738
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Biotechnology in ciliates: an overview

, &
Pages 220-234 | Received 14 Oct 2017, Accepted 01 Sep 2018, Published online: 13 Nov 2018

References

  • Evens R, Kaitin K. The evolution of biotechnology and its impact on health care. Health Aff (Millwood). 2015;34:210–219.
  • Reh G. global life sciences outlook. Thriving in today's uncertain market. United States: Deloitte; 2017.
  • Meyer H-P, Schmidhalter DR. Microbial expression systems and manufacturing from a market and economic perspective. In: Agbo EC, editor. Innovations in biotechnology. London (UK): InTech; 2012.
  • Ahmad P, Ashraf M, Younis M. Role of transgenic plants in agriculture and biopharming. Biotechnol Adv. 2012;30:524–540.
  • Hautea RA. ISAAA Annual Report: 2016. 2016.
  • Clark DP, Pazdernik NJ. Biotechnology. Netherlands: Academic Cell; 2015.
  • Satyanarayana T, Kunze G. Yeast biotechnology: diversity and applications. Netherlands: Springer; 2009.
  • Stewart CN. Jr, Plant biotechnology and genetics: principles, techniques, and applications. New York: John Wiley & Sons; 2016.
  • Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. MAbs. 2015;3:9–14.
  • Breitling R. The LEXSY platform for recombinant protein expression. In: de Almeida A, et al., editors. Farm animal proteomics 2013. Netherlands: Springer; 2013. p. 45–48.
  • Adl SM, Simpson AGB, Lane CE, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59:429–493.
  • Lynn DH. The Ciliated Protozoa. Ciliated Protozoa Charact. Classif. Guid. to Lit. Third Ed. 2010.
  • Gao F, Warren A, Zhang Q, et al. The all-data-based evolutionary hypothesis of ciliated protists with a revised classification of the Phylum Ciliophora (Eukaryota, Alveolata). Sci Rep. 2016;6:24874.
  • Jee BY, Kim YC, Park MS. Morphology and biology of parasite responsible for scuticociliatosis of cultured olive flounder Paralichthys olivaceus. Dis Aquat Org. 2001;47:49–55.
  • Finlay BJ, Esteban G, Clarke KJ, et al. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett. 1994;117:157–162.
  • Sepp T, Järvekülg L, Saarma M. Investigations of virus-protozoa relationships in the model of the free-living ciliate Tetrahymena pyriformis and adenovirus type 3. Eur J Protistol. 1992;28:170–174.
  • Benyahya M, Laveran H, Bohatier J, et al. Interactions between the ciliated protozoan Tetrahymena pyriformis and the simian rotavirus SA11. Eur J Protistol. 1997;33:211–213.
  • Karalyan ZA, Voskanyan HE, Ramazyan NV, et al. Interaction of Paramecium caudatum and picornaviruses. Indian J Virol. 2012;23:382–386.
  • Schuster FL, Ramirez-Avila L. Current world status of Balantidium coli. Clin Microbiol Rev. 2008;21:626–638.
  • Hartmann MWW, Breitling R. Suspension culture of protozoan organisms. In: Meyer H-P, Schmidhalter DR, editors. Industrial scale suspension culture of living cells. Weinheim (Germany): Wiley Blackwell; 2014. p. 295–336.
  • Gaertig J, Gao Y, Tishgarten T, et al. Surface display of a parasite antigen in the ciliate Tetrahymena thermophila. Nat Biotechnol. 1999;17:462–465.
  • Blackburn EH, Gall JG. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol. 1978;120:33–53.
  • Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985;43:405–413.
  • Kruger K, Grabowski PJ, Zaug AJ, et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell. 1982;31:147–157.
  • Caron F, Meyer E. Does Paramecium primaurelia use a different genetic code in its macronucleus? Nature. 1985;314:185–188.
  • Gibbons IR, Rowe AJ. Dynein: a protein with adenosine triphosphatase activity from cilia. Science. 1965;149:424–426.
