42,876
Views
58
CrossRef citations to date
0
Altmetric
Review Article

Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production

, , , , &
Pages 258-271 | Received 22 May 2018, Accepted 21 Oct 2018, Published online: 02 Jan 2019

References

  • Rodriguez-Lopez A, Almeciga-Diaz CJ, Sanchez J, et al. Recombinant human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) produced in the methylotrophic yeast Pichia pastoris. Sci Rep-UK. 2016;6:29329.
  • Meng DM, Zhao JF, Ling X, et al. Recombinant expression, purification and antimicrobial activity of a novel antimicrobial peptide PaDef in Pichia pastoris. Protein Expres Purif. 2017;130:90–99.
  • Hartmann L, Kugler V, Wagner R. Expression of eukaryotic membrane proteins in Pichia pastoris. Methods Mol Biol. 2016;1432:143–162.
  • Cereghino JL, Cregg JM. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev. 2000;24:45–66.
  • Zhan RR, Mu WM, Jiang B, et al. Efficient secretion of inulin fructotransferase in Pichia pastoris using the formaldehyde dehydrogenase 1 promoter. J Ind Microbiol Biotechnol. 2014;41:1783–1791.
  • Abdulrachman D, Thongkred P, Kocharin K, et al. Heterologous expression of Aspergillus aculeatus endo-polygalacturonase in Pichia pastoris by high cell density fermentation and its application in textile scouring. BMC Biotechnol. 2017;17:15.
  • Giesselmann E, Becker B, Schmitt MJ. Production of fluorescent and cytotoxic K28 killer toxin variants through high cell density fermentation of recombinant Pichia pastoris. Microb Cell Fact. 2017;16:228.
  • Yang Z, Zhang Z. Production of (2R,3R)-2,3-butanediol using engineered Pichia pastoris: strain construction, characterization and fermentation. Biotechnol Biofuels. 2018;11:35.
  • Li H, Wang S, Zhang Y, et al. High-Level Expression of a thermally stable alginate lyase using Pichia pastoris, characterization and application in producing brown alginate oligosaccharide. Mar Drugs. 2018;16:158.
  • Viña ‐Gonzalez J, Elbl K, et al. Functional expression of aryl‐alcohol oxidase in Saccharomyces cerevisiae and Pichia pastoris by directed evolution. Biotechnol Bioeng. 2018;115:1666–1674.
  • Sun Q, Chen F, Geng F, et al. A novel aspartic protease from Rhizomucor miehei expressed in Pichia pastoris and its application on meat tenderization and preparation of turtle peptides. Food Chem. 2018;245:570–577.
  • Li Q, Lu Q, Ma X, et al. High-level expression of biotin ligase BirA from Escherichia coli K12 in Pichia pastoris KM71. Int J Appl Microbiol Biotechnol Res. 2018;6:22–31.
  • Dagar VK, Khasa YP. Combined effect of gene dosage and process optimization strategies on high-level production of recombinant human interleukin-3 (hIL-3) in Pichia pastoris fed-batch culture. Int J Biol Macromol. 2018;108:999–1009.
  • Liu WC, Zhu P. Pilot studies on scale-up biocatalysis of 7-β-xylosyl-10-deacetyltaxol and its analogues by an engineered yeast. J Ind Microbiol Biotechnol. 2015;42:867–876.
  • Noseda DG, Blasco M, Recupero M, et al. Bioprocess and downstream optimization of recombinant bovine chymosin B in Pichia (Komagataella) pastoris under methanol-inducible AOXI promoter. Protein Expres Purif. 2014;104:85–91.
  • Han C, Su L, Hong R, et al. A comparative study of maltooligosyltrehalose synthase from Sulfolobus acidocaldarius expressed in Pichia pastoris and Escherichia coli. Process Biochem. 2017;60:35–41.
  • Zhou K, Dong Y, Zheng H, et al. Expression, fermentation, purification and lyophilisation of recombinant subtilisin QK in Pichia pastoris. Process Biochem. 2017;54:1–8.
  • Qureshi MS, Zhang D, Du G, et al. Improved production of polygalacturonate lyase by combining a pH and online methanol control strategy in a two-stage induction phase with a shift in the transition phase. J Ind Microbiol Biotechnol. 2010;37:323–333.
  • Coman SS. Optimization strategies and scale-up the production of a recombinant protein in a methylotropic yeast Pichia pastoris from eggshells. Sci Bull Series F Biotechnol. 2015;19:219–226.
