1,321
Views
30
CrossRef citations to date
0
Altmetric
Review Article

A potential biotechnological process for the sustainable production of vitamin K1

, ORCID Icon, , , , , & show all
Pages 1-19 | Received 23 Jan 2018, Accepted 28 Apr 2018, Published online: 24 May 2018

References

  • Russell RM, Suter PM. Vitamin and trace mineral deficiency and excess. In: Kasper D, Fauci A, Hauser S, et al., editors. Harrison’s principles of internal medicine. 19th ed. New York, NY: McGraw-Hill Education; 2015.
  • Zehnder JL. Drugs used in disorders of coagulation. Basic and clinical pharmacology. 13th ed. New York, NY: McGraw-Hill Education; 2015.
  • Lissauer T, Clayden G, editors. Illustrated textbook of paediatrics. 4th ed. London, UK: Elsevier Health Sciences; 2011.
  • Vermeer C. Vitamin K: the effect on health beyond coagulation – an overview. Food Nutr Res. 2012;56:5329.
  • Booth SL. Roles for vitamin K beyond coagulation. Annu Rev Nutr. 2009;29:89–110.
  • Ferland G. Vitamin K and the nervous system: an overview of its actions. J Adv Nutr. 2012;3:204–212.
  • Shiraki M, Tsugawa N, Okano T. Recent advances in vitamin K-dependent Gla-containing proteins and vitamin K nutrition. Osteoporos Sarcopenia. 2015;1:22–38.
  • Willems BAG, Vermeer C, Reutelingsperger CPM, et al. The realm of vitamin K dependent proteins: shifting from coagulation toward calcification. Mol Nutr Food Res. 2014;58:1620–1635.
  • Feskanich D, Weber P, Willett WC, et al. Vitamin K intake and hip fractures in women: a prospective study. Am J Clin Nutr. 1999;69:74–79.
  • Booth SL, Tucker KL, Chen H, et al. Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. Am J Clin Nutr. 2000;71:1201–1208.
  • Yaegashi Y, Onoda T, Tanno K, et al. Association of hip fracture incidence and intake of calcium, magnesium, vitamin D, and vitamin K. Eur J Epidemiol. 2008;23:219–225.
  • Apalset EM, Gjesdal CG, Eide GE, et al. Intake of vitamin K1 and K2 and risk of hip fractures: the Hordaland health study. Bone. 2011;49:990–995.
  • Cheung AM, Tile L, Lee Y, et al. Vitamin K supplementation in postmenopausal women with osteopenia (ECKO Trial): a randomized controlled trial. PLOS Med. 2008;5:e196
  • Knapen MHJ, Drummen NE, Smit E, et al. Three-year low-dose menaquinone-7 supplementation helps decrease bone loss in healthy postmenopausal women. Osteoporos Int. 2013;24:2499–2507.
  • Chan R, Leung J, Woo J. No association between dietary vitamin K intake and fracture risk in Chinese community-dwelling older men and women: a prospective study. Calcif Tissue Int. 2012;90:396–403.
  • Rejnmark L, Vestergaard P, Charles P, et al. No effect of vitamin K1 intake on bone mineral density and fracture risk in perimenopausal women. Osteoporos Int. 2006;17:1122–1132.
  • Kasukawa Y, Miyakoshi N, Ebina T, et al. Effects of risedronate alone or combined with vitamin K2 on serum undercarboxylated osteocalcin and osteocalcin levels in postmenopausal osteoporosis. J Bone Miner Metab. 2014;32:290–297.
  • Palermo A, Tuccinardi D, D’Onofrio L, et al. Vitamin K and osteoporosis: myth or reality? Metab Clin Exp. 2017;70:57–71.
  • Hao G, Zhang B, Gu M, et al. Vitamin K intake and the risk of fractures. Medicine (Baltimore). 2017;96.
  • Cockayne S, Adamson J, Lanham-New S, et al. Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trials. Arch Intern Med. 2006;166:1256–1261.
  • Fang Y, Hu C, Tao X, et al. Effect of vitamin K on bone mineral density: a meta-analysis of randomized controlled trials. J Bone Miner Metab. 2012;30:60–68.
  • Shea MK, Holden RM. Vitamin K status and vascular calcification: evidence from observational and clinical studies. Adv Nutr Int Rev. 2012;3:158–165.
  • Harshman SG, Shea MK. The role of vitamin K in chronic aging diseases: inflammation, cardiovascular disease, and osteoarthritis. Curr Nutr Rep. 2016;5:90–98.
  • Shea MK, Cushman M, Booth SL, et al. Associations between vitamin K status and haemostatic and inflammatory biomarkers in community-dwelling adults. The multi-ethnic study of atherosclerosis. Thromb Haemost. 2014;112:438–444.
  • Presse N, Belleville S, Gaudreau P, et al. Vitamin K status and cognitive function in healthy older adults. Neurobiol Aging. 2013;34:2777–2783.
