1,887
Views
64
CrossRef citations to date
0
Altmetric
Review Article

Strategies for recycling and valorization of grape marc

, , &
Pages 437-450 | Received 09 Mar 2018, Accepted 09 Nov 2018, Published online: 02 Apr 2019

References

  • Hussain M, Cholette S, Castaldi RM. An analysis of globalization forces in the wine industry: implications and recommendations for wineries. J Global Market. 2008;21:33–47.
  • Mateo JJ, Maicas S. Valorization of winery and oil mill wastes by microbial technologies. Food Res Int. 2015;73:13–25.
  • Devesa-Rey R, Vecino X, Varela-Alende JL, et al. Valorization of winery waste vs. the costs of not recycling. Waste Manage. 2011;31:2327–2335.
  • Food and Agriculture Organization of the United Nations. FAO STAT 2015 [Internet]. [cited 2016 Apr 01]. Available from: http://faostat.fao.org.
  • Spigno G, Marinoni L, Garrido G. State of the art in grape processing by-products. In: Galanakis CM, editor. Handbook of grape processing by-products: sustainable solutions. London, UK: Academic Press, Elsevier; 2017. p. 1–23.
  • Dávila I, Robles E, Egüés I, et al. The biorefinery concept for the industrial valorization of grape-processing byproducts. In: Galanakis CM, editor. Handbook of grape processing by-products: sustainable solutions. London, UK: Academic Press, Elsevier; 2017. p. 29–49.
  • González-Centeno MR, Rosselló C, Simal S, et al. Physicochemical properties of cell wall materials obtained from ten grape varieties and their byproducts: grape pomaces and stems. LWT Food Sci Technol. 2010;43:1580–1586.
  • Domínguez J, Martínez-Cordeiro H, Álvarez-Casas M, et al. Vermicomposting grape marc yields high quality organic biofertiliser and bioactive polyphenols. Waste Manage Res. 2014;32:1235–1240.
  • Domínguez J, Martínez-Cordeiro H, Lores M. Simultaneous production of a high-quality biofertilizer and bioactive-rich seeds. In: Morata A, Loira I, editors. Grape and wine biotechnology. Rijeka, Croatia: Intech Open Science; 2016. p. 167–183.
  • Muhlack RA, Potumarthi R, Jeffery DW. Sustainable wineries through waste valorisation: a review of grape marc utilisation for value-added products. Waste Manage. 2018;72:99–118.
  • Fontana AR, Antoniolli A, Bottini R. Grape pomace as a sustainable source of bioactive compounds: extraction, characterization, and biotechnological applications of phenolics. J Agric Food Chem. 2013;61:8987–9003.
  • Bustamante MA, Said-Pullicino D, Paredes C, et al. Influences of winery-distillery waste compost stability and soil type on soil carbon dynamics in amended soils. Waste Manage. 2010;30:1966–1975.
  • Requejo MI, Fernández-Rubín de Felis M, Martínez-Caro R, et al. Winery and distillery derived materials as phosphorus source in calcareous soils. Catena. 2016;141:30–38.
  • Domínguez J, Sánchez-Hernández JC, Lores M. Vermicomposting of wine-making products. In: Galanakis CM, editor. Handbook of grape processing by-products: sustainable solutions. London, UK: Academic Press, Elsevier; 2017. p. 55–78.
  • Christ KL, Burritt RL. Critical environmental concerns in wine production: an integrative review. J Clean Prod. 2013;53:232–242.
  • Bertran E, Sort X, Soliva M, et al. Composting winery waste: sludges and grape stalks. Bioresour Technol. 2004;95:203–208.
  • Bustamante MA, Paredes C, Moral R, et al. Co-composting of distillery and winery wastes with sewage sludge. Water Sci Technol. 2007;56:187–192.
  • Bustamante MA, Moral R, Paredes C, et al. Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry. Waste Manage. 2008;28:372–380.
  • Bustamante MA, Pared C, Marhuenda-Egea FC, et al. Co-composting of distillery wastes with animal manures: carbon and nitrogen transformations in the evaluation of compost stability. Chemosphere. 2008;72:551–557.
  • Bustamante MA, Paredes C, Morales J, et al. Study of the composting process of winery and distillery wastes using multivariate analyses. Bioresour Technol. 2009;100:4766–4772.
  • Fernández-Bayo JD, Nogales R, Romero E. Assessment of three vermicomposts as organic amendments used to enhance diuron sorption in soils with low organic carbon content. Eur J Soil Sci. 2009;60:935–942.