  • Safder I, Khan S, Islam I-u, et al. Pichia pastoris expression system: a potential candidate to express protein in industrial and biopharmaceutical domains. Biomed Lett. 2018;4:1–13.
  • Zahrl RJ, Peña DA, Mattanovich D, et al. Systems biotechnology for protein production in Pichia pastoris. FEMS Yeast Res. 2017;17:fox068.
  • Yang Z, Zhang Z. Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: a review. Biotechnol Adv. 2018;36:182–195.
  • Portela RM, Vogl T, Ebner K, et al. Pichia pastoris alcohol oxidase 1 (AOX1) core promoter engineering by high resolution systematic mutagenesis. Biotechnol J. 2018;13:1700340.
  • Azadi S, Sadjady SK, Mortazavi SA, et al. Bioprocess and downstream optimization of recombinant human growth hormone in Pichia pastoris. Res Pharma Sci. 2018;13:222–238.
  • Macauley ‐Patrick S, Fazenda ML, et al. Heterologous protein production using the Pichia pastoris expression system. Yeast. 2005;22:249–270.
  • Brady JR, Whittaker CA, Dalvie NC, et al. Identifying the best Pichia pastoris base strain using functional genomics in “Microbial Engineering”. ECI Symposium Series. 2018: 14.
  • Ahmad M, Hirz M, Pichler H, et al. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol. 2014;98:5301–5317.
  • Çelik E, Çalık P. Production of recombinant proteins by yeast cells. Biotechnol Adv. 2012;30:1108–1118.
  • Vogl T, Gebbie L, Palfreyman RW, et al. Effect of plasmid design and type of integration event on recombinant protein expression in Pichia pastoris. Appl Environ Microb. 2018;84:02712–02717.
  • Potvin G, Ahmad A, Zhang Z. Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: a review. Biochem Eng J. 2012;64:91–105.
  • Prielhofer R, Reichinger M, Claes K, et al. Promoter and process engineering for recombinant protein production in Pichia pastoris towards simple, fast and methanol-free cultivation regimes and high product titers in “Microbial Engineering”. ECI Symposium Series. 2018: 40.
  • Prielhofer R, Reichinger M, Wagner N, et al. Superior proteina titers in half the fermentation time: Promoter and process engineering for the glucose‐regulated GTH1 promoter of Pichia pastoris. Biotechnol Bioeng. 2018;115(10): 2479–2488.
  • Jahic M, Veide A, Charoenrat T, et al. Process technology for production and recovery of heterologous proteins with Pichia pastoris. Biotechnol Progress. 2006;22:1465–1473.
  • Vogl T, Sturmberger L, Fauland PC, et al. Methanol independent induction in Pichia pastoris by simple derepressed overexpression of single transcription factors. Biotechnol Bioeng. 2018;115:1037–1050.
  • Braga A, Oliveira J, Silva R, et al. Impact of the cultivation strategy on resveratrol production from glucose in engineered Corynebacterium glutamicum. J Biotechnol. 2018;265:70–75.
  • Looser V, Bruhlmann B, Bumbak F, et al. Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol Adv. 2015;33:1177–1193.
  • Cereghino GP, Cereghino JL, Ilgen C, et al. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol. 2002;13:329–332.
  • Bracke A, Hoogewijs D, Dewilde S. Exploring three different expression systems for recombinant expression of globins: Escherichia coli, Pichia pastoris and Spodoptera frugiperda. Anal Biochem. 2018;543:62–70.
  • Trinh LB, Phue JN, Shiloach J. Effect of methanol feeding strategies on production and yield of recombinant mouse endostatin from Pichia pastoris. Biotechnol Bioeng. 2003;82:438–444.
  • Barrigon JM, Montesinos JL, Valero F. Searching the best operational strategies for Rhizopus oryzae lipase production in Pichia pastoris Mut(+) phenotype: methanol limited or methanol non-limited fed-batch cultures? Biochem Eng J. 2013;75:47–54.
  • Wang YP, Ben R, Hong Y, et al. High-level expression of L-glutamate oxidase in Pichia pastoris using multi-copy expression strains and high cell density cultivation. Protein Expres Purif. 2017;129:108–114.
  • Zhang WH, Bevins MA, Plantz BA, et al. Modeling Pichia pastoris growth on methanol and optimizing the production of a recombinant protein, the heavy-chain fragment C of botulinum neurotoxin, serotype A. Biotechnol Bioeng. 2000;70:1–8.