  • Tamadon-Nejad S. Warfarin-induced vitamin K deficiency is associated with cognitive and behavioral perturbations, and alterations in brain sphingolipids in rats [M.S. thesis]. Montreal, Canada: University of Montreal; 2012.
  • Annweiler C, Ferland G, Barberger-Gateau P, et al. Vitamin K antagonists and cognitive impairment: results from a cross-sectional pilot study among geriatric patients. J Gerontol Ser A. 2015;70:97–101.
  • Daines AM, Payne RJ, Humphries ME, et al. The synthesis of naturally occurring vitamin K and vitamin K analogues. Curr Org Chem. 2003;7:1625–1634.
  • Berenjian A, Mahanama R, Kavanagh J, et al. Vitamin K series: current status and future prospects. Crit Rev Biotechnol. 2015;35:199–208.
  • Schurgers LJ, Geleijnse JM, Grobbee DE, et al. Nutritional intake of vitamins K1 (phylloquinone) and K2 (menaquinone) in The Netherlands. J Nutr Environ Med. 1999;9:115–122.
  • Kamao M, Suhara Y, Tsugawa N, et al. Vitamin K content of foods and dietary vitamin K intake in Japanese young women. J Nutr Sci Vitaminol.). 2007;53:464–470.
  • Van Arnum SD. Vitamin K. Kirk-Othmer Encyclopedia of Chemical Technology [Internet]. 4th ed. New York, NY: John Wiley & Sons, Inc.; 2000 [cited 2017 Jul 5]. Available from: http://onlinelibrary.wiley.com.ezproxy1.library.usyd.edu.au/doi/10.1002/0471238961.2209200101181421.a02/abstract.
  • MacCorquodale DW, Binkley SB, Thayer SA, et al. On the constitution of vitamin K1. J Am Chem Soc. 1939;61:1928–1929.
  • Fieser LF. Synthesis of vitamin K1. J Am Chem Soc. 1939;61:3467–3475.
  • McKee RW, Binkley SB, Thayer SA, et al. The isolation of vitamin K2. J Biol Chem. 1939;131:327–344.
  • Fieser LF, Campbell WP, Fry EM. Synthesis of quinones related to vitamins K1 and K2. J Am Chem Soc. 1939;61:2206–2218.
  • Jacobsen BK, Dam H. Vitamin K in bacteria. Biochim Biophys Acta. 1960;40:211–216.
  • Ansbacher S, Fernholz E. Simple compounds with vitamin K activity. J Am Chem Soc. 1939;61:1924–1925.
  • Fieser LF, Bowen DM, Campbell WP, et al. Quinones having vitamin K activity. J Am Chem Soc. 1939;61:1925–1926.
  • Almquist HJ, Klose AA. Synthetic and natural antihemorrhagic compounds. J Am Chem Soc. 1939;61:2557–2558.
  • Macfie JM, Bacharach AL, Chance MRA. A vitamin K analogue in obstructive jaundice. Br Med J. 1939;2:1220.
  • Anderson ER, Karabin JE, Udesky H, et al. Parenteral administration of a watersoluble compound with vitamin k activity: 4-amino-2-methyl-1-naphthol hydrochloride. Arch Surg. 1940;41:1244–1250.
  • Combs GF Jr. The vitamins. 4th ed. Saint Louis: Elsevier Science; 2012.
  • Sadowski JA, Esmon CT, Suttie JW. Vitamin K-dependent carboxylase. Requirements of the rat liver microsomal enzyme system. J Biol Chem. 1976;251:2770–2776.
  • Jones JP, Fausto A, Houser RM, et al. Effect of vitamin K homologues on the conversion of preprothrombin to prothrombin in rat liver microsomes. Biochem Biophys Res Commun. 1976;72:589–597.
  • Buitenhuis HC, Soute BAM, Vermeer C. Comparison of the vitamins K1, K2 and K3 as cofactors for the hepatic vitamin K-dependent carboxylase. Biochim Biophys Acta Gen Subj. 1990;1034:170–175.
  • Mack DO, Wolfensberger M, Girardot JM, et al. The carboxylation activity of vitamin K analogs with substitutions at position 2, 3, or 5. J Biol Chem. 1979;254:2656–2664.
  • Monks TJ, Hanzlik RP, Cohen GM, et al. Quinone chemistry and toxicity. Toxicol Appl Pharmacol. 1992;112:2–16.
  • Menadione. Merck Index Online [Internet]. London, UK: Royal Society of Chemistry; 2013 [cited 2017 Aug 8]. Available from: https://www.rsc.org/Merck-Index/monograph/m7169/menadione%20derivative%20sodium%20bisulfite?q=authorize.
  • Menaquinones. Merck Index Online [Internet]. London, UK: Royal Society of Chemistry; 2013 [cited 2017 Aug 8]. Available from: https://www.rsc.org/Merck-Index/monograph/m7171/menaquinones%20derivative%20menaquinone%20?q=authorize.
