1,040
Views
51
CrossRef citations to date
0
Altmetric
Review Article

The nanotechnology among US: are metal and metal oxides nanoparticles a nano or mega risk for soil microbial communities?

, , ORCID Icon, , , & show all
Pages 157-172 | Received 07 May 2018, Accepted 30 Aug 2018, Published online: 05 Nov 2018

References

  • Mishra S, Keswani C, Abhilash PC, et al. Integrated approach of agri-nanotechnology: challenges and future trends. Front. Plant Sci. 2017;8:471.
  • Mehndiratta P, Jain A, Srivastava S, et al. Environmental pollution and nanotechnology. Environ Pollut. 2013;2:49–58.
  • Rubilar O, Rai M, Tortella G, et al. Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnol Lett. 2013;35:1365–1375.
  • Thul S, Sarangi B, Pandey R. Nanotechnology in agroecosystem: implications on plant productivity and its soil environment. Expert Opin Environ Biol. 2013;2:1–7.
  • Durán N, Seabra AB, de Lima R. Cytotoxicity and genotoxicity of biogenically synthesized silver nanoparticles. In: Durán N, Guterres SS, Alves OL, editors. Nanotoxicology Mater Methodol Assessments. New York (NY): Springer New York; 2014. p. 245–263.
  • Durán N, Guterres SS, Alves OL, editors. Nanotoxicology: Materials, Methodologies, and Assessments. New York (NY): Springer New York; 2014.
  • Rai M, Ingle A, Gupta I, et al. Cyto-, geno-, and ecotoxicity of copper nanoparticles. In: Durán N, Guterres SS, Alves OL, editors. Nanotoxicology Mater Methodol Assessments. New York (NY): Springer New York; 2014. p. 325–345.
  • Simonin M, Richaume A. Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res. 2015;22:13710–13723.
  • Rajput VD, Minkina T, Suskova S, et al. Effects of copper nanoparticles (CuO NPs) on crop plants: a mini review. Bio Nano Sci. 2018;8:36–42.
  • Yang F, Zeng L, Luo Z, et al. Complex role of titanium dioxide nanoparticles in the trophic transfer of arsenic from Nannochloropsis maritima to Artemia salina nauplii. Aquat Toxicol. 2018;198:231–239.
  • Morelli E, Gabellieri E, Bonomini A, et al. TiO2 nanoparticles in seawater: aggregation and interactions with the green alga Dunaliella tertiolecta. Ecotoxicol Environ Saf. 2018;148:184–193.
  • Deng X-Y, Cheng J, Hu X-L, et al. Biological effects of TiO2 and CeO2 nanoparticles on the growth, photosynthetic activity, and cellular components of a marine diatom Phaeodactylum tricornutum. Sci Total Environ.. 2017;575:87–96.
  • Mansfield CM, Alloy MM, Hamilton J, et al. Photo-induced toxicity of titanium dioxide nanoparticles to Daphnia magna under natural sunlight. Chemosphere. 2015;120:206–210.
  • Koehlé-Divo V, Cossu-Leguille C, Pain-Devin S, et al. Genotoxicity and physiological effects of CeO2 NPs on a freshwater bivalve (Corbicula fluminea). Aquat Toxicol. 2018;198:141–148.
  • Booth A, Størseth T, Altin D, et al. Freshwater dispersion stability of PAA-stabilised cerium oxide nanoparticles and toxicity towards Pseudokirchneriella subcapitata. Sci Total Environ. 2015;505:596–605.
  • Sellami B, Mezni A, Khazri A, et al. Toxicity assessment of ZnO-decorated Au nanoparticles in the Mediterranean clam Ruditapes decussatus. Aquat Toxicol. 2017;188:10–19.
  • Suman TY, Radhika Rajasree SR, Kirubagaran R. Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicol Environ Saf. 2015;113:23–30.
  • Lopes S, Ribeiro F, Wojnarowicz J, et al. Zinc oxide nanoparticles toxicity to Daphnia magna: Size-dependent effects and dissolution. Environ Toxicol Chem. 2014;33:190–198.
  • Hao L, Chen L, Hao J, et al. Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts. Ecotoxicol Environ Saf. 2013;91:52–60.