  • Cedillo VB, Martinez MJ, Arnau C, et al. Production of a sterol esterase from Ophiostoma piceae in batch and fed-batch bioprocesses using different Pichia pastoris phenotypes as cell factory. Biotechnol Progress. 2014;30:1012–1020.
  • Voss JP, Mittelheuser NE, Lemke R, et al. Advanced monitoring and control of pharmaceutical production processes with Pichia pastoris by using Raman spectroscopy and multivariate calibration methods. Eng Life Sci. 2017;17:1281–1294.
  • Liu W, Zhao W, Lai J, et al. RSM optimization of HSA/IL1Ra in Pichia pastoris overexpression strain and study of its in vivo activity in reducing hyperglycemia of GK rats. Biotechnol Appl Biochem. 2017;64:627–637.
  • Huang CJ, Damasceno LM, Anderson KA, et al. A proteomic analysis of the Pichia pastoris secretome in methanol-induced cultures. Appl Microbiol Biotechnol. 2011;90:235–247.
  • Wang QH, Liang L, Liu WC, et al. Enhancement of recombinant BmK AngM1 production in Pichia pastoris by regulating gene dosage, co-expressing with chaperones and fermenting in fed-batch mode. J Asian Nat Prod Res. 2017;19:581–594.
  • Guo WW, Yang HQ, Qiang SM, et al. Overproduction, purification, and property analysis of an extracellular recombinant fructosyltransferase. Eur Food Res Technol. 2016;242:1159–1168.
  • Gao MJ, Zheng ZY, Wu JR, et al. Improvement of specific growth rate of Pichia pastoris for effective porcine interferon-α production with an on-line model-based glycerol feeding strategy. Appl Microbiol Biotechnol. 2012;93:1437–1445.
  • Ding J, Zhang CL, Gao MJ, et al. Enhanced porcine circovirus Cap protein production by Pichia pastoris with a fuzzy logic DO control based methanol/sorbitol co-feeding induction strategy. J Biotechnol. 2014;177:35–44.
  • Parashar D, Satyanarayana T. Production of chimeric acidic α-amylase by the recombinant Pichia pastoris and its applications. Front Microbiol. 2017;8:493.
  • Raschmanová H, Paulová L, Branská B, et al. Production and cleavage of a fusion protein of porcine trypsinogen and enhanced green fluorescent protein (EGFP) in Pichia pastoris. Folia Microbiol. 2018;63:773–787.
  • Lima ‐Pérez J, Rodríguez, ‐et al. Differences in growth physiology and aggregation of Pichia pastoris cells between solid‐state and submerged fermentations under aerobic conditions. J Chem Technol Biot. 2018;93:527–532.
  • Magdouli S, Brar SK, Blais JF. Morphology and rheological behaviour of Yarrowia lipolytica: impact of dissolved oxygen level on cell growth and lipid composition. Process Biochem. 2018;65:1–10.
  • Decamps K, Joye IJ, De Vos DE, et al. Molecular oxygen and reactive oxygen species in bread-making processes: Scarce, but nevertheless important. Crit Rev Food Sci Nutr. 2016;56:722–736.
  • Lopes M, Oliveira C, Domingues L, et al. Enhanced heterologous protein production in Pichia pastoris under increased air pressure. Biotechnol Progress. 2014;30:1040–1047.
  • Liu WC, Gong T, Wang QH, et al. Scaling-up fermentation of Pichia pastoris to demonstration-scale using new methanol-feeding strategy and increased air pressure instead of pure oxygen supplement. Sci Rep-UK. 2016;6:18439.
  • Ata Ö, Boy E, Güneş H, et al. Codon optimization of xylA gene for recombinant glucose isomerase production in Pichia pastoris and fed-batch feeding strategies to fine-tune bioreactor performance. Bioprocess Biosyst Eng. 2015;38:889–903.
  • Huang P, Shi J, Sun Q, et al. Engineering Pichia pastoris for efficient production of a novel bifunctional Strongylocentrotus purpuratus invertebrate-type lysozyme. Appl Biochem Biotechnol. 2018;2:1–17.
  • Barrigon JM, Valero F, Montesinos JL. A macrokinetic model‐based comparative meta‐analysis of recombinant protein production by Pichia pastoris under AOX1 promoter. Biotechnol Bioeng. 2015;112:1132–1145.