  • Phylloquinone. Merck Index Online [Internet]. London, UK: Royal Society of Chemistry; 2013 [cited 2017 Aug 8]. Available from: https://www.rsc.org/Merck-Index/monograph/m8762/phylloquinone?q=authorize.
  • Sommer P, Kofler M. Physicochemical properties and methods of analysis of phylloquinones, menaquinones, ubiquinones, plastoquinones, menadione, and related compounds. Vitam Horm. 1967;24:349–399.
  • Pennock JF. Occurrence of vitamins K and related quinones. In: Robert S. Harris IGW, John A. Loraine, G.F. Marrian, and Kenneth V. Thimann, editors. Vitamins and hormones. Cambridge, MA: Academic Press; 1967; p. 307–329.
  • Whatley FR, Allen MB, Arnon DI. Photosynthesis by isolated chloroplasts. VII. Vitamin K and riboflavin phosphate as cofactors of cyclic photophosphorylation. Biochim Biophys Acta. 1959;32:32–46.
  • Ben-Shem A, Frolow F, Nelson N. Crystal structure of plant photosystem I. Nature. 2003;426:630–635.
  • Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev. 1981;45:316.
  • Nowicka B, Kruk J. Occurrence, biosynthesis and function of isoprenoid quinones. Biochim Biophys Acta. 2010;1797:1587–1605.
  • Ulrich EL, Girvin ME, Cramer WA, et al. Location and mobility of ubiquinones of different chain lengths in artificial membrane vesicles. Biochemistry (Mosc.). 1985;24:2501–2508.
  • Roche Y, Peretti P, Bernard S. Influence of the chain length of ubiquinones on their interaction with DPPC in mixed monolayers. Biochim Biophys Acta Biomembr. 2006;1758:468–478.
  • Thor H, Smith MT, Hartzell P, et al. The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells. J Biol Chem. 1982;257:12419–12425.
  • Rossi L, Moore GA, Orrenius S, et al. Quinone toxicity in hepatocytes without oxidative stress. Arch Biochem Biophys. 1986;251:25–35.
  • O’Brien PJ. Molecular mechanisms of quinone cytotoxicity. Chem Biol Interact. 1991;80:1–41.
  • Ross D, Thor H, Orrenius S, et al. Interaction of menadione (2-methyl-1,4-naphthoquinone) with glutathione. Chem Biol Interact. 1985;55:177–184.
  • Mirabelli F, Salis A, Perotti M, et al. Alterations of surface morphology caused by the metabolism of menadione in mammalian cells are associated with the oxidation of critical sulfhydryl groups in cytoskeletal proteins. Biochem Pharmacol. 1988;37:3423–3427.
  • Brown PC, Dulik DM, Jones TW. The toxicity of menadione (2-methyl-1,4-naphthoquinone) and two thioether conjugates studied with isolated renal epithelial cells. Arch Biochem Biophys. 1991;285:187–196.
  • Center for Food Safety and Applied Nutrition. Food Additives and Ingredients – Food Additive Status List [Internet]. Silver Spring, MD: US Federal Drug Administration; [cited 2017 Apr 8]. Available from: http://www.fda.gov/Food/IngredientsPackagingLabeling/FoodAdditivesIngredients/ucm091048.htm#ftnM.
  • USA Drug Agency Bans Menadione. New York Times [Internet]. 1963 Mar 30;8.
  • Henrik Dam – Nobel Lecture: The discovery of vitamin K, its biological functions and therapeutical application [Internet]. Nobel Media AB; 2014 [cited 2018 May 15]. Available from: http://www.nobelprize.org/nobel_prizes/medicine/laureates/1943/dam-lecture.html.
  • Esmon CT, Sadowski JA, Suttie JW. A new carboxylation reaction. The vitamin K-dependent incorporation of H-14-CO3- into prothrombin. J Biol Chem. 1975;250:4744–4748.
  • Friedman PA, Shia M. Some characteristics of a vitamin K-dependent carboxylating system from rat liver microsomes. Biochem Biophys Res Commun. 1976;70:647–654.
  • Nelsestuen GL, Suttie JW. Mode of action of vitamin K. Calcium binding properties of bovine prothrombin. Biochemistry (Mosc.). 1972;11:4961–4964.
  • Hauschka PV, Lian JB, Gallop PM. Direct identification of the calcium-binding amino acid, gamma-carboxyglutamate, in mineralized tissue. Proc Natl Acad Sci. 1975;72:3925–3929.
  • Ratcliffe JV, Furie B, Furie BC. The importance of specific gamma-carboxyglutamic acid residues in prothrombin. Evaluation by site-specific mutagenesis. J Biol Chem. 1993;268:24339–24345.
  • Sakai T, Lund-Hansen T, Thim L, et al. The gamma-carboxyglutamic acid domain of human factor VIIa is essential for its interaction with cell surface tissue factor. J Biol Chem. 1990;265:1890–1894.
  • Nelsestuen GL, Broderius M, Martin G. Role of gamma-carboxyglutamic acid. Cation specificity of prothrombin and factor X-phospholipid binding. J Biol Chem. 1976;251:6886–6893.
