704
Views
10
CrossRef citations to date
0
Altmetric
Review Article

Transcriptome and miRNAs analyses enhance our understanding of the evolutionary advantages of polyploidy

&
Pages 173-180 | Received 18 Dec 2017, Accepted 01 Sep 2018, Published online: 29 Oct 2018

References

  • Lin H, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–531.
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297.
  • Khraiwesh B, Zhu JK, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta. 2012;1819:137–148.
  • Guo HS, Xie Q, Fei JF, et al. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell. 2005;17:1376–1386.
  • Meng Y, Chen D, Ma X, et al. Mechanisms of microRNA-mediated auxin signaling inferred from the rice mutant osaxr. Plant Sign Behav. 2010;5:252–254.
  • Mallory AC, Dugas DV, Bartel DP, et al. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol. 2004;14:1035–1046.
  • Mallory AC, Reinhart BJ, Jones-Rhoades MW, et al. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J. 2004;23:3356–3364.
  • Ori N, Cohen AR, Etzioni A, et al. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet. 2007;39:787–791.
  • Wu MF, Tian Q, Reed JW. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development. 2006;133:4211–4218.
  • Li S, Castillo-González C, Yu B, et al. The functions of plant small RNAs in development and in stress responses. Plant J. 2017;90:654–670.
  • Ha M, Lu J, Tian L, et al. Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci USA. 2009;106:17835–17840.
  • Meng HB, Jiang SS, Hua SJ, et al. Comparison between a tetraploid turnip and its diploid progenitor (Brassica rapa L.): the adaptation to salinity stress. Agr Sci China. 2011;10:363–375.
  • Shu B, Wu QS. Arbuscular mycorrhizal fungi and adaption of P stress in plants. Arbuscular mycorrhizas and stress tolerance of plants. Singapore: Springer; 2017. p. 99–130.
  • Hussain SS, Hussain M, Irfan M, et al. Legume, microbiome, and regulatory functions of miRNAs in systematic regulation of symbiosis. Vol. 12, Plant microbiome: stress response. Singapore: Springer; 2018. p. 255–282.
  • Kumar R. Role of microRNAs in biotic and abiotic stress responses in crop plants. Appl Biochem Biotechnol. 2014;174:93–115.
  • Zhang BH. MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot. 2015;66:1749–1761.
  • Kenan-Eichler M, Leshkowitz D, Tal L, et al. Wheat hybridization and polyploidization results in deregulation of small RNAs. Genetics. 2011;188:263–272.
  • Maher C, Stein L, Ware D. Evolution of Arabidopsis microRNA families through duplication events. Genome Res. 2006;16:510–519.
  • Liu BB, Sun GL. MicroRNAs contribute to enhanced salt adaptation of the autopolyploid Hordeum bulbosum compared to its diploid ancestor. Plant J. 2017;91:57–69.
  • Meyer A, Schartl M. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol. 1999;11:699–704.
  • Hufton AL, Panopoulou G. Polyploidy and genome restructuring: a variety of outcomes. Curr Opin Genet Dev. 2009;19:600–606.
  • Blanc G, Wolfe KH. Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell. 2004;16:1679–1691.
  • Sheehan MJ, Kennedy LM, Costich DE, et al. Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. Plant J. 2007;49:338–353.
  • Parisod C, Holderegger R, Brochmann C. Evolutionary consequences of autopolyploidy. New Phytol. 2010;186:5–17.
  • Madlung A. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity. 2013;110:99–104.
  • Yang C, Zhao L, Zhang H, et al. Evolution of physiological responses to salt stress in hexaploid wheat. Proc Natl Acad Sci USA. 2014;111:11882–11887.
  • Beest MT, Le roux JJ, Richardson DM. The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot. 2012;109:1–27.
  • Church SA, Spaulding EJ. Gene expression in a wild autopolyploid sunflower series. J Hered. 2009;100:491–495.
  • Fawcett JF, Van de Peer Y. Angiosperm polyploids and their road to evolutionary success. Trends Evol Biol. 2010;2:3.