  • Healey RD, Lebhar H, Hornung S, et al. An improved process for the production of highly purified recombinant thaumatin tagged-variants. Food Chem. 2017;237:825–832.
  • Sackstein R. Compositions and methods for modifying cell surface glycans. Patents. US patent 8084236. 2018;
  • Chopda VR, Rathore AS, Gomes J. Maximizing biomass concentration in baker's yeast process by using a decoupled geometric controller for substrate and dissolved oxygen. Bioresource Technol. 2015;196:160–168.
  • Cheng HL, Zhao RY, Chen TJ, et al. Cloning and characterization of the glycoside hydrolases that remove xylosyl groups from 7-β-xylosyl-10-deacetyltaxol and its analogues. Mol Cell Proteomics. 2013;12:2236–2248.
  • Liu WC, Zhu P. Demostration-scale high-cell-density fermentation of Pichia pastoris. In: Recombinant glycoprotein production. Methods in Molecular Biology. 2018;1674:109–116.
  • Melo N, Mulder KC, Nicola AM, et al. Effect of pyruvate decarboxylase knockout on product distribution using Pichia pastoris (Komagataella phaffii) engineered for lactic acid production. Bioengineering. 2018;5:17.
  • Kiviharju K, Salonen K, Moilanen U, et al. Biomass measurement online: the performance of in situ measurements and software sensors. J Ind Microbiol Biotechnol. 2008;35:657–665.
  • Ansari AM, Majidzadeh-A K, Darvishi B, et al. Extremely low frequency magnetic field enhances glucose oxidase expression in Pichia pastoris GS115. Enzyme Microb Tech. 2017;98:67–75.
  • Wang ZH, Wang Y, Zhang DX, et al. Enhancement of cell viability and alkaline polygalacturonate lyase production by sorbitol co-feeding with methanol in Pichia pastoris fermentation. Bioresource Technol. 2010;101:1318–1323.
  • Zepeda AB, Figueroa CA, Pessoa A, et al. Free fatty acids reduce metabolic stress and favor a stable production of heterologous proteins in Pichia pastoris. Braz J Microb. 2018;8382:30603–30602.
  • Hohenblum H, Borth N, Mattanovich D. Assessing viability and cell-associated product of recombinant protein producing Pichia pastoris with flow cytometry. J Biotechnol. 2003;102:281–290.
  • Xiao A, Zhou X, Zhou L, et al. Improvement of cell viability and hirudin production by ascorbic acid in Pichia pastoris fermentation. Appl Microbiol Biotechnol. 2006;72:837–844.
  • Reséndiz-Cardiel G, Arroyo R, Ortega-López J. Expression of the enzymatically active legumain-like cysteine proteinase TvLEGU-1 of Trichomonas vaginalis in Pichia pastoris. Protein Expres Purif. 2017;134:104–113.
  • Burgard J, Valli M, Graf AB, et al. Biomarkers allow detection of nutrient limitations and respective supplementation for elimination in Pichia pastoris fed-batch cultures. Microb Cell Fact. 2017;16:117.
  • Schlenzig D, Schilling S. Heterologous expression of the astacin protease meprin β in Pichia pastoris. Methods Mol Biol. 2017;1579:35–45.
  • Luniak N, Meiser P, Burkart S, et al. Heterologous expression of the plant cysteine protease bromelain and its inhibitor in Pichia pastoris. Biotechnol Progress. 2017;33:54–65.
  • Liu Y, Yang S, Yan Q, et al. High-level expression of a novel protease-resistant α-galactosidase from Thielavia terrestris. Process Biochem. 2018;71:82–91.
  • Spadiut O, Zalai D, Dietzsch C, et al. Quantitative comparison of dynamic physiological feeding profiles for recombinant protein production with Pichia pastoris. Bioprocess Biosyst Eng. 2014;37:1163–1172.
  • Gmeiner C, Saadati A, Maresch D, et al. Development of a fed-batch process for a recombinant Pichia pastoris Δoch1 strain expressing a plant peroxidase. Microb Cell Fact. 2015;14:1.
  • Cos O, Ramón R, Montesinos JL, et al. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact. 2006;5:17.
  • Azadi S, Mahboubi A, Naghdi N, et al. Evaluation of sorbitol-methanol co-feeding strategy on production of recombinant human growth hormone in Pichia pastoris. Iran J Pharm Res: IJPR. 2017;16:1555.