  • Brown DM, Johnston HJ, Gaiser B, et al. A cross-species and model comparison of the acute toxicity of nanoparticles used in the pigment and ink industries. Nano Impact. 2018;11:20–32.
  • Ates M, Daniels J, Arslan Z, et al. Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: Assessment of nanoparticle aggregation, accumulation, and toxicity. Environ Monit Assess. 2013;185:3339–3348.
  • Sidiropoulou E, Feidantsis K, Kalogiannis S, et al. Insights into the toxicity of iron oxides nanoparticles in land snails. Comp Biochem Physiol Part C Toxicol Pharmacol. 2018;206–207:1–10.
  • Gautam A, Ray A, Mukherjee S, et al. Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm. Ecotoxicol Environ Saf. 2018;148:620–631.
  • Rotini A, Gallo A, Parlapiano I, et al. Insights into the CuO nanoparticle ecotoxicity with suitable marine model species. Ecotoxicol Environ Saf. 2018;147:852–860.
  • Sun X, Chen B, Bin X, et al. Are CuO nanoparticles effects on hemocytes of the marine scallop (Chlamys farreri) caused by particles and/or corresponding released ions? Ecotoxicol. Environ Saf. 2017;139:65–72.
  • Melegari SP, Perreault F, Costa RHR, et al. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat Toxicol. 2013;142–143:431–440.
  • Cappello T, Vitale V, Oliva S, et al. Alteration of neurotransmission and skeletogenesis in sea urchin Arbacia lixula embryos exposed to copper oxide nanoparticles. Comp Biochem Physiol Part C Toxicol Pharmacol. 2017;199:20–27.
  • Hanna S, Miller R, Lenihan H. Accumulation and toxicity of copper oxide engineered nanoparticles in a marine mussel. Nanomaterials. 2014;4:535–547.
  • Hua J, Vijver MG, Ahmad F, et al. Toxicity of different-sized copper nano- and submicron particles and their shed copper ions to zebrafish embryos. Environ Toxicol Chem. 2014;33:1774–1782.
  • Wang T, Long X, Cheng Y, et al. The potential toxicity of copper nanoparticles and copper sulphate on juvenile Epinephelus coioides. Aquat Toxicol. 2014;152:96–104.
  • Pacheco A, Martins A, Guilhermino L. Toxicological interactions induced by chronic exposure to gold nanoparticles and microplastics mixtures in Daphnia magna. Sci Total Environ. 2018;628–629:474–483.
  • Clark NJ, Shaw BJ, Handy RD. Low hazard of silver nanoparticles and silver nitrate to the haematopoietic system of rainbow trout. Ecotoxicol Environ Saf. 2018;152:121–131.
  • Brami C, Glover AR, Butt KR, et al. Effects of silver nanoparticles on survival, biomass change and avoidance behaviour of the endogeic earthworm Allolobophora chlorotica. Ecotoxicol Environ Saf. 2017;141:64–69.
  • Jiang HS, Yin L, Ren NN, et al. The effect of chronic silver nanoparticles on aquatic system in microcosms. Environ Pollut. 2017;223:395–402.
  • Topuz E, van Gestel CAM. The effect of soil properties on the toxicity and bioaccumulation of Ag nanoparticles and Ag ions in Enchytraeus crypticus. Ecotoxicol Environ Saf. 2017;144:330–337.
  • Navratilova J, Praetorius A, Gondikas A, et al. Detection of engineered copper nanoparticles in soil using single particle ICP-MS. Int J Environ Res Public Health. 2015;12:15756–15768.
  • Mahdi KNM, Peters RJB, Klumpp E, et al. Silver nanoparticles in soil: aqueous extraction combined with single-particle ICP-MS for detection and characterization. Environ Nanotechnol Monit Manag. 2017;7:24–33.
  • Schwertfeger DM, Velicogna JR, Jesmer AH, et al. Extracting metallic nanoparticles from soils for quantitative analysis: method development using engineered silver nanoparticles and SP-ICP-MS. Anal Chem. 2017;8:2505–2513.
  • Fréchette-Viens L, Hadioui M, Wilkinson KJ. Practical limitations of single particle ICP-MS in the determination of nanoparticle size distributions and dissolution: case of rare earth oxides. Talanta. 2017;163:121–126.
  • Sun TY, Gottschalk F, Hungerbühler K, et al. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut. 2014;185:69–76.