  • Fernández-Bayo JD, Nogales R, Romero E. Winery vermicomposts to control the leaching of diuron, imidacloprid and their metabolites: role of dissolved organic carbon content. J Environ Sci Health B. 2015;50:190–200.
  • Ferrer J, Páez G, Mármol Z, et al. Agronomic use of biotechnologically processed grape wastes. Bioresour Technol. 2001;76:39–44.
  • Flavel TC, Murphy DV, Lalor BM, et al. Gross N mineralization rates after application of composted grape marc to soil. Soil Biol Biochem. 2005;37:1397–1400.
  • Moldes AB, Vázquez M, Domínguez JM, et al. Evaluation of mesophilic biodegraded grape marc as soil fertilizer. Appl Biochem Biotechnol. 2007;141:27–36.
  • Paradelo R, Moldes AB, Barral MT. Properties of slate mining wastes incubated with grape marc compost under laboratory conditions. Waste Manage. 2009;29:579–584.
  • Paradelo R, Moldes AB, Barral MT. Amelioration of the physical properties of slate processing fines using grape marc compost and vermicompost. Soil Sci Soc Am J. 2009;73:1251–1260.
  • Paradelo R, Moldes AB, Barral MT. Utilization of a factorial design to study the composting of hydrolyzed grape marc and vinification lees. J Agric Food Chem. 2010;58:3085–3092.
  • Paradelo R, Moldes AB, Prieto B, et al. Can stability and maturity be evaluated in finished composts from different sources? Compost Sci Util. 2010;18:22–31.
  • Paradelo R, Moldes AB, Barral MT. Carbon and nitrogen mineralization in a vineyard soil amended with grape marc vermicompost. Waste Manage Res. 2011;29:1177–1184.
  • Paradelo R, Moldes AB, González D, et al. Plant tests for determining the suitability of grape marc composts as components of plant growth media. Waste Manage Res. 2012;30:1059–1065.
  • Paradelo R, Moldes AB, Barral MT. Evolution of organic matter during the mesophilic composting of lignocellulosic winery wastes. J Environ Manage. 2013;116:18–26.
  • Zhang L, Sun X. Improving green waste composting by addition of sugarcane bagasse and exhausted grape marc. Bioresour. Technol. 2016;218:335–343.
  • Hungría J, Gutiérrez MC, Siles JA, et al. Advantages and drawbacks of OFMSW and winery waste co-composting at pilot scale. J. Cleaner Prod. 2017;164:1050–1057.
  • García-Sánchez M, Taušnerová H, Hanč A, et al. Stabilization of different starting materials through vermicomposting in a continuous-feeding system: changes in chemical and biological parameters. Waste Manage. 2017;62:33–42.
  • Gómez-Brandón M, Lazcano C, Lores M, et al. Short-term stabilization of grape marc through earthworms. J Hazard Mater. 2011;187:291–295.
  • Martínez-Cordeiro H, Álvarez-Casas M, Lores M, et al. Vermicompostaje de bagazo de uva: fuente de enmienda orgánica de alta calidad agrícola y de polifenoles bioactivos. Recursos Rurais. 2013;9:55–63.
  • Nogales R, Cifuentes C, Benítez E. Vermicomposting of winery wastes: a laboratory study. J Environ Sci Health B. 2005;40:659–673.
  • Romero E, Plaza C, Senesi N, et al. Humic acid-like fractions in raw and vermicomposted winery and distillery wastes. Geoderma. 2007;139:397–406.
  • Insam H, Gómez-Brandón M, Ascher J. Manure-based biogas fermentation residues – friend or foe of soil fertility? Soil Biol Biochem. 2015;84:1–14.
  • Álvarez-Casas M, García-Jares C, Llompart M, et al. Effect of experimental parameters in the pressurized solvent extraction of polyphenolic compounds from white grape marc. Food Chem. 2014;15:524–532.
  • Álvarez-Casas M, Pájaro M, Lores M, et al. Characterization of grape marcs from native and foreign white varieties grown in northwestern Spain by their polyphenolic composition and antioxidant activity. Eur Food Res Technol. 2016;242:655–665.
  • Barba FJ, Zhu Z, Koubaa M, et al. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: a review. Trends Food Sci Technol. 2016;49:96–109.
  • García-Jares C, Vazquez A, Lamas JP, et al. Antioxidant white grape seed phenolics: pressurized liquid extracts from different varieties. Antioxidants (Basel). 2015;4:737–749.