  • Nakagawa T, Wakayama K, Hayakawa T. Selection of suitably non-repressing carbon sources for expression of alcohol oxidase isozyme promoters in the methylotrophic yeast Pichia methanolica. J Biosci Bioeng. 2015;120:41–44.
  • Li C, Lin Y, Zheng X, et al. Combined strategies for improving expression of Citrobacter amalonaticus phytase in Pichia pastoris. BMC Biotechnol. 2015;15:88.
  • Li L, Huang C, Zhao F, et al. Improved production and characterization of Volvariella volvacea Endoglucanase 1 expressed in Pichia pastoris. Protein Expr Purif. 2018;152:107–113.
  • Kazemali MR, Majidzadeh K, Sardari S, et al. Enhanced truncated-t-PA (CT-b) expression in high-cell-density fed-batch cultures of Pichia pastoris through optimization of a mixed feeding strategy by response surface methodology. Bioprocess Biosyst Eng. 2016;39:565–573.
  • Jorda J, de Jesus SS, Peltier S, et al. Metabolic flux analysis of recombinant Pichia pastoris growing on different glycerol/methanol mixtures by iterative fitting of NMR-derived (13)C-labelling data from proteinogenic amino acids. N Biotechnol. 2014;31:120–132.
  • Capone S, Horvat J, Herwig C, et al. Development of a mixed feed strategy for a recombinant Pichia pastoris strain producing with a de-repression promoter. Microb Cell Fact. 2015;14:101.
  • Xia Y, Yang L, Xia L. High-level production of a fungal β-glucosidase with application potentials in the cost-effective production of Trichoderma reesei cellulase. Process Biochem. 2018;70:55–60.
  • Gunes H, Boy E, Ata O, et al. Methanol feeding strategy design enhances recombinant human growth hormone production by Pichia pastoris. J Chem Technol Biotechnol. 2016;91:664–671.
  • Gao MJ, Zhan XB, Gao P, et al. Improving performance and operational stability of porcine interferon-alpha production by Pichia pastoris with combinational induction strategy of low temperature and methanol/sorbitol co-feeding. Appl Biochem Biotechnol. 2015;176:493–504.
  • Celik E, Calik P, Oliver SG. Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol. Yeast. 2009;26:473–484.
  • Camattari A, Goh A, Yip LY, et al. Characterization of a panARS-based episomal vector in the methylotrophic yeast Pichia pastoris for recombinant protein production and synthetic biology applications. Microb Cell Fact. 2016;15:139
  • Maity N, Thawani A, Sharma A, et al. Expression and control of codon-optimized granulocyte colony-stimulating factor in Pichia pastoris. Appl Biochem Biotechnol. 2016;178:159–172.
  • Niu H, Jost L, Pirlot N, et al. A quantitative study of methanol/sorbitol co-feeding process of a Pichia pastoris Mut(+)/pAOX1-lacZ strain. Microb Cell Fact. 2013;12:33.
  • Carly F, Niu H, Delvigne F, et al. Influence of methanol/sorbitol co-feeding rate on pAOX1 induction in a Pichia pastoris Mut+ strain in bioreactor with limited oxygen transfer rate. J Ind Microbiol Biotechnol. 2016;43:517–523.
  • Theron CW, Berrios J, Delvigne F, et al. Integrating metabolic modeling and population heterogeneity analysis into optimizing recombinant protein production by Komagataella (Pichia) pastoris. Appl Microbiol Biotechnol. 2018;102:63–80.
  • Ndayambaje JB, Meenakshisundaram S. Co-feeding strategy to enhance phytase production in Pichia pastoris. Afr J Biotechnol. 2014;13:2181–2187.
  • Prabhu AA, Veeranki VD. Metabolic engineering of Pichia pastoris GS115 for enhanced pentose phosphate pathway (PPP) flux toward recombinant human interferon gamma (hIFN-γ) production. Mol Biol Rep. 2018;45:961–972.
  • Eskitoros MŞ, Çalık P. Calik P. Co-substrate mannitol feeding strategy design in semi-batch production of recombinant human erythropoietin production by Pichia pastoris. J Chem Technol Biotechnol. 2014;89:644–651.
  • Gu L, Zhang J, Liu B, et al. High-Level extracellular production of glucose oxidase by recombinant Pichia pastoris using a combined strategy. Appl Biochem Biotechnol. 2015;175:1429–1447.