  • Taverna SD, Coyne RS, Allis CD. Methylation of histone H3 at lysine 9 targets programmed DNA elimination in Tetrahymena. Cell. 2002;110:701–711.
  • Mochizuki K, Fine NA, Fujisawa T, et al. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell. 2002;110:689–699.
  • Mochizuki K, Gorovsky MA. Conjugation-specific small RNAs in Tetrahymena have predicted properties of scan (scn) RNAs involved in genome rearrangement. Genes Dev. 2004;18:2068–2073.
  • Aeschlimann SH, Jönsson F, Postberg J, et al. The draft assembly of the radically organized Stylonychia lemnae macronuclear genome. Genome Biol Evol. 2014;6:1707–1723.
  • Nowacki M, Vijayan V, Zhou Y, et al. RNA-mediated epigenetic programming of a genome-rearrangement pathway. Nature. 2008;451:153–158.
  • Schönefeld U, Alfermann AW, Schultz JE. Economic mass cultivation of Paramecium tetraurelia on a 200-Liter Scale 1. J Protozool. 1986;33:222–225.
  • Hellenbroich D, Valley U, Ryll T, et al. Cultivation of Tetrahymena thermophila in a 1.5-m3 airlift bioreactor. Appl Microbiol Biotechnol. 1999;51:447–455.
  • Kiy T, Tiedtke A. Mass cultivation of Tetrahymena thermophila yielding high cell densities and short generation times. Appl Microbiol Biotechnol. 1992;37:576–579.
  • Noseda DG, Gentili HG, Nani ML, et al. A bioreactor model system specifically designed for Tetrahymena growth and cholesterol removal from milk. Appl Microbiol Biotechnol. 2007;75:515–520.
  • Rasmussen L, Modeweg-Hansen L. Cell multiplication in Tetrahymena cultures after addition of particulate material. J Cell Sci. 1973;12:275–286.
  • Mortimer M, Kasemets K, Kahru A. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology. 2010;269:182–189.
  • Elguero ME, Sanchez Granel ML, Montes MG, et al. Uptake of cholesterol by Tetrahymena thermophila is mainly due to phagocytosis. Rev Argent Microbiol. 2018 50:105–107.
  • Hartmann M, Guberman A, Florin-Christensen M, et al. Screening for and characterization of phospholipase A1 hypersecretory mutants of Tetrahymena thermophila. Appl Microbiol Biotechnol. 2000;54:390–396.
  • de Coninck J, Bouquelet S, Dumortier V, et al. Industrial media and fermentation processes for improved growth and protease production by Tetrahymena thermophila BIII. J Ind Microbiol Biotechnol. 2000;24:285–290.
  • Scheidgen-Kleyboldt G, Kuchta K, Kiy T, et al. Production of secreted hydrolytic enzymes by continuous high-cell-density cultivation of Colpidium campylum. Eur J Protistol. 2003;39:455–460.
  • Hartmann MW. Medicaments Containing Enzymes from Ciliates For Promoting Digestion in Digestive Disorders. US20080292610A1; 2008.
  • Banno Y, Sasaki N, Nozawa Y. Secretion heterogeneity of lysosomal enzymes in Tetrahymena pyriformis. Exp Cell Res. 1987;170:259–268.
  • Kiy T, Scheidgen-Kleyboldt G, Tiedtke A. Production of lysosomal enzymes by continuous high-cell-density fermentation of the ciliated protozoon Tetrahymena thermophila in a perfused bioreactor. Enzyme Microb Technol. 1996;18:268–274.
  • Kiy T, Hoersch B, Rudiger M. Process for the preparation of glycosides using glycosidases from ciliates. EP0725144A1; 1996.
  • Stacey G, Seth F, Mormile M. Protozoan glycosidases and related methods. US20130078678A1; 2013.
  • Putten A, Konig T, Fabritus D, et al. Method for producing gamma-linolenic acids from a ciliate culture by adding suitable precursor molecules to said culture medium. US20060205047A1; 2006.