  • Bundschuh M, Filser J, Lüderwald S, et al. Nanoparticles in the environment: where do we come from, where do we go to? Environ Sci Eur. 2018;30:6.
  • Keller A, McFerran S, Lazareva A, et al. Global life cycle releases of engineered nanomaterials. J Nanoparticle Res. 2013;15:1692.
  • Giese B, Klaessig F, Park B, et al. Risks, release and concentrations of engineered nanomaterial in the environment. Sci Rep. 2018;8:1565.
  • Wigger H. Environmental release of and exposure to iron oxide and silver nanoparticles. Wiesbaden: Springer Fachmedien Wiesbaden; 2017.
  • Galdames A, Mendoza A, Orueta M, et al. Development of new remediation technologies for contaminated soils based on the application of zero-valent iron nanoparticles and bioremediation with compost. Resour Technol. 2017;3:166–176.
  • Funari V, Mantovani L, Vigliotti L, et al. Superparamagnetic iron oxides nanoparticles from municipal solid waste incinerators. Sci Total Environ. 2018;621:687–696.
  • Fijalkowski K, Rorat A, Grobelak A, et al. The presence of contaminations in sewage sludge - The current situation. J Environ Manage. 2017;203:1126–1136.
  • Das P, Barua S, Sarkar S, et al. Mechanism of toxicity and transformation of silver nanoparticles: Inclusive assessment in earthworm-microbe-soil-plant system. Geoderma. 2018;314:73–84.
  • Moghaddasi S, Fotovat A, Khoshgoftarmanesh AH, et al. Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter. Ecotoxicol Environ Saf. 2017;144:543–551.
  • Reith F, Cornelis G. Effect of soil properties on gold- and platinum nanoparticle mobility. Chem Geol. 2017;466:446–453.
  • Vittori Antisari L, Carbone S, Gatti A, et al. Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol Biochem. 2013;60:87–94.
  • Pawlett M, Ritz K, Dorey R. a, et al. The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environ Sci Pollut Res Int. 2013;20:1041–1049.
  • Shah V, Luxton TP, Walker VK, et al. Fate and impact of zero-valent copper nanoparticles on geographically-distinct soils. Sci Total Environ. 2016;573:661–670.
  • Sekine R, Marzouk ER, Khaksar M, et al. Aging of dissolved copper and copper-based nanoparticles in five different soils: short-term kinetics vs. long-term fate. J Environ Qual. 2017;46:1198.
  • McKee MS, Filser J. Impacts of metal-based engineered nanomaterials on soil communities. Environ Sci Nano. 2016;3:506–533.
  • Julich D, Gäth S. Sorption behavior of copper nanoparticles in soils compared to copper ions. Geoderma. 2014;235–236:127–132.
  • Read DS, Matzke M, Gweon HS, et al. Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities. Environ Sci Pollut Res. 2016;23:4120–4128.
  • El Hadri H, Louie SM, Hackley VA. Assessing the interactions of metal nanoparticles in soil and sediment matrices – a quantitative analytical multi-technique approach. Environ Sci Nano. 2018;5:203–214.
  • Benoit R, Wilkinson KJ, Sauvé S. Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles. Chem Cent J. 2013;7:75–81.
  • Luo M, Huang Y, Zhu M, et al. Properties of different natural organic matter influence the adsorption and aggregation behavior of TiO2 nanoparticles. J Saudi Chem Soc. 2018;22:146–154.
  • Haider A, Kang I-K. Preparation of silver nanoparticles and their industrial and biomedical applications: a comprehensive review. Adv Mater Sci Eng. 2015;2015:1–16.
  • Kampe S, Kaegi R, Schlich K, et al. Silver nanoparticles in sewage sludge: Bioavailability of sulfidized silver to the terrestrial isopod Porcellio scaber. Environ Toxicol Chem. 2018;37:1606–1613.
  • Doolette CL, Gupta VVSR, Lu Y, et al. Quantifying the sensitivity of soil microbial communities to silver sulfide Nnanoparticles using metagenome sequencing. PLoS One. 2016;11:e0161979.
  • McGee CF, Storey S, Clipson N, et al. Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles. Ecotoxicology. 2017;26:449–458.
