1,082
Views
33
CrossRef citations to date
0
Altmetric
Review Article

A current approach to the control of filamentous fungal growth in media: microparticle enhanced cultivation technique

, &
Pages 192-201 | Received 30 Apr 2018, Accepted 01 Sep 2018, Published online: 04 Nov 2018

References

  • Posch AE, Herwig C, Spadiut O. Science-based bioprocess design for filamentous fungi. Trends Biotechnol. 2013;31:37–44.
  • Walisko R, Moench-Tegeder J, Blotenberg J, et al. The taming of the shrew controlling the morphology of filamentous eukaryotic and prokaryotic microorganisms. Adv Biochem Eng Biotechnol. 2015;149:1–27.
  • Zhang J, Zhang J. The filamentous fungal pellet and forces driving its formation. Crit Rev Biotechnol. 2016;36:1066–1077.
  • Yang J, Jiao RH, Yao L, et al. Control of fungal morphology for improved production of a novel antimicrobial alkaloid by marine-derived fungus Curvularia sp. IFB-Z10 under submerged fermentation. Process Biochem. 2016;51:185–194.
  • Walisko J, Vernen F, Pommerehne K, et al. Particle-based production of antibiotic rebeccamycin with Lechevalieria aerocolonigenes. Process Biochem. 2017;53:1–9.
  • Emerson S. The growth phase in Neurospora corresponding to the logarithmic phase in unicellular organisms. J Bacteriol. 1950;60:221.
  • Wittier R, Baumgartl H, Lübbers DW, et al. Investigations of oxygen transfer into Penicillium chrysogenum pellets by microprobe measurements. Biotechnol Bioeng. 1986;28:1024–1036.
  • Metz B, Kossen NWF. The growth of molds in the form of pellets–a literature review. Biotechnol Bioeng. 1977;19:781–799.
  • Etschmann MMW, Huth I, Walisko R, et al. Improving 2‐phenylethanol and 6‐pentyl‐α‐pyrone production with fungi by microparticle‐enhanced cultivation (MPEC). Yeast. 2015;32:145–157.
  • Antecka A, Bizukojc M, Ledakowicz S. Modern morphological engineering techniques for improving productivity of filamentous fungi in submerged cultures. World J Microbiol Biotechnol. 2016; 32:193.
  • Driouch H, Hänsch R, Wucherpfennig T, et al. Improved enzyme production by bio-pellets of Aspergillus niger: targeted morphology engineering using titanate microparticles. Biotechnol Bioeng. 2012;109:462–471.
  • Krull R, Wucherpfennig T, Esfandabadi ME, et al. Characterization and control of fungal morphology for improved production performance in biotechnology. J Biotechnol. 2013;163:112–123.
  • Gao D, Zeng J, Yu X, et al. Improved lipid accumulation by morphology engineering of oleaginous fungus Mortierella isabellina. Biotechnol Bioeng. 2014;111:1758–1766.
  • Antecka A, Blatkiewicz M, Bizukojć M, et al. Morphology engineering of basidiomycetes for improved laccase biosynthesis. Biotechnol Lett. 2016;38:667–672.
  • Dobson LF, O’Cleirigh CC, O’Shea DG. The influence of morphology on geldanamycin production in submerged fermentations of Streptomyces hygroscopicus var. geldanus. Appl Microbiol Biotechnol. 2008;79:859–866.
  • Lu T, Zhang Q, Yao S. Mycelial pellet formation of marine-derived fungus: new formation pathway directly from hyphae. Res Rev J Microbiol Biotechnol. 2015;4(2):18–25
  • Dobson LF, O’Shea DG. Antagonistic effect of divalent cations Ca2+ and Mg2+ on the morphological development of Streptomyces hygroscopicus var. geldanus. Appl Microbiol Biotechnol. 2008;81:119.
  • Driouch H, Sommer B, Wittmann C. Morphology engineering of Aspergillus niger for improved enzyme production. Biotechnol Bioeng. 2010;105:1058–1068.
  • Wucherpfennig T, Lakowitz A, Driouch H. Customization of Aspergillus niger morphology through addition of talc micro particles. J Vis Exp. 2012;61:4023.
  • Gonciarz J, Kowalska A, Bizukojc M. Application of microparticle-enhanced cultivation to increase the access of oxygen to Aspergillus terreus ATCC 20542 mycelium and intensify lovastatin biosynthesis in batch and continuous fed-batch stirred tank bioreactors. Biochem Eng J. 2016;109:178–188.
  • López JC, Pérez JS, Sevilla JF. Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. J Biotechnol. 2005;116:61–77.
  • Ibrahim D, Weloosamy H, Lim SH. Effect of agitation speed on the morphology of Aspergillus niger HFD5A-1 hyphae and its pectinase production in submerged fermentation. World J Biol Chem. 2015;6:265.
  • McIntyre M, Müller C, Dynesen J, et al. Metabolic engineering of the morphology of Aspergillus. Adv Biochem Eng/Biotechnol. 2001;73:104–128.