  • Rawala-Sheikh R, Ahmad SS, Monroe DM, et al. Role of gamma-carboxyglutamic acid residues in the binding of factor IXa to platelets and in factor-X activation. Blood. 1992;79:398–405.
  • Zhang L, Jhingan A, Castellino FJ. Role of individual gamma-carboxyglutamic acid residues of activated human protein C in defining its in vitro anticoagulant activity. Blood. 1992;80:942–952.
  • Sugo T, Dahlbäck B, Holmgren A, et al. Calcium binding of bovine protein S. Effect of thrombin cleavage and removal of the gamma-carboxyglutamic acid-containing region. J Biol Chem. 1986;261:5116–5120.
  • Hauschka PV, Wians FH. Osteocalcin-hydroxyapatite interaction in the extracellular organic matrix of bone. Anat Rec. 1989;224:180–188.
  • Schurgers LJ, Spronk HMH, Skepper JN, et al. Post-translational modifications regulate matrix Gla protein function: importance for inhibition of vascular smooth muscle cell calcification. J Thromb Haemost. 2007;5:2503–2511.
  • Nakano T, Kawamoto K, Kishino J, et al. Requirement of γ-carboxyglutamic acid residues for the biological activity of Gas6: contribution of endogenous Gas6 to the proliferation of vascular smooth muscle cells. Biochem J. 1997;323:387–392.
  • Hasanbasic I, Rajotte I, Blostein M. The role of γ-carboxylation in the anti-apoptotic function of gas6. J Thromb Haemost. 2005;3:2790–2797.
  • Nelsestuen GL, Shah AM, Harvey SB. Vitamin K-dependent proteins. Vitam Horm. 2000;58:355–389.
  • Shearer MJ. Vitamin K deficiency bleeding (VKDB) in early infancy. Blood Rev. 2009;23:49–59.
  • Sutor AH, von Kries R, Cornelissen EA, et al. Vitamin K deficiency bleeding (VKDB) in infancy. ISTH Pediatric/Perinatal Subcommittee. International Society on Thrombosis and Haemostasis. Thromb Haemost. 1999;81:456–461.
  • Vermeer C. Gamma-carboxyglutamate-containing proteins and the vitamin K-dependent carboxylase. Biochem J. 1990;266:625.
  • Ferland G. The vitamin K-dependent proteins: an update. Nutr Rev. 1998;56:223–230.
  • Petryszak R, Keays M, Tang YA, et al. Expression Atlas update—an integrated database of gene and protein expression in humans, animals and plants. Nucleic Acids Res. 2016;44:D746–D752.
  • Lev M, Milford AF. Vitamin K stimulation of sphingolipid synthesis. Biochem Biophys Res Commun. 1971;45:358–362.
  • Denisova NA, Booth SL. Vitamin K and sphingolipid metabolism: evidence to date. Nutr Rev. 2005;63:111–121.
  • Li J, Lin JC, Wang H, et al. Novel role of vitamin K in preventing oxidative injury to developing oligodendrocytes and neurons. J Neurosci. 2003;23:5816–5826.
  • Ichikawa T, Horie-Inoue K, Ikeda K, et al. Vitamin K2 induces phosphorylation of protein kinase A and expression of novel target genes in osteoblastic cells. J Mol Endocrinol. 2007;39:239–247.
  • Vos M, Esposito G, Edirisinghe JN, et al. Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science. 2012;336:1306–1310.
  • Okano T, Shimomura Y, Yamane M, et al. Conversion of phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) in mice: two possible routes for menaquinone-4 accumulation in cerebra of mice. J Biol Chem. 2008;283:11270–11279.
  • Nakagawa K, Hirota Y, Sawada N, et al. Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature. 2010;468:117–121.
  • Ramotar K, Conly JM, Chubb H, et al. Production of menaquinones by intestinal anaerobes. J Infect Dis. 1984;150:213–218.
  • Fernandez F, Collins MD. Vitamin K composition of anaerobic gut bacteria. FEMS Microbiol Lett. 1987;41:175–180.
  • Mathers JC, Fernandez F, Hill MJ, et al. Dietary modification of potential vitamin K supply from enteric bacterial menaquinones in rats. Br J Nutr. 1990;63:639–652.
  • Conly JM, Stein K, Worobetz L, et al. The contribution of vitamin K2 (menaquinones) produced by the intestinal microflora to human nutritional requirements for vitamin K. Am J Gastroenterol. 1994;89:915–923.
  • Ichihashi T, Takagishi Y, Uchida K, et al. Colonic absorption of menaquinone-4 and menaquinone-9 in rats. J Nutr. 1992;122:506–512.
  • Hollander D, Rim E, Pe R. Vitamin K2 colonic and ileal in vivo absorption: bile, fatty acids, and pH effects on transport. Am J Physiol Gastrointest Liver Physiol. 1977;233:G124–G129.
  • Kindberg C, Suttie J, Uchida K, et al. Menaquinone production and utilization in germ-free rats after inoculation with specific organisms. J Nutr. 1987;117:1032–1035.