  • Kumar N, Palmer GR, Shah V, et al. The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages. PLoS One. 2014;9:e99953.
  • Carbone S, Vittori Antisari L, Gaggia F, et al. Bioavailability and biological effect of engineered silver nanoparticles in a forest soil. J Hazard Mater. 2014;280:89–96.
  • Rahmatpour S, Shirvani M, Mosaddeghi MR, et al. Dose–response effects of silver nanoparticles and silver nitrate on microbial and enzyme activities in calcareous soils. Geoderma. 2017;285:313–322.
  • Samarajeewa AD, Velicogna JR, Princz JI, et al. Effect of silver nano-particles on soil microbial growth, activity and community diversity in a sandy loam soil. Environ Pollut. 2017;220:504–513.
  • Sillen WMA, Thijs S, Abbamondi GR, et al. Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biol Biochem. 2015;91:14–22.
  • Liu G, Zhang M, Jin Y, et al. The effects of low concentrations of silver nanoparticles on wheat growth, seed quality, and soil microbial communities. Water Air Soil Pollut. 2017;228:348.
  • Kim M-J, Ko D, Ko K, et al. Effects of silver-graphene oxide nanocomposites on soil microbial communities. J Hazard Mater. 2018;346:93–102.
  • Batista D, Pascoal C, Cássio F. Temperature modulates AgNP impacts on microbial decomposer activity. Sci Total Environ. 2017;601–602:1324–1332.
  • Asadishad B, Chahal S, Akbari A, et al. Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environ Sci Technol. 2018;52:1908–1918.
  • Cao J, Feng Y, He S, et al. Silver nanoparticles deteriorate the mutual interaction between maize (Zea mays L.) and arbuscular mycorrhizal fungi: a soil microcosm study. Appl Soil Ecol. 2017;119:307–316.
  • Grün A-L, Scheid P, Hauröder B, et al. Assessment of the effect of silver nanoparticles on the relevant soil protozoan genus Acanthamoeba. J Plant Nutr Soil Sci. 2017;180:602–613.
  • Kumari M, Pandey S, Mishra SK, et al. Effect of biosynthesized silver nanoparticles on native soil microflora via plant transport during plant–pathogen–nanoparticles interaction. 3 Biotech. 2017;7:345.
  • Zhai Y, Hunting ER, Wouters M, et al. Silver nanoparticles, ions, and shape governing soil microbial functional diversity: nano shapes micro. Front Microbiol. 2016;7:1123.
  • Menon S, S R, S VK. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resour Technol. 2017;3:516–527.
  • Asadishad B, Chahal S, Cianciarelli V, et al. Effect of gold nanoparticles on extracellular nutrient-cycling enzyme activity and bacterial community in soil slurries: role of nanoparticle size and surface coating. Environ Sci Nano. 2017;4:907–918.
  • Maliszewska I. Effects of the biogenic gold nanoparticles on microbial community structure and activities. Ann Microbiol. 2016;66:785–794.
  • Weber KP, Petersen EJ, Bissegger S, et al. Effect of gold nanoparticles and ciprofloxacin on microbial catabolism: a community-based approach. Environ Toxicol Chem. 2014;33:44–51.
  • Shukla SK, Kumar R, Mishra RK, et al. Prediction and validation of gold nanoparticles (GNPs) on plant growth promoting rhizobacteria (PGPR): a step toward development of nano-biofertilizers. Nanotechnol Rev. 2015;44:439–448.
  • Braunschweig J, Bosch J, Meckenstock RU. Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation. N Biotechnol. 2013;30:793–802.
  • Tiwari S, Hasan A, Pandey LM. A novel bio-sorbent comprising encapsulated Agrobacterium fabrum (SLAJ731) and iron oxide nanoparticles for removal of crude oil co-contaminant, lead Pb(II). J Environ Chem Eng. 2017;5:442–452.
  • Shah V, Collins D, Walker VK, et al. The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions. Environ Res Lett. 2014;9:024001.
  • He S, Feng Y, Ni J, et al. Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere. 2016;147:195–202.
  • Lacalle RG, Gómez-Sagasti MT, Artetxe U, et al. Effectiveness and ecotoxicity of zero-valent iron nanoparticles during rhizoremediation of soil contaminated with Zn, Cu, Cd and diesel. Data Brief. 2018;17:47–56.
