Environ Microbiol. 2002;68:5342–5350.
  • Eckert C, Xu W, Xiong W, et al. Ethylene-forming enzyme and bioethylene production. Biotechnol Biofuels. 2014;7:33.
  • Arshad M, Frankenberger WT. Jr. Microbial production of plant hormones. In: Keister DL, Cregan PB. editors. The rhizosphere and plant growth. The Netherlands: Kluwer Academic Publishers; 1991, p. 327–334.
  • Leon-Reyes A, Spoel SH, De Lange ES, et al. Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling. Plant Physiol. 2009;149:1797–1809.
  • Cheng X, Etalo DW, van de Mortel JE, et al. Genome-wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by Pseudomonas fluorescens. Environ Microbiol. 2017;19:4638–4656.
  • Hossain MM, Sultana F, Hyakumachi M. Role of ethylene signalling in growth and systemic resistance induction by the plant growth-promoting fungus Penicillium viridicatum in Arabidopsis. J Phytopathol. 2017;165:432–441.
  • Chang C, Stadler R. Ethylene hormone receptor action in Arabidopsis. Bioessays. 2001;23:619–627.
  • Yang YX, Ahammed GJ, Wu CJ, et al. Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses. CPPS 2015;16:450–461.
  • Pieterse CMJ, van Wees SCM, van Pelt JA, et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 1998;10:1571–1580.
  • Lee B, Farag MA, Park HB, et al. Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS One 2012;7:e48744.
  • Noselli S, Perrimon N. Signal transduction. Are there close encounters between signaling pathways? Science 2000;290:68–69.
  • Sukumar P, Legue V, Vayssieres A, et al. Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. Plant Cell Environ. 2013;36:909–919.
  • Shi CL, Park HB, Lee JS, et al. Inhibition of primary roots and stimulation of lateral root development in Arabidopsis thaliana by the rhizobacterium Serratia marcescens 90-166 is through both auxin-dependent and -independent signaling pathways. Mol Cells 2010;29:251–258.
  • Contesto C, Milesi S, Mantelin S, et al. The auxin-signaling pathway is required for the lateral root response of Arabidopsis to the rhizobacterium Phyllobacterium brassicacearum. Planta 2010;232:1455–1470.
  • Brunoud G, Wells DM, Oliva M, et al. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 2012;482:103–106.
  • Ruzicka K, Ljung K, Vanneste S, et al. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 2007;19:2197–2212.
  • Mantelin S, Desbrosses G, Larcher M, et al. Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp. Planta 2006;223:591–603.
  • Ortiz-Castro R, Díaz-Pérez C, Martínez-Trujillo M, et al. Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc Nat Acad Sci U S A 2011;108:7253–7258.
  • Lopez-Bucio J, Millan-Godinez M, Mendez-Bravo A, et al. Cytokinin receptors are involved in alkamide regulation of root and shoot development in Arabidopsis. Plant Physiol. 2007;145:1703–1713.
  • Molina-Favero C, Creus CM, Simontacchi M, et al. Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. MPMI 2008;21:1001–1009.
  • Zamioudis C, Korteland J, Van Pelt JA, et al. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. Plant J. 2015;84:309–322.
  • Dobbelaere S, Croonenborghs A, Thys A, et al. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil. 1999;212:155–164.
  • Muller A, Faubert P, Hagen M, et al. Volatile profiles of fungi – chemotyping of species and ecological functions. Fungal Genet Biol. 2013;54:25–33.
  • Weikl F, Ghirardo A, Schnitzler JP, et al. Sesquiterpene emissions from Alternaria alternata and Fusarium oxysporum: effects of age, nutrient availability, and co-cultivation. Sci Rep. 2016;6:22152.
  • De Rybel B, Vassileva V, Parizot B, et al. A novel Aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Curr Biol. 2010;20:1697–1706.
  • Lavenus J, Goh T, Guyomarc'h S, et al. Inference of the Arabidopsis lateral root gene regulatory network suggests a bifurcation mechanism that defines primordia flanking and central zones. Plant Cell 2015;27:1368–1388.
  • Navarro L, Dunoyer P, Jay F, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 2006;312:436–439.
  • Chen Z, Agnew JL, Cohen JD, et al. Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci USA 2007;104:20131–20136.
  • Grant MR, Jones JDG. Hormone (Dis)harmony moulds plant health and disease. Science 2009;324:750–752.
  • Kazan K, Manners JM. Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci. 2009;14:373–382.
  • O'Donnell PJ, Schmelz EA, Moussatche P, et al. Susceptible to intolerance – a range of hormonal actions in a susceptible Arabidopsis pathogen response. Plant J. 2003;33:245–257.
  • Robert-Seilaniantz A, Grant M, Jones JD. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol. 2011;49:317–343.
  • Spoel SH, Dong XN. Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe. 2008;3:348–351.
  • Lee S, Hung R, Yap M, et al. Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth. Arch Microbiol. 2015;197:723–727.
  • Imam J, Shukla P, Mandal NP, et al. Microbial interactions in plants: perspectives and applications of proteomics. Curr Protein Pept Sci. 2017;18:956–965.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.