  • Otto SP, Whitton J. Polyploid incidence and evolution. Annu Rev Genet. 2000;34:401–437.
  • Fawcett JA, Maer S, Peer YV. Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. Proc Natl Acad Sci USA. 2009;106:5737–5742.
  • Gaut BS, Doebley JF. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA. 1997;94:6809–6814.
  • Shoemaker RC, Polzin K, Labate J, et al. Genome duplication in soybean (Glycine subgenus soja). Genetics. 1996;144:329–338.
  • Lu B, Pan X, Zhang L, et al. A genome-wide comparison of genes responsive to autopolyploidy in Isatis indigotica using Arabidopsis thaliana affymetrix genechips. Plant Mol Biol Rep. 2006;24:197–204.
  • Cui L, Wall PK, Leebens MJH, et al. Widespread genome duplications throughout the history of flowering plants. Genome Res. 2006;16:738–749.
  • Jiao Y, Wickett NJ, Ayyampalayam S, et al. Ancestral polyploidy in seed plants and angiosperms. Nature. 2011;473:97–102.
  • Abrouk M, Zhang RZ, Murat F. Grass microRNA gene paleohistory unveils new insights into gene dosage balance in subgenome partitioning after whole-genome duplication. Plant Cell. 2012;24:1776–1792.
  • Stupar RM, Bhaskar PB, Yandell BS, et al. Phenotypic and transcriptomic changes associated with potato autopolyploidization. Genetics. 2007;176:2055–2067.
  • Hegarty MJ, Hiscock SJ. Genomic clues to the evolutionary success of polyploid plants. Curr Biol. 2008;18:435–444.
  • Wang ZM, Wang MY, Liu LK, et al. Physiological and proteomic responses of diploid and tetraploid black locust (Robinia pseudoacacia L.) subjected to salt stress. Int J Mol Sci. 2013;14:20299–22035.
  • Soltis PS, Liu X, Marchant DB, et al. Polyploidy and novelty: Gottlieb’s legacy. Phil Trans R Soc B. 2014;369:20130351.
  • Van de Peer Y, Mizrachi E, Marchal K. The evolutionary significance of polyploidy. Nat Rev Genet. 2017;18:411–424.
  • Hao GY, Lucero ME, Sanderson SC, et al. Polyploidy enhances the occupation of heterogeneous environments through hydraulic related trade‐offs in Atriplex canescens (Chenopodiaceae). New Phytol. 2013;197:970–978.
  • Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 2007;8:93–103.
  • Ng D, Zhang C, Miller M, et al. Proteomic divergence in Arabidopsis autopolyploids and allopolyploids and their progenitors. Heredity. 2012;108:419–430.
  • Bassene JB, Froelicher Y, Dubois C, et al. Non-additive gene regulation in a citrus allotetraploid somatic hybrid between C. reticulata Blanco and C. limon (L.) Burm. Heredity. 2010;105:299–308.
  • Yoo MJ, Liu X, Pires JC, et al. Nonadditive gene expression in polyploids. Annu Rev Genet. 2014;48:485–517.
  • Ozkan H, Tuna M, Arumuganathan K. Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops-Triticum) group. J Hered. 2003;94:260–264.
  • Pumphrey M, Bai J, Laudencia-Chingcuanco D, et al. Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics. 2009;181:1147–1157.
  • Dong S, Adams KL. Differential contributions to the transcriptome of duplicated genes in response to abiotic stresses in natural and synthetic polyploids. New Phytol. 2011;190:1045–1057.
  • Hegarty MJ, Barker GL, Brennan AC, et al. Changes to gene expression associated with hybrid speciation in plants: further insights from transcriptomic studies in Senecio. Philos Trans R Soc Lond B Biol Sci. 2008;363:3055–3069.
  • Wang J, Tian L, Lee HS, et al. Genome wide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics. 2005;172:507–517.
  • Jackson S, Chen ZJ. Genomic and expression plasticity of polyploidy. Curr Opin Plant Biol. 2010;13:153–159.