  • Kiy T, Brinkmann K. Obtainment of gamma-linolenic acid from protozoa of the genus Colpidium. US6403345B1; 2002.
  • Valcarce G, Itzkovici A, Harris J, et al. Methods for treating cholesterol-containing foodstuffs using live ciliates. US6534100B1; 2003.
  • Leiro Vidal M, San Martin D, Lamas Fernadez J, et al. Method for the preparation of a scuticociliatosis vaccine for farmed marine fish. WO2008084125A2; 2008.
  • Rodríguez L, Luzard A, Blanco J, et al. A vaccine based on biodegradable microspheres induces protective immunity against scuticociliatosis without producing side effects in turbot. Fish Shellfish Immunol. 2012;33:21–27.
  • Lynn DH, Gilron GL. A brief review of approaches using ciliated protists to assess aquatic ecosystem health. J Aquat Ecosyst Stress Recov. (Formerly J Aquat Ecosyst Heal) 1992;1:263–270.
  • Madoni P, Romeo MG. Acute toxicity of heavy metals towards freshwater ciliated protists. Environ Pollut. 2006;141:1–7.
  • Bowers N, Pratt JR, Beeson D, et al. Comparative evaluation of soil toxicity using lettuce seeds and soil ciliates. Environ Toxicol Chem. 1997;16:207–213.
  • Jeong H, Shim J, Lee C, et al. Growth and grazing rates of the marine planktonic ciliate Strombidinopsis sp. on red tide and toxic dinoflagellates. J Eukaryotic Microbiology. 1999;46:69–76.
  • Schultz TW. TETRATOX: Tetrahymena pyriformis population growth impairment endpointa surrogate for fish lethality. Toxicol Methods. 1997;7:289–309.
  • Cheng F, Shen J, Yu Y, et al. In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods. Chemosphere. 2011;82:1636–1643.
  • Protoxkit F. Freshwater toxicity test with a ciliate protozoan. Standard Operational Procedure. Creasel, Deinze, Belgium; 1998. p. 18.
  • Madoni P, Davoli D, Gorbi G. Acute toxicity of lead, chromium, and other heavy metals to ciliates from activated sludge plants. Bull Environ Contam Toxicol. 1994;53:420–425.
  • Rehman A, Shakoori FR, Shakoori AR. Heavy metal resistant freshwater ciliate, Euplotes mutabilis, isolated from industrial effluents has potential to decontaminate wastewater of toxic metals. Bioresour Technol. 2008;99:3890–3895.
  • Doi H. Treatment agent for salt-containing organic waste liquid, salt concentration-reducing agent, treatment method for salt-containing organic waste liquid, and entrapment immobilization carrier. US9440871 B2; 2016.
  • Egerter DE, Anderson JR, Washburn JO. Dispersal of the parasitic ciliate Lambornella clarki: implications for ciliates in the biological control of mosquitoes. Proc Natl Acad Sci USA. 1986;83:7335–7339.
  • Egerter DE, Anderson JR. Anderson JRCN-2058. Blood-feeding drive inhibition of Aedes sierrensis (Diptera: Culicidae) induced by the parasite Lambornella clarki (Ciliophora: Tetrahymenidae). J Med Entomol. 1989;26:46–54.
  • Pani B. Process for preparation of a microbial agent. US2004/0219692A1; 2004.
  • Manasherob R, Ben-Dov E, Margalit J. Raising activity of Bacillus thuringiensis var. israelensis against Anopheles stephensi larvae by encapsulation in Tetrahymena pyriformis (Hymenostomatida: Tetrahymenidae). J Am Mosq Control Assoc. 1996;12:627–631.
  • Caufield W, Deepak S, Alfano M. Method for the surveillance for biological, chemical and radiological agents. US7745115B2; 2010.
  • Volodymyrovych GO, Myroslavovych ZO, Volodymyrovych GV, et al. Method of detection of virulent strains of bacteria Erysipelothrix rhusiopathiae using ciliates Tetrahymena pyriformis. UA 103220 U; 2015.