  • Rashid MI, Shahzad T, Shahid M, et al. Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil. Sci Rep. 2017;7:41965.
  • Magro M, Baratella D, Bonaiuto E, et al. New perspectives on biomedical applications of iron oxide nanoparticles. Curr Med Chem. 2018;25:540–555.
  • Frenk S, Ben-Moshe T, Dror I, et al. Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One. 2013;8:1–12.
  • Cao J, Feng Y, Lin X, et al. Iron oxide magnetic nanoparticles deteriorate the mutual interaction between arbuscular mycorrhizal fungi and plant. J Soils Sediments. 2017;17:841–851.
  • Athanasekou C, Romanos GE, Papageorgiou SK, et al. Photocatalytic degradation of hexavalent chromium emerging contaminant via advanced titanium dioxide nanostructures. Chem Eng J. 2017;318:171–180.
  • Haider AJ, AL– Anbari RH, Kadhim GR, et al. Exploring potential environmental applications of TiO2 nanoparticles. Energy Procedia. 2017;119:332–345.
  • Jiang D, Zeng G, Huang D, et al. Remediation of contaminated soils by enhanced nanoscale zero valent iron. Environ Res. 2018;163:217–227.
  • Shen Z, Chen Z, Hou Z, et al. Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Front Environ Sci Eng. 2015;9:912–918.
  • Rashid MI, Shahzad T, Shahid M, et al. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil. J Hazard Mater. 2017;324:298–305.
  • Chai H, Yao J, Sun J, et al. The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bull Environ Contam Toxicol. 2015;94:490–495.
  • Haris Z, Ahmad I. Impact of metal oxide nanoparticles on beneficial soil microorganisms and their secondary metabolites. Int J Life Sci Res. 2017;3:1020–1030.
  • Sri Sindhura K, Prasad TNVK V, Panner Selvam P, et al. Synthesis, characterization and evaluation of effect of phytogenic zinc nanoparticles on soil exo-enzymes. Appl Nanosci. 2014;4:819–827.
  • Xu J, Luo X, Wang Y, et al. Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community. Environ Sci Pollut Res. 2018;25:6026–6035.
  • Kwak JI, Yoon S-J, An Y-J. Long-term effects of ZnO nanoparticles on exoenzyme activities in planted soils. Environ Eng Res. 2016;22:224–229.
  • Jośko I, Oleszczuk P. Influence of soil type and environmental conditions on ZnO, TiO2 and Ni nanoparticles phytotoxicity. Chemosphere. 2013;92:91–99.
  • Moll J, Klingenfuss F, Widmer F, et al. Effects of titanium dioxide nanoparticles on soil microbial communities and wheat biomass. Soil Biol Biochem. 2017;111:85–93.
  • Simonin M, Richaume A, Guyonnet JP, et al. Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Sci Rep. 2016;6:33643.
  • Simonin M, Martins JMF, Uzu G, et al. Combined study of titanium dioxide nanoparticle transport and toxicity on microbial nitrifying communities under single and repeated exposures in soil columns. Environ Sci Technol. 2016;50:10693–10699.
  • Burke DJ, Zhu S, Pablico-Lansigan MP, et al. Titanium oxide nanoparticle effects on composition of soil microbial communities and plant performance. Biol Fertil Soils. 2014;50:1169–1173.
  • Simonin M, Martins JMF, Le Roux X, et al. Toxicity of TiO2 nanoparticles on soil nitrification at environmentally relevant concentrations: Lack of classical dose–response relationships. Nanotoxicology. 2017;11:247–255.
  • Huang J, Zhang X, Liang C, et al. Impact of TiO2 on the chemical and biological transformation of formulated chiral-metalaxyl in agricultural soils. J Hazard Mater. 2018;348:67–74.
  • Gawande MB, Goswami A, Felpin F-X, et al. Cu and Cu-Based nanoparticles: synthesis and applications in catalysis. Chem Rev. 2016;116:3722–3811.
  • Din MI, Rehan R. Synthesis, characterization, and applications of copper nanoparticles. Anal Lett. 2017;50:50–62.
  • Khalaj M, Kamali M, Khodaparast Z, et al. Copper-based nanomaterials for environmental decontamination – an overview on technical and toxicological aspects. Ecotoxicol Environ Saf. 2018;148:813–824.