  • Conly J, Stein K. Reduction of vitamin K2 concentrations in human liver associated with the use of broad spectrum antimicrobials. Clin Invest Med. 1994;17:531–539.
  • Karl JP, Fu X, Wang X, et al. Changes in fecal vitamin K content are associated with the gut microbiota. FASEB J. 2015;29:262.1.
  • Suttie JW. The importance of menaquinones in human nutrition. Annu Rev Nutr. 1995;15:399–417.
  • Shearer MJ. Vitamin K in parenteral nutrition. Gastroenterology. 2009;137:S105–S118.
  • Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, D.C.: National Academies Press; 2001.
  • EFSA Panel on Dietetic Products N and A (NDA), Turck D, Bresson J-L, et al. Dietary reference values for vitamin K. EFSA J. 2017;15.
  • Schurgers LJ, Vermeer C. Determination of phylloquinone and menaquinones in food. Effect of food matrix on circulating vitamin K concentrations. Pathophysiol Haemostasis Thromb. 2001;30:298–307.
  • Shearer MJ, Bach A, Kohlmeier M. Chemistry, nutritional sources, tissue distribution and metabolism of vitamin K with special reference to bone health. J Nutr. 1996;126:1181S.
  • Koivu TJ, Piironen VI, Henttonen SK, et al. Determination of phylloquinone in vegetables, fruits, and berries by high-performance liquid chromatography with electrochemical detection. J Agric Food Chem. 1997;45:4644–4649.
  • Booth SL, Sadowski JA, Pennington JAT. Phylloquinone (vitamin K1) content of foods in the U.S. food and drug administration’s total diet study. J Agric Food Chem. 1995;43:1574–1579.
  • Bolton-Smith C, Price RJG, Fenton ST, et al. Compilation of a provisional UK database for the phylloquinone (vitamin K1) content of foods. Br J Nutr. 2000;83:389–399.
  • Piironen V, Koivu T, Tammisalo O, et al. Determination of phylloquinone in oils, margarines and butter by high-performance liquid chromatography with electrochemical detection. Food Chem. 1997;59:473–480.
  • Ferland G, Sadowski JA. Vitamin K1 (phylloquinone) content of edible oils: effects of heating and light exposure. J Agric Food Chem. 1992;40:1869–1873.
  • Sumi H. Accumulation of vitamin K (menaquinone-7) in plasma after ingestion of natto and natto Bacilli (B. subtilis natto). Food Sci Technol Res. 1999;5:48–50.
  • Hojo K, Watanabe R, Mori T, et al. Quantitative measurement of tetrahydromenaquinone-9 in cheese fermented by propionibacteria. J Dairy Sci. 2007;90:4078–4083.
  • Koivu-Tikkanen TJ, Ollilainen V, Piironen VI. Determination of phylloquinone and menaquinones in animal products with fluorescence detection after postcolumn reduction with metallic zinc. J Agric Food Chem. 2000;48:6325–6331.
  • Hirauchi K, Sakano T, Notsumoto S, et al. Measurement of K vitamins in animal tissues by high-performance liquid chromatography with fluorimetric detection. J Chromatogr B Biomed Sci App. 1989;497:131–137.
  • Elder SJ, Haytowitz DB, Howe J, et al. Vitamin K contents of meat, dairy, and fast food in the U.S. diet. J Agric Food Chem. 2006;54:463–467.
  • Vitamins market – growth, share, opportunities & competitive analysis, 2015–2022 [Internet]. San Jose, CA: Credence Research; 2015 [cited 2017 Jul 28]. Report No.: 57709-12–15. Available from: http://www.credenceresearch.com/report/vitamins-market.
  • Vitamin ingredients market: production volume to reach 63,512.4 tons by 2025, reports TMR [Internet]. New York, NY: PRNewswire; 2017 [cited 2017 Jul 28]. Available from: http://www.prnewswire.co.uk/news-releases/vitamin-ingredients-market-production-volume-to-reach-635124-tons-by-2025-reports-tmr-616611874.html.
  • Three things that are influencing growth in the vitamin ingredients market [Internet]. London, UK: Technavio. 2015 [cited 2017 Jul 28]. Available from: https://www.technavio.com/blog/three-things-that-are-influencing-growth-in-the-vitamin-ingredients-market.
  • IARC. Vitamin K substances. IARC Monogr Carcinog Risks Hum. 2000;76:521.
  • Coman SM, Parvulescu VI, Wuttke S, et al. Synthesis of vitamin K1 and K1-chromanol by Friedel–Crafts alkylation in heterogeneous catalysis. ChemCatChem. 2010;2:92–97.
  • Doebel K, Isler O, inventors; Hoffman-La Roche Inc., assignee. Synthesis of vitamin K1 using boron trifluoride catalysts. United States patent US 2,683,176. 1954 July 6.
  • Hirschmann R, Miller R, Wendler NL. The synthesis of vitamin K1. J Am Chem Soc. 1954;76:4592–4594.