  • Cai M, Zhang Y, Hu W, et al. Genetically shaping morphology of the filamentous fungus Aspergillus glaucus for production of antitumor polyketide aspergiolide A. Microb Cell Fact. 2014;13:73.
  • Walisko R, Krull R, Schrader J, et al. Microparticle based morphology engineering of filamentous microorganisms for industrial bio-production. Biotechnol Lett. 2012;34:1975–1982.
  • Wucherpfennig T, Hestler T, Krull R. Morphology engineering-osmolality and its effect on Aspergillus niger morphology and productivity. Microb Cell Fact. 2011;10:58.
  • Bobowicz ‐Lassociska T, Grajek W. Changes in protein secretion of Aspergillus niger caused by the reduction of the water activity by potassium chloride. Acta Biotechnol. 1995;15:277–287.
  • Wucherpfennig T, Kiep KA, Driouch H, et al. Morphology and rheology in filamentous cultivations. Adv Appl Microbiol. 2010;72:89–136.
  • Coban HB, Demirci A, Turhan I. Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation. Bioprocess Biosyst Eng. 2015;38:1075–1080.
  • Coban HB, Demirci A. Enhancement and modeling of microparticle-added Rhizopus oryzae lactic acid production. Bioprocess Biosyst Eng. 2016;39:323–330.
  • Driouch H, Roth A, Dersch P, et al. Filamentous fungi in good shape: microparticles for tailor-made fungal morphology and enhanced enzyme production. Bioeng Bugs. 2011;2:100–104.
  • Cai L, Xiao HR, Huang SM, et al. Solubilization of magnesium-bearing silicate minerals and the subsequent formation of glushinskite by Aspergillus niger. Geomicrobiol J. 2013;30:302–312.
  • Kaup BA, Ehrich K, Pescheck M, et al. Microparticle-enhanced cultivation of filamentous microorganisms: increased chloroperoxidase formation by Caldariomyces fumago as an example. Biotechnol Bioeng. 2008;99:491–498.
  • Gonciarz J, Bizukojc M. Adding talc microparticles to Aspergillus terreus ATCC 20542 preculture decreases fungal pellet size and improves lovastatin production. Eng Life Sci. 2014;14:190–200.
  • Germec M, Yatmaz E, Karahalil E, et al. Effect of different fermentation strategies on β-mannanase production in fed-batch bioreactor system. 3 Biotech. 2017;7:77.
  • Yatmaz E, Karahalil E, Germec M, et al. Controlling filamentous fungi morphology with microparticles to enhanced β-mannanase production. Bioprocess Biosyst Eng. 2016;39:1391–1399.
  • Karahalil E, Demirel F, Evcan E, et al. Microparticle-enhanced polygalacturonase production by wild type Aspergillus sojae. 3 Biotech. 2017;7:361.
  • Huth I, Schrader J, Holtmann D. Microtiter plate‐based cultivation to investigate the growth of filamentous fungi. Eng Life Sci. 2017;17:1064–1070.
  • Papagianni M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv. 2004;22:189–259.
  • Serrano-Carreón L, Galindo E, Rocha-Valadéz JA, et al. Hydrodynamics, fungal physiology, and morphology. Adv Biochem Eng Biotechnol. 2015;149:55–90.
  • Driouch H, Roth A, Dersch P, et al. Optimized bioprocess for production of fructofuranosidase by recombinant Aspergillus niger. Appl Microbiol Biotechnol. 2010;87:2011–2024.
  • Coban HB, Demirci A, Turhan I. Enhanced Aspergillus ficuum phytase production in fed-batch and continuous fermentations in the presence of talcum microparticles. Bioprocess Biosyst Eng. 2015;38:1431–1436.
  • Niu K, Hu Y, Mao J, et al. Effect of microparticles on echinocandin B production by Aspergillus nidulans. Chinese J Biotechnol. 2015;31:1082–1088.
  • Bala A, Singh B. Cost-effective production of biotechnologically important hydrolytic enzymes by Sporotrichum thermophile. Bioprocess Biosyst Eng. 2016;39:181–191.
  • Kowalska A, Antecka A, Owczarz P, et al. Inulinolytic activity of broths of Aspergillus niger ATCC 204447 cultivated in shake flasks and stirred tank bioreactor. Eng Life Sci. 2017;17:1006–1020.
  • Nielsen J. Modelling the morphology of filamentous microorganisms. Trends Biotechnol. 1996;14:438–443.
  • Dong M, Wang S, Xu F, et al. Addition of aluminum oxide microparticles to Trichoderma viride My preculture enhances cellulase production and influences fungal morphology. Eng Life Sci. 2018;18(6):353–358.
  • Tao TL, Cui FJ, Chen XX, et al. Improved mycelia and polysaccharide production of Grifola frondosa by controlling morphology with microparticle talc. Microb Cell Fact. 2018;17:1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.