  • Zhan C, Yang Y, Zhang Z, et al. Transcription factor Mxr1 promotes the expression of Aox1 by repressing glycerol transporter 1 in Pichia pastoris. FEMS Yeast Res. 2017;17:105.
  • Arias CAD, Marques DAV, Malpiedi LP, et al. Cultivation of Pichia pastoris carrying the scFv anti LDL(-) antibody fragment. Effect of preculture carbon source. Braz J Microbiol. 2017;48:419–426.
  • Paulova L, Hyka P, Branska B, et al. Use of a mixture of glucose and methanol as substrates for the production of recombinant trypsinogen in continuous cultures with Pichia pastoris Mut(+). J Biotechnol. 2012;157:180–188.
  • Hemmerich J, Adelantado N, Barrigón J, et al. Comprehensive clone screening and evaluation of fed-batch strategies in a microbioreactor and lab scale stirred tank bioreactor system: application on Pichia pastoris producing Rhizopus oryzae lipase. Microb Cell Fact. 2014;13:36.
  • Xie JL, Zhou QW, Peng D, et al. Use of different carbon sources in cultivation of recombinant Pichia pastoris for angiostatin production. Enzyme Microb Tech. 2005;36:210–216.
  • Surribas A, Cos O, Montesinos J, et al. On-line monitoring of the methanol concentration in Pichia pastoris cultures producing an heterologous lipase by sequential injection analysis. Biotechnol Let. 2003;25:1795–1800.
  • Schenk J, Marison IW, von Stockar U. A simple method to monitor and control methanol feeding of Pichia pastoris fermentations using mid-IR spectroscopy. J Biotechnol. 2007;128:344–353.
  • Jia L, Mpofu E, Tu T, et al. Transcriptional analysis for carbon metabolism and kinetic modeling for heterologous proteins productions by Pichia pastoris in induction process with methanol/sorbitol co-feeding. Process Biochem. 2017;59:159–166.
  • Kim S, d′Anjou M, Lanz KJ, et al. Real-time monitoring of glycerol and methanol to enhance antibody production in industrial Pichia pastoris bioprocesses. Biochem Eng J. 2015;94:115–124.
  • Berdichevsky M, d’Anjou M, Mallem MR, et al. Improved production of monoclonal antibodies through oxygen-limited cultivation of glycoengineered yeast. J Biotechnol. 2011;155:217–224.
  • Trentmann O, Khatri NK, Hoffmann F. Reduced oxygen supply increases process stability and product yield with recombinant Pichia pastoris. Biotechnol Prog. 2004;20:1766–1775.
  • Charoenrat T, Ketudat-Cairns M, Stendahl-Andersen H, et al. Oxygen-limited fed-batch process: an alternative control for Pichia pastoris recombinant protein processes. Bioprocess Biosyst Eng. 2005;27:399–406.
  • Zepeda AB, Figueroa CA, Abdalla DS, et al. HSF-1, HIF-1 and HSP90 expression on recombinant Pichia pastoris under fed-batch fermentation. Braz J Microbiol. 2014;45:485–490.
  • Jahic M. Pichia Pastoris: A platform organism to produce proteins. In: Wilmington, DE, USA: DuPont Central Research and Development; 2012.
  • Pimentel N, Rodríguez-Lopez A, Díaz S, et al. Production and characterization of a human lysosomal recombinant iduronate-2-sulfatase produced in Pichia pastoris. Biotechnol Appl Biochem.2018;65:655–664.
  • Xiao X, Liu Z, Chen Y, et al. Over-expression of active Candida rugosa lip1 in Pichia pastoris via high cell-density fermentation and its application to resolve racemic ibuprofen. Biocatal Biotransform. 2015;33:260–269.
  • Damasceno L, Ritter G, Batt CA. Process development for production and purification of the Schistosoma mansoni Sm14 antigen. Protein Expres Purif. 2017;134:72–81.
  • Faridi S, Satyanarayana T. Thermo-alkali-stable α-carbonic anhydrase of Bacillus halodurans: heterologous expression in Pichia pastoris and applicability in carbon sequestration. Environ Sci Pollut Res. 2018;25:6838–6849.
  • Dragosits M, Frascotti G, Bernard-Granger L, et al. Influence of growth temperature on the production of antibody Fab fragments in different microbes: a host comparative analysis. Biotechnol Progress. 2011;27:38–46.