  • Baker BR, Davies TH, McElroy L, et al. The antihemorrhagic activity of sulfonated derivatives of 2-methylnaphthalene. J Am Chem Soc. 1942;64:1096–1101.
  • Bonrath W, Netscher T. Catalytic processes in vitamins synthesis and production. Appl Catal Gen. 2005;280:55–73.
  • Tien J-H, Pang C-Y, Hsu N-H, inventors; Sunny Pharmatec Inc., assignee. Method of making vitamin K1. United States patent application publication US2017/0260117 A1. 2017 Sep 14.
  • MenaQ7 varieties [Internet]. Oslo, Norway: NattoPharma ASA; 2015 [cited 2017 Nov 6]. Available from: http://menaq7.com/why-menaq7/varieties/.
  • Technology & Characteristics of Natto K2™ [Internet]. Shantou, Guangdong: Sungen Bioscience Co. Ltd.; 2016 [cited 2017 Nov 6]. Available from: http://www.sungenbio.com/?page=p560b871c859a7&lang=437&ContentID=15.
  • Bentley R, Meganathan R. Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev. 1982;46:241–280.
  • Seeger JW, Bentley R. Phylloquinone (vitamin K1) biosynthesis in Euglena gracilis strain Z. Phytochemistry. 1991;30:3585–3589.
  • Verpoorte R, Heijden R, van der ten Hoopen HJG, et al. Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol Lett. 1999;21:467–479.
  • Basic Report: 11445, Seaweed, kelp, raw [Internet]. Beltsville, MD: Agricultural Research Service, United States Department of Agriculture; 2017 [cited 2017 Mar 15]. Available from: https://ndb.nal.usda.gov/ndb/foods/show/3158?fgcd=&manu=&lfacet=&format=Abridged&count=&max=35&offset=&sort=&qlookup=seaweed.
  • Roeck-Holtzhauer YD, Quere I, Claire C. Vitamin analysis of five planktonic microalgae and one macroalga. J Appl Phycol. 1991;3:259–264.
  • Demain AL, Adrio JL. Contributions of microorganisms to industrial biology. Mol Biotechnol. 2008;38:41
  • Tuck CO, Pérez E, Horváth IT, et al. Valorization of biomass: deriving more value from waste. Science. 2012;337:695–699.
  • Pfaltzgraff LA, De bruyn M, Cooper EC, et al. Food waste biomass: a resource for high-value chemicals. Green Chem. 2013;15:307.
  • Booth SL, Madabushi HT, Davidson KW, et al. Tea and coffee brews are not dietary sources of vitamin K-1 (phylloquinone). J Am Diet Assoc. 1995;95:82–83.
  • Kranert M, Gottschall R, Bruns C, et al. Energy or compost from green waste? – A CO(2) – based assessment. Waste Manag. 2010;30:697–701.
  • Inghels D, Dullaert W, Bloemhof J. A model for improving sustainable green waste recovery. Resour Conserv Recycl. 2016;110:61–73.
  • Biffin JR, Regtop HL, Talbot AM. Pasture content and availability of vitamin K in yearlings. Proc Aust Equine Sci Symp. 2008;2:54.
  • Borowitzka MA. High-value products from microalgae—their development and commercialisation. J Appl Phycol. 2013;25:743–756.
  • Spolaore P, Joannis-Cassan C, Duran E, et al. Commercial applications of microalgae. J Biosci Bioeng. 2006;101:87–96.
  • Lee P, Schmidt-Dannert C. Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotechnol. 2002;60:1–11.
  • Gimpel JA, Henríquez V, Mayfield SP. In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Front Microbiol. 2015;6:1376.
  • Basset G, Latimer S, Fatihi A, et al. Phylloquinone (vitamin K1): occurrence, biosynthesis and functions. Mini Rev Med Chem. 2016;17(12):1028–1038.
  • Brettel K, Sétif P, Mathis P. Flash-induced absorption changes in photosystem I at low temperature: evidence that the electron acceptor A1 is vitamin K1. FEBS Lett. 1986;203:220–224.
  • Jordan P, Fromme P, Witt HT, et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 |[angst]| resolution. Nature. 2001;411:909–917.
  • Singh AK, Bhattacharyya-Pakrasi M, Pakrasi HB. Identification of an atypical membrane protein involved in the formation of protein disulfide bonds in oxygenic photosynthetic organisms. J Biol Chem. 2008;283:15762–15770.
  • Furt F, Oostende C, van Widhalm JR, et al. A bimodular oxidoreductase mediates the specific reduction of phylloquinone (vitamin K1) in chloroplasts. Plant J. 2010;64:38–46.
  • Chitnis PR. PHOTOSYSTEM I: Function and Physiology. Annu Rev Plant Physiol Plant Mol Biol. 2001;52:593–626.
  • Anderson JM, Chow WS, Park Y-I. The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosynth Res. 1995;46:129–139.
  • Richmond A. Handbook of microalgal culture: biotechnology and applied phycology. Oxford, UK: Blackwell Science Ltd; 2004.