  • Fernandes JP, Almeida CMR, Andreotti F, et al. Response of microbial communities colonizing salt marsh plants rhizosphere to copper oxide nanoparticles contamination and its implications for phytoremediation processes. Sci Total Environ. 2017;581–582:801–810.
  • Xu C, Peng C, Sun L, et al. Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem. 2015;86:24–33.
  • Ben-Moshe T, Frenk S, Dror I, et al. Effects of metal oxide nanoparticles on soil properties. Chemosphere. 2013;90:640–646.
  • Gao X, Avellan A, Laughton S, et al. CuO nanoparticle dissolution and toxicity to wheat (Triticum aestivum) in Rhizosphere soil. Environ Sci Technol. 2018;52:2888–2897.
  • Zhai Y, Hunting ER, Wouterse M, et al. Importance of exposure dynamics of metal-based nano-ZnO, -Cu and -Pb governing the metabolic potential of soil bacterial communities. Ecotoxicol Environ Saf. 2017;145:349–358.
  • Charbgoo F, Ramezani M, Darroudi M. Bio-sensing applications of cerium oxide nanoparticles: advantages and disadvantages. Biosens Bioelectron. 2017;96:33–43.
  • Rajeshkumar S, Naik P. Synthesis and biomedical applications of Cerium oxide nanoparticles – a review. Biotechnol Reports. 2018;17:1–5.
  • Farias IAP, Santos CCL. d, Sampaio FC. Antimicrobial activity of cerium oxide nanoparticles on opportunistic microorganisms: a systematic review. Biomed Res Int. 2018;2018:1–14.
  • Wu Q, Xie X, Wang Y, et al. Effect of carbon coated aluminum nanoparticles as additive to biodiesel-diesel blends on performance and emission characteristics of diesel engine. Appl Energy. 2018;221:597–604.
  • Smith SR, Rafati R, Sharifi Haddad A, et al. Application of aluminium oxide nanoparticles to enhance rheological and filtration properties of water based muds at HPHT conditions. Colloids Surfaces A Physicochem Eng Asp. 2018;537:361–371.
  • Ansari MA, Khan HM, Khan AA, et al. Interaction of Al(2)O(3) nanoparticles with Escherichia coli and their cell envelope biomolecules. J Appl Microbiol. 2014;116:772–783.
  • Yanik F, Vardar F. Toxic effects of aluminum oxide (Al2O3) nanoparticles on root growth and development in Triticum aestivum. Water Air Soil Pollut. 2015;226:296.
  • Rico CM, Hong J, Morales MI, et al. Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol. 2013;47:5635–5642.
  • Vidya P, Chitra K. Assessment of acute toxicity (LC50 -96 h) of aluminium oxide, silicon dioxide and titanium dioxide nanoparticles on the freshwater fish, Oreochromis. Int J Fish Aquat Stud. 2017;5:327–332.
  • Doskocz N, Affek K, Załęska-Radziwiłł M. Effects of aluminium oxide nanoparticles on bacterial growth. E3S Web Conf. 2017;17:00019.
  • Moll J, Gogos A, Bucheli TD, et al. Effect of nanoparticles on red clover and its symbiotic microorganisms. J Nanobiotechnology. 2016;14:36.
  • Li B, Chen Y, Liang W, et al. Influence of cerium oxide nanoparticles on the soil enzyme activities in a soil-grass microcosm system. Geoderma. 2017;299:54–62.
  • Fajardo C, Saccà ML, Costa G, et al. Impact of Ag and Al2O3 nanoparticles on soil organisms: in vitro and soil experiments. Sci Total Environ. 2014;473–474:254–261.
  • Zhou D, Fang T, Lu L, et al. Neuroprotective potential of cerium oxide nanoparticles for focal cerebral ischemic stroke. J Huazhong Univ Sci Technolog Med Sci. 2016;36:480–486.
  • GVR. Cerium oxide nanoparticles market size worth $1.04 billion by 2025 [Internet]. 2017. Accessed on July, 2018. Available from: https://www.grandviewresearch.com/press-release/global-cerium-oxide-nanoparticles-market.
  • You T, Liu D, Chen J, et al. Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. J Soils Sediments. 2018;18:211–221.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.