  • Zhong Y, Yang L, Guo Y, et al. High-temperature cultivation of recombinant Pichia pastoris increases endoplasmic reticulum stress and decreases production of human interleukin-10. Microb Cell Fact. 2014;13:163.
  • Kang Z, Zhang N, Zhang Y. Enhanced production of leech hyaluronidase by optimizing secretion and cultivation in Pichia pastoris. Appl Microbiol Biotechnol. 2016;100:707–717.
  • Chongchittapiban P, Borg J, Waiprib Y, et al. On-line methanol sensor system development for recombinant human serum albumin production by Pichia pastoris. Afr J Biotechnol. 2016;15:2374–2383.
  • Sigar M, Maity N, Mishra S. Enhancing granulocyte colony-stimulating factor expression in Pichia pastoris through fusion with human serum albumin. Prep Biochem Biotech. 2017;47:364–370.
  • Chagas B, Farinha I, Galinha CF, et al. Chitin-glucan complex production by Komagataella (Pichia) pastoris: impact of cultivation pH and temperature on polymer content and composition. N Biotechnol. 2014;31:468–474.
  • Wu DC, Qu LZ, Fu Y, et al. Expression and purification of the kinase domain of PINK1 in Pichia pastoris. Protein Expr Purif. 2016;128:67–72.
  • Lan D, Qu M, Yang B, et al. Enhancing production of lipase MAS1 from marine Streptomyces sp. strain in Pichia pastoris by chaperones co-expression. Electron J Biotechnol. 2016;22:62–67.
  • Eissazadeh S, Moeini H, Dezfouli MG, et al. Production of recombinant human epidermal growth factor in Pichia pastoris. Braz J Microbiol. 2017;48:286–293.
  • Li ZM, Zhao GH, Liu H, et al. Biotransformation of menadione to its prenylated derivative MK-3 using recombinant Pichia pastoris. J Ind Microbiol Biotechnol. 2017;44:973–985.
  • Ahmadpour F, Yakhchali B, Fatemi SS, et al. Cloning and expression of an indigenous mesophile lipase and evaluation of Bacillus codon translation in Pichia pastoris under control of two different promoters. J Appl Biotechnol Rep. 2016;3:413–418.
  • Athmaram TN, Singh AK, Saraswat S, et al. A simple Pichia pastoris fermentation and downstream processing strategy for making recombinant pandemic Swine Origin Influenza a virus Hemagglutinin protein. J Ind Microbiol Biotechnol. 2013;40:245–255.
  • Rajamanickam V, Winkler M, Flotz P, et al. Comparison of purification strategies of three horseradish peroxidase isoenzymes recombinantly produced in Pichia pastoris. J Chromatogr Sep Tech. 2016;7:1000316.
  • Irani ZA, Maghsoudi A, Shojaosadati SA, et al. Development and in silico analysis of a new nitrogen-limited feeding strategy for fed-batch cultures of Pichia pastoris based on a simple pH-control system. Biochem Eng J. 2015;98:1–9.
  • Shen W, Xue Y, Liu Y, et al. A novel methanol-free Pichia pastoris system for recombinant protein expression. Microb Cell Fact. 2016;15:178.
  • Müller JM, Bruhn S, Flaschel E, et al. GAP promoter-based fed-batch production of highly bioactive core streptavidin by Pichia pastoris. Biotechnol Progress. 2016;32:855–864.
  • Landes N, Gasser B, Vorauer-Uhl K, et al. The vitamin-sensitive promoter PTHI11 enables pre-defined autonomous induction of recombinant protein production in Pichia pastoris. Biotechnol Bioeng. 2016;113:2633–2643.
  • Looser V, Luthy D, Straumann M, et al. Effects of glycerol supply and specific growth rate on methanol-free production of CALB by P-pastoris: functional characterisation of a novel promoter. Appl Microbiol Biotechnol. 2017;101:3163–3176.
  • Vogl T, Glieder A. Regulation of Pichia pastoris promoters and its consequences for protein production. N Biotechnol.. 2013;30:385–404.
  • Vogl T, Ruth C, Pitzer J, et al. Synthetic core promoters for Pichia pastoris. ACS Synth Biol. 2014;3:188–191.
  • Wang J, Wang X, Shi L, et al. Methanol-independent protein expression by AOX1 promoter with trans-acting elements engineering and glucose-glycerol-shift induction in Pichia pastoris. Sci Rep. 2017;7:41850.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.