  • González JA, Calbó J. Modelled and measured ratio of PAR to global radiation under cloudless skies. Agric For Meteorol. 2002;110:319–325.
  • Dubinsky Z, Stambler N. Photoacclimation processes in phytoplankton: mechanisms, consequences, and applications. Aquat Microb Ecol. 2009;56:163–176.
  • MacIntyre HL, Kana TM, Anning T, et al. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria1. J Phycol. 2002;38:17–38.
  • Goss R, Jakob T. Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosyn Res. 2010;106:103–122.
  • Davison IR. Environmental effects on algal photosynthesis: temperature. J Phycol. 1991;27:2–8.
  • Claquin P, Probert I, Lefebvre S, et al. Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquat Microb Ecol. 2008;51:1–11.
  • Geider RJ, MacIntyre HL, Kana TM. Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a: carbon ratio to light, nutrient-limitation and temperature. Mar Ecol Prog Ser. 1997;148:187–200.
  • Lürling M, Eshetu F, Faassen EJ, et al. Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshw Biol. 2013;58:552–559.
  • Butterwick C, Heaney SI, Talling JF. Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshw Biol. 2005;50:291–300.
  • Hecky RE, Kilham P. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment1. Limnol Oceanogr. 1988;33:796–822.
  • Geider RJ, Roche JL. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynth Res. 1994;39:275–301.
  • Turpin DH. Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J Phycol. 1991;27:14–20.
  • Auer MT, Kieser MS, Canale RP. Identification of critical nutrient levels through field verification of models for phosphorus and phytoplankton growth. Can J Fish Aquat Sci. 1986;43:379–388.
  • Elser JJ, Marzolf ER, Goldman CR. Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: a review and critique of experimental enrichments. Can J Fish Aquat Sci. 1990;47:1468–1477.
  • Elser JJ, Bracken MES, Cleland EE, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Letters. 2007;10:1135–1142.
  • Berman-Frank I, Lundgren P, Falkowski P. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol. 2003;154:157–164.
  • Roberts SC. Production and engineering of terpenoids in plant cell culture. Nat Chem Biol. 2007;3:387–395.
  • Gross J, Meurer J, Bhattacharya D. Evidence of a chimeric genome in the cyanobacterial ancestor of plastids. BMC Evol Biol. 2008;8:117
  • Rohmer M, Knani M, Simonin P, et al. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J. 1993;295:517–524.
  • Disch A, Schwender J, Müller C, et al. Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem J. 1998;333:381–388.
  • Eisenreich W, Bacher A, Arigoni D, et al. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci. 2004;61:1401–1426.
  • Beck G, Coman D, Herren E, et al. Characterization of the GGPP synthase gene family in Arabidopsis thaliana. Plant Mol Biol. 2013;82:393–416.
  • Keller Y, Bouvier F, d’Harlingue A, et al. Metabolic compartmentation of plastid prenyllipid biosynthesis. Eur J Biochem. 1998;251:413–417.
  • Meganathan R. Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): A perspective on enzymatic mechanisms. In: Gerald Litwack, Tadhg Begley, editors. Cofactor Biosynth. Cambridge, MA: Academic Press; 2001. p. 173–218.
  • Johnson TW, Shen G, Zybailov B, et al. Recruitment of a foreign quinone into the A(1) site of photosystem I. I. Genetic and physiological characterization of phylloquinone biosynthetic pathway mutants in Synechocystis sp. pcc 6803. J Biol Chem. 2000;275:8523–8530.
  • Gross J, Cho WK, Lezhneva L, et al. A plant locus essential for phylloquinone (vitamin K1) biosynthesis originated from a fusion of four eubacterial genes. J Biol Chem. 2006;281:17189–17196.
  • Jiang M, Cao Y, Guo Z-F, et al. Menaquinone biosynthesis in Escherichia coli: Identification of 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate as a novel intermediate and re-evaluation of MenD activity. Biochemistry (Mosc.). 2007;46:10979–10989.
  • Jiang M, Chen X, Guo Z-F, et al. Identification and characterization of (1R,6R)-2-Succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase in the menaquinone biosynthesis of Escherichia coli. Biochemistry (Mosc.). 2008;47:3426–3434.
  • Widhalm JR, Oostende C, van Furt F, et al. A dedicated thioesterase of the Hotdog-fold family is required for the biosynthesis of the naphthoquinone ring of vitamin K1. Proc Natl Acad Sci USA. 2009;106:5599–5603.
  • Fatihi A, Latimer S, Schmollinger S, et al. A dedicated type II NADPH dehydrogenase performs the penultimate step in the biosynthesis of vitamin K1 in synechocystis and arabidopsis. Plant Cell. 2015;27:1730–1741.
  • Lohmann A, Schöttler MA, Bréhélin C, et al. Deficiency in phylloquinone (vitamin K1) methylation affects prenyl quinone distribution, photosystem I abundance, and anthocyanin accumulation in the arabidopsis AtmenG mutant. J Biol Chem. 2006;281:40461–40472.