  • Song Q, Chen ZJ. Epigenetic and developmental regulation in plant polyploids. Curr Opin Plant Biol. 2015;24:101–109.
  • Edger PP, Smith R, McKain MR, et al. Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140-year-old naturally established neo-allopolyploid monkeyflower. Plant Cell. 2017;29:2150–2167.
  • Hegarty M, Hiscock S. Polyploidy: doubling up for evolutionary success. Curr Biol. 2007;17:1669–1674.
  • Chen ZJ. Genomic and epigenetic insights into the molecular bases of heterosis. Nature. 2013;10:1–12.
  • Levasseur A, Pontarotti P. The role of duplications in the evolution of genomes highlights the need for evolutionary-based approaches in comparative genomics. Biol Direct. 2011;6:11.
  • Thirugnanasambandam PP, Hoang NV, Henry RJ. The challenge of analyzing the sugarcane genome. Front Plant Sci. 2018;9:616.
  • Tan FQ, Tu H, Liang WJ, et al. Comparative metabolic and transcriptional analysis of a doubled diploid and its diploid citrus rootstock (C. junos cv. Ziyang xiangcheng) suggests its potential value for stress resistance improvement. BMC Plant Biol. 2015;15:1–14.
  • Peer YV, Maere S, Meyer A. The evolutionary significance of ancient genome duplications. Nat Rev Genet. 2009;10:1–8.
  • Vanneste K, Maere S, Peer YV. Tangled up in two: a burst of genome duplications at the end of the cretaceous and the consequences for plant evolution. Philos Trans R Soc B. 2014;369:1–13.
  • Kondrashov FA. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc Biol Sci. 2012;279:5048–5057.
  • Fisher KJ, Buskirk SW, Vignogna RC, et al. Adaptive genome duplication affects patterns of molecular evolution in Saccharomyces cerevisiae. PLoS Genet. 2018;14:e1007396.
  • Crawford DJ, Doyle JJ, Soltis DE, et al. Contemporary and future studies in plant speciation, morphological/floral evolution and polyploidy: honouring the scientific contributions of Leslie D. Gottlieb to plant evolutionary biology. Philos Trans R Soc Lond B Biol Sci. 2015;369(1648):20130341.
  • Saleh B, Allario T, Dambier D, et al. Tetraploid citrus rootstocks are more tolerant to salt stress than diploid. C R Biol. 2008;331:703–710.
  • Allario T, Brumos J, Colmenero-flores JM, et al. Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression. J Exp Bot. 2011;62:2507–2519.
  • Liu S, Chen S, Chen Y, et al. In vitro induced tetraploid of Dendranthema nankingense (Nakai) Tzvel shows an improved level of abiotic stress tolerance. Sci Hort. 2011;127:411–419.
  • Spoelhof JP, Soltis PS, Soltis DE. Pure polyploidy: closing the gaps in autopolyploid research. J Syst Evol. 2017;55:340–352.
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854.
  • Yao YY, Guo GG, Ni ZF. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol. 2007;8:13.
  • Schreiber AW, Shi BJ, Huang CY, et al. Discovery of barley miRNAs through deep sequencing of short reads. BMC Genomics. 2011;12:129.
  • Lv SZ, Nie XJ, Wang L, et al. Identification and characterization of microRNAs from barley (Hordeum vulgare L.) by high-throughput sequencing. Int J Mol Sci. 2012;13:2973–2984.
  • Chi XY, Yang QL, Chen XP. Identification and characterization of microRNAs from Peanut (Arachis hypogaea L.) by high-throughput. PLoS One. 2001;6:1–10.
  • Qiu CX, Xie FL, Zhu YY, et al. Computational identification of microRNAs and their targets in Gossypium hirsutum expressed sequence tags. Gene. 2007;395:49–61.
  • Ruan MB, Zhao YT, Meng ZH, et al. Conserved miRNA analysis in Gossypium hirsutum through small RNA sequencing. Genomics. 2009;94:263–268.
  • Szittya G, Moxon S, Santos DM, et al. High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genom. 2008;9:593–599.
  • Song CN, Wang C, Zhang CQ, et al. Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata). BMC Genom. 2010;11:431–412.