  • Valcarce G. Cholesterol desaturases from ciliates, methods and uses. US20020115126A1; 2002.
  • Valcarce G, Muñoz L, Nusblat A, et al. The improvement of milk by cultivation with ciliates. J Dairy Sci. 2001;84:2136–2143.
  • Valcarce G, Nusblat A, Florin-Christensen J, et al. Bioconversion of egg cholesterol to pro-vitamin D sterols with with Tetrahymena thermophila. J Food Science. 2002;67:2405–2409.
  • Ropenga JS, Lenfant M. Bioconversion of isosorbide dinitrate into isosorbide mononitrate by the protozoan Tetrahymena thermophila: relationship to glutathione transferase levels. Appl Microbiol Biotechnol. 1987;26:117–119.
  • Gentili HG, Noseda DG, Nani ML, et al. The use of Tetrahymena thermophila mutant cell line for removal of cholesterol from milk. Appl Microbiol Biotechnol. 2007;74:776–782.
  • Hartmann M, Broermann A. Screening method for identifying protease secretion-deficient mutants of microorganisms. US20080254493A1; 2005.
  • Galvani A, Sperling L. RNA interference by feeding in Paramecium. Trends Genet. 2002;18:11–12.
  • Ruehle MD, Orias E, Pearson CG. Tetrahymena as a unicellular model eukaryote: genetic and genomic tools. Genetics. 2016;203:649–665.
  • Skovorodkin I, Bollgönn S, Ammermann D, et al. Stable transfection of the hypotrichous ciliate Stylonychia lemnae with tagged α1 tubulin minichromosomes. Eur J Protistol. 1999;35:70–80.
  • Bender J, Kämpfer M, Klein A. Faithful expression of a heterologous gene carried on an artificial macronuclear chromosome in Euplotes crassus. Nucleic Acids Res. 1999;27:3168–3172.
  • Harumoto T, Hiwatashi K. Stable and unstable transformation by microinjection of macronucleoplasm in Paramecium. Dev Genet. 1992;13:118–125.
  • Gaertig J, Thatcher TH, Gu L, et al. Electroporation-mediated replacement of a positively and negatively selectable beta-tubulin gene in Tetrahymena thermophila. Proc Natl Acad Sci USA. 1994;91:4549–4553.
  • Brown JM, Marsala C, Kosoy R, et al. Kinesin-II is preferentially targeted to assembling cilia and is required for ciliogenesis and normal cytokinesis in Tetrahymena. MBoC. 1999;10:3081–3096.
  • Kahn RW, Andersen BH, Brunk CF. Transformation of Tetrahymena thermophila by microinjection of a foreign gene. Proc Natl Acad Sci USA. 1993;90:9295–9299.
  • Iwamoto M, Mori C, Hiraoka Y, et al. Puromycin resistance gene as an effective selection marker for ciliate Tetrahymena. Gene. 2014;534:249–255.
  • Sweeney R, Yao MC. Identifying functional regions of rRNA by insertion mutagenesis and complete gene replacement in Tetrahymena thermophila. EMBO J. 1989;8:933–938.
  • Yao M-C, Yao C-H. Transformation of Tetrahymena to cycloheximide resistance with a ribosomal protein gene through sequence replacement. Proc Natl Acad Sci USA. 1991;88:9493–9497.
  • Shang Y, Song X, Bowen J, et al. A robust inducible-repressible promoter greatly facilitates gene knockouts, conditional expression, and overexpression of homologous and heterologous genes in Tetrahymena thermophila. Proc Natl Acad Sci USA. 2002;99:3734–3739.
  • Mochizuki K. High efficiency transformation of Tetrahymena using a codon-optimized neomycin resistance gene. Gene. 2008;425:79–83.
  • Herrmann L, Bockau U, Tiedtke A, et al. The bifunctional dihydrofolate reductase thymidylate synthase of Tetrahymena thermophila provides a tool for molecular and biotechnology applications. BMC Biotechnol. 2006;6:21.