  • Cluis CP, Burja AM, Martin VJJ. Current prospects for the production of coenzyme Q10 in microbes. Trends Biotechnol. 2007;25:514–521.
  • Kim JK, Kim EJ, Jung HY. Vitamin Q10: property, production and application. In: Vandamme EJ, Revuelta JL, editors. Industrial Biotechnology Vitamin, Biopigments, and Antioxidants. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2016. p. 321–365.
  • Kong MK, Lee PC. Metabolic engineering of menaquinone-8 pathway of Escherichia coli as a microbial platform for vitamin K production. Biotechnol Bioeng. 2011;108:1997–2002.
  • Oliver NJ, Rabinovitch-Deere CA, Carroll AL, et al. Cyanobacterial metabolic engineering for biofuel and chemical production. Curr Opin Chem Biol. 2016;35:43–50.
  • Gomaa MA, Al-Haj L, Abed RM. Metabolic engineering of cyanobacteria and microalgae for enhanced production of biofuels and high-value products. J Appl Microbiol. 2016;121:919–931.
  • Berla BM, Saha R, Immethun CM, et al. Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol. 2013;4:246.
  • Qin S, Lin H, Jiang P. Advances in genetic engineering of marine algae. Biotechnol Adv 2012;30:1602–1613.
  • León-Bañares R, González-Ballester D, Galván A, et al. Transgenic microalgae as green cell-factories. Trends Biotechnol. 2004;22:45–52.
  • Ni J, Tao F, Wang Y, et al. A photoautotrophic platform for the sustainable production of valuable plant natural products from CO 2. Green Chem. 2016;18:3537–3548.
  • Wang Y, Tao F, Ni J, et al. Production of C3 platform chemicals from CO 2 by genetically engineered cyanobacteria. Green Chem. 2015;17:3100–3110.
  • Agbor VB, Cicek N, Sparling R, et al. Biomass pretreatment: fundamentals toward application. Biotechnol Adv. 2011;29:675s–685.
  • Günerken E, D’Hondt E, Eppink MHM, et al. Cell disruption for microalgae biorefineries. Biotechnol Adv. 2015;33:243–260.
  • Gutzeit D, Baleanu G, Winterhalter P, et al. Determination of processing effects and of storage stability on vitamin K1 (phylloquinone) in sea buckthorn berries (Hippophaë rhamnoides L. ssp. rhamnoides) and related products. J Food Science. 2007;72:C491–C497.
  • Kurihara K, Takagi Y, inventors; Nisshin Oil Mills Ltd, assignee. Concentration and Purification of Vitamin K1. Japanese patent JPS61249947 (A). 1986 Nov 7.
  • Kurihara K, Takagi Y, inventors; Nisshin Oil Mills Ltd, assignee. Production of Vitamin K1 Concentrate. Japanese patent JPS62265245 (A). 1987 Nov 18.
  • Isobe Y, et al., inventors; Honen Corp, assignee. Production of Natural Vitamin K Condensate. Japanese patent JPH05155803 (A). 1993 June 22.
  • Anastas PT, Warner JC. Green chemistry: theory and practice. Oxford: Oxford University Press; 1998.
  • Chemat F, Vian MA, Cravotto G. Green extraction of natural products: concept and principles. Int J Mol Sci. 2012;13:8615–8627.
  • Ibañez E, Herrero M, Mendiola JA, et al. Extraction and characterization of bioactive compounds with health benefits from marine resources: macro and micro algae, cyanobacteria, and invertebrates. In: Hayes M, editor. Marine Bioactive Compounds. Boston, MA: Springer US; 2012. p. 55–98.
  • Kerton FM, Liu Y, Omari KW, et al. Green chemistry and the ocean-based biorefinery. Green Chem. 2013;15:860–871.
  • Pennock JF. The biosynthesis of chloroplastidic terpenoid quinones and chromanols. Biochm Soc Trans. 1983;11:504–510.
  • Casani R. Vitamin E-Kirk-Othmer encyclopedia of chemical technology. John Wiley & Sons, Inc.; 2000.
  • Bruni R, Guerrini A, Scalia S, et al. Rapid techniques for the extraction of vitamin E isomers from Amaranthus caudatus seeds: ultrasonic and supercritical fluid extraction. Phytochem Anal. 2002;13:257–261.
  • Ge Y, Ni Y, Yan H, et al. Optimization of the supercritical fluid extraction of natural vitamin E from wheat germ using response surface methodology. J Food Science. 2002;67:239–243.
  • Mendes MF, Pessoa FLP, Uller AMC. An economic evaluation based on an experimental study of the vitamin E concentration present in deodorizer distillate of soybean oil using supercritical CO2. J Supercrit Fluids. 2002;23:257–265.
  • Mendiola JA, García-Martínez D, Rupérez FJ, et al. Enrichment of vitamin E from Spirulina platensis microalga by SFE. J Supercrit Fluids. 2008;43:484–489.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.