  • Sunkar R, Girke T, Zhu JK. Identification and characterization of endogenous small interfering RNAs from rice. Nucleic Acids Res. 2005;33:4443–4454.
  • Abrahante JE, Daul AL, Li M, et al. The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Develop Cell. 2003;4:625–637.
  • Song L, Tuan RS. MicroRNAs and cell differentiation in mammalian development. Birth Defects Res C Embryo Today. 2006;78:140–149.
  • Shivdasani RA. MicroRNAs: regulators of gene expression and cell differentiation. Blood. 2006;108:3646–3653.
  • Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction. Nat Rev Mol Cell Biol. 2010;11:252–263.
  • Koroban NV, Kudryavtseva AV, Krasnov GS, et al. The role of microRNA in abiotic stress response in plants. Mol Biol. 2016;50:337–343.
  • Liu HH, Tian X, Li YJ, et al. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA. 2008;14:836–843.
  • Feng K, Nie X, Cui L, et al. Genome-wide identification and characterization of salinity stress-responsive miRNAs in wild emmer wheat (Triticum turgidum ssp. dicoccoides). Genes. 2017;8:156.
  • Fan XD, Wang JQ, Yang N, et al. Gene expression profiling of soybean leaves and roots under salt, saline-alkali and drought stress by high-throughput Illumina sequencing . Gene. 2013;512:392–402.
  • Ferdous J, Sanchez-Ferrero JC, Langridge P, et al. Differential expression of microRNAs and potential targets under drought stress in barley. Plant Cell Environ. 2017;40:11–24.
  • Lv DW, Zhen S, Zhu GR, et al. High-throughput sequencing reveals H2O2stress-associated microRNAs and a potential regulatory network in Brachypodium distachyon seedlings. Front Plant Sci. 2016;7:1567.
  • Pagliarani C, Vitali M, Ferrero M, et al. The accumulation of miRNAs differentially modulated by drought stress is affected by grafting in grapevine. Plant Physiol. 2017;173:2180–2195.
  • Kucherenko MM, Shcherbata HR. miRNA targeting and alternative splicing in the stress response – events hosted by membrane-less compartments. J Cell Sci. 2018;131:jcs202002.
  • Alptekin B, Langridge P, Budak H. Abiotic stress miRnomes in the Triticeae. Funct Integr Genomics. 2017;17:145–170.
  • Shriram V, Kumar V, Devarumath RM, et al. MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci. 2016;7:817.
  • Xie FL, Zhang BH. microRNA evolution and expression analysis in polyploidized cotton genome. Plant Biotech J. 2015;10:1–14.
  • Yang TJ, Kim JS, Kwon SJ, et al. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell. 2006;18:1339–1347.
  • del Pozo JC, Ramirez-Parra E. Whole genome duplications in plants: an overview from Arabidopsis. J Exp Bot. 2015; 66:6991–7003.
  • Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet. 2005;6:836–847.
  • Adams KL, Wendel JF. Polyploidy and genome evolution in plants. Curr Opin Plant Biol. 2005;8:135–141.
  • Pan Y, Seymour GB, Lu CG, et al. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep. 2012;31:349–360.
  • Wendel JF, Jackson SA, Meyers BC, et al. Evolution of plant genome architecture. Genome Biol. 2016;17:37.
  • Li AL, Liu DC, Wu J, et al. mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell. 2014;26:1878–1900.
  • Ye BY, Wang RH, Wang JB. Correlation analysis of the mRNA and miRNA expression profiles in the nascent synthetic allotetraploid Raphanobrassica. Sci Rep. 2016;6:37416.
  • Dong B, Wang HB, Song AP, et al. miRNAs are involved in determining the improved vigor of autotetrapoid Chrysanthemum nankingense. Front Plant Sci. 2016;28:01412. |
  • Fan G, Li X, Deng M, et al. Comparative analysis and identification of miRNAs and their target genes responsive to salt stress in diploid and tetraploid Paulownia fortunei seedlings. PLoS One. 2016;11:e0149617.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.