  • Rusing M. Method and marker for simple transformation and selection of recombinant protists. US20030219900A1; 2003.
  • Gaertig J, Gu L, Hai B, et al. High frequency vector-mediated transformation and gene replacement in Tetrahymena. Nucleic Acids Res. 1994;22:5391–5398.
  • Hayashi A, Mochizuki K. Targeted gene disruption by ectopic induction of DNA elimination in Tetrahymena. Genetics. 2015;201:55–64.
  • Cowan GJM, Bockau U, Eleni-Muus J, et al. A novel malaria vaccine candidate antigen expressed in Tetrahymena thermophila. PLoS One. 2014;9:e87198.
  • Rusing M, Schweins T, Dresler P, et al. Novel nucleic acid isolated from Tetrahymena which codes for a triterpenoid cyclase, its production, and use. US2003/0207317A1; 2003.
  • Kowalczyk CA, Anderson AM, Arce-Larreta M, et al. The germ line limited M element of Tetrahymena is targeted for elimination from the somatic genome by a homology-dependent mechanism. Nucleic Acids Res. 2006;34:5778–5789.
  • Clark T, Cassidy-Hanley D, Colussi P. Polypeptide expression in ciliates. WO2010/108183A1; 2010.
  • Peterson DS, Gao Y, Asokan K, et al. The circumsporozoite protein of Plasmodium falciparum is expressed and localized to the cell surface in the free-living ciliate Tetrahymena thermophila. Mol Biochem Parasitol. 2002;122:119–126.
  • Aldag I, Bockau U, Rossdorf J, et al. Expression, secretion and surface display of a human alkaline phosphatase by the ciliate Tetrahymena thermophila. BMC Biotechnol. 2011;11:11.
  • Colussi P, Papoyan A, Bisharyan Y, et al. Expression of voltage-gated ion channels in ciliates. WO2015171643A2; 2015.
  • Jayaram J, Papoyan A, Bisharyan Y, et al. An alternative platform for rapid production of effective subunit vaccines. BioPharm Int. 2010;23:6–13.
  • Clark T, Papoyan A, Turkewitz A. Production of recombinant proteins in ciliates and uses thereof. WO2010108182A2; 2010.
  • Turkewitz A, Briguglio J. Genetically altered ciliates and uses thereof. US20130224796A1; 2013.
  • Turkewitz A, Briguglio J, Santosh K. Expression profiling reveals cathepsins involved in secretory vesicle maturation In Tetrahymena thermophila. WO2015003136A1; 2015.
  • Busch CJ-L, Vogt A, Mochizuki K. Establishment of a Cre/loxP recombination system for N-terminal epitope tagging of genes in Tetrahymena. BMC Microbiol. 2010;10:191
  • Weide T, Bockau U, Rave A, et al. A recombinase system facilitates cloning of expression cassettes in the ciliate Tetrahymena thermophila. BMC Microbiol. 2007;7:12.
  • Kataoka K, Schoeberl UE, Mochizuki K. Modules for C-terminal epitope tagging of Tetrahymena genes. J Microbiol Methods. 2010;82:342–346.
  • De Luca BM, Nudel CB, Gonzalez RH, et al. Introducing the concept of biocatalysis in the classroom: the conversion of cholesterol to provitamin D3. Biochem Mol Biol Educ. 2017;45:105–114.
  • Stover NA. Tetrahymena Genome Database (TGD): a new genomic resource for Tetrahymena thermophila research. Nucleic Acids Res. 2006;34:D500–D503.
  • Smith JJ, Wiley EA, Cassidy-Hanley DM. Tetrahymena in the classroom. Methods Cell Biol. 2012;109:411–430.
  • Clark T, Bisharyan Y, Papoyan A, et al. Fusion proteins of ciliate granule lattice proteins, granular protein particles thereof, and uses therefor. US9512181B2; 2016.
  • Hartmann M, Sachse C, Apelt J, et al. System for the heterologous expression of a viral protein in a ciliate host cell. WO2010146043A2; 2010.
  • Jacek G, Dickerson H, Clark T. Recombinant expression of heterologous nucleic acids in protozoa. US6846481B1; 2005.
  • Eisen J, Coyne R, Wu M, et al. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol. 2006;4:e286.
  • Cid NG, Sanchez Granel ML, Montes MG, et al. Phylogenomic analysis of integral diiron membrane histidine motif-containing enzymes in ciliates provides insights into their function and evolutionary relationships. Mol Phylogenet Evol. 2017;114:1–13.
  • Hartmann M, Apelt J. Expression of monoclonal antibodies in ciliate host cells. WO2011107520A1; 2011.
  • Calow J, Behrens AJ, Mader S, et al. Antibody production using a ciliate generates unusual antibody glycoforms displaying enhanced cell-killing activity. MAbs. 2016;8:1498–1511.
  • Collins K. Production of aglycosylated monoclonal antibodies in ciliates. WO2011116387A1; 2011.
  • Taniguchi T, Mizuochi T, Banno Y, et al. Carbohydrates of lysosomal enzymes secreted by Tetrahymena pyriformis. J Biol Chem. 1985;260:13941–13946.
  • Weide T, Herrmann L, Bockau U, et al. Secretion of functional human enzymes by Tetrahymena thermophila. BMC Biotechnol. 2006;6:19.
  • Colussi P, Taron C. Production of glycoproteins in genetically modified ciliates. WO2011119498A1; 2011.
  • Wei W, Jing PZ, Xu AL. Tetrahymena cell line containing luciferase gene, construction method and applications thereof. CN102925464A; 2013.
  • Amaro F, Turkewitz AP, Martín-González A, et al. Functional GFP-metallothionein fusion protein from Tetrahymena thermophila: A potential whole-cell biosensor for monitoring heavy metal pollution and a cell model to study metallothionein overproduction effects. BioMetals. 2014;27:195–205.
  • Amaro F, Turkewitz AP, Martín-González A, et al. Whole-cell biosensors for detection of heavy metal ions in environmental samples based on metallothionein promoters from Tetrahymena thermophila. Microb Biotechnol 2011;4:513–522.
  • Miao W, Feng Lifang YD. Tetrahymena Cyp5013c2 protein and its coding gene and protein expression cyp5013c2. CN103223219B; 2015.
  • Zhigang ZD, Yuan Wei M, Yuting Z, et al. Tetrahymena expression vector of chitinases and its application in expressing chitinases. CN102517281B; 2011.
  • Rathore AS, Gupta RD. Chitinases from bacteria to human: properties, applications, and future perspectives. Enzyme Res. 2015;2015:791907.
  • Rusing M, Kiy T, Dominitzki A. Nucleic acid which is obtained from Tetrahymena and which codes for a delta-6-desaturase, the production thereof and use. US7135623B1; 2006.
  • Glaser AN, Nikaido H. Microbial biotechnology: fundamentals of applied microbiology. 2nd ed. Singapore: Cambridge University Press; 2007.
  • Witzany G, Nowacki M. Biocommunication of ciliates. Dordrecht: Springer; 2016.
  • Bracht JR, Fang W, Goldman AD, et al. Genomes on the edge: programmed genome instability in ciliates. Cell. 2013;152:406–416.
  • Wheatley DN, Rasmussen L, Tiedtke A. My favourite cell: Tetrahymena: a model for growth, cell cycle and nutritional studies, with biotechnological potential. BioEssays. 1994;16:367–372.
  • Tachado SD, Mazhari-Tabrizi R, Schofield L. Specificity in signal transduction among glycosylphosphatidylinositols of Plasmodium falciparum, Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. Parasite Immunol. 1999;21:609–617.
  • Sauvant MP, Pepin D, Piccinni E. Tetrahymena pyriformis: a tool for toxicological studies. A review. Chemosphere. 1999;38:1631–1669.
  • He D, Fiz-Palacios O, Fu CJ, et al. An alternative root for the eukaryote tree of life. Curr Biol. 2014;24:465–470.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.