  • Lores M, Iglesias-Estévez M, Álvarez-Casas M, et al. Extraction of bioactive polyphenols from grape marc by a matrix solid-phase dispersion method. Recursos Rurais. 2012;8:39–47.
  • Lores M, Álvarez-Casas M, Llompart M, et al. Uvariño: cosmetic power from white grapes. Express Cosmétique. 2013;23:146–149.
  • Odlare M, Pell M, Svensson K. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues. Waste Manage. 2008;28:1246–1253.
  • Odlare M, Arthurson V, Pell M, et al. Land application of organic waste—effects on the soil ecosystem. Appl Energ. 2011;88:2210–2218.
  • Frąc M, Oszust K, Lipiec J. Community level physiological profiles (CLPP), characterization and microbial activity of soil amended with dairy sewage sludge. Sensors. 2012;12:3253–3268.
  • Nkoa R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agron Sustain Dev. 2014;34:473–492.
  • Moletta R. Winery and distillery wastewater treatment by anaerobic digestion. Water Sci Technol. 2005;51:137–144.
  • Da Ros C, Cavinato C, Pavan P, et al. Winery waste recycling through anaerobic co-digestion with waste activated sludge. Waste Manage. 2014;34:2028–2035.
  • Insam H, Markt R. Comment on “Synergistic co-digestion of solid-organic-waste and municipal-sewage-sludge: 1 plus 1 equals more than 2 in terms of biogas production and solids reduction [Water Research 87, 416–425]”. Water Res. 2016;95:392–393.
  • Blagodatskaya E, Kuzyakov Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fertil Soils. 2008;45:115–131.
  • Da Ros C, Cavinato C, Bolzonella D, et al. Renewable energy from thermophilic anaerobic digestion of winery residue: preliminary evidence from batch and continuous lab-scale trials. Biomass Bioenerg. 2016;91:150–159.
  • Fabbri A, Bonifazi G, Serranti S. Micro-scale energy valorization of grape marcs in winery production plants. Waste Manage. 2015;36:156–165.
  • Cáceres CX, Cáceres RE, Hein D, et al. Biogas production from grape pomace: thermodynamic model of the process and dynamic model of the power generation system. Int J Hydrogen Energy. 2012;37:10111–10117.
  • Failla S, Restuccia A. Methane potentials from grape marc by a laboratory scale plant. AMS. 2014;8:6665–6678.
  • El Achkar JH, Lendormi T, Hobaika Z, et al. Anaerobic digestion of grape pomace: biochemical characterization of the fractions and methane production in batch and continuous digesters. Waste Manage. 2016;50:275–282.
  • Xu YM, Zhang WD, Xu R, et al. Study on the potential of biogas production from grape seed by anaerobic digestion before and after oil-extracting. Renew Energy Resour. 2011;29:78–80.
  • Eleutheria N, Maria I, Vasiliki T, et al. Energy recovery and treatment of winery wastes by a compact anaerobic digester. Waste Biomass Valor. 2016;7:799–805.
  • Lempereur V, Penavayre S. Grape marc, wine lees and deposit of the must: how to manage oenological by-products? BIO Web of Conferences; 2014. EDP Sciences. p. 01011.
  • Domínguez J, Edwards CA. Relationships between composting and vermicomposting: relative values of the products. In: Edwards CA, Arancon NQ, Sherman RL, editors. Vermiculture technology: earthworms, organic waste and environmental management. Boca Raton (FL): CRC Press; 2011. p. 1–14.
  • Gómez-Brandón M, Podmirseg S. Biological waste treatment. Editorial letter. Waste Manage Res. 2013;31:773–774.
  • Gómez-Brandón M, Domínguez J. Recycling of solid organic wastes through vermicomposting: microbial community changes throughout the process and use of vermicompost as a soil amendment. Crit Rev Environ Sci Technol. 2014;44:1289–1312.
  • Lazcano C, Domínguez J. The use of vermicompost in sustainable agriculture: impact on plant growth and soil fertility. In: Miransari M, editor. Soil nutrients. New York: Nova Science Publishers; 2011. p. 230–254.
  • Ros M, Klammer S, Knapp BA, et al. Long term effects of soil compost amendment on functional and structural diversity and microbial activity. Soil Use Manage. 2006;22:209–218.
  • Luo G, Li L, Friman V-P, et al. Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: a meta-analysis. Soil Biol Biochem. 2018;124:105–115.
  • Agegnehu G, Nelson PN, Bird MI. Crop yield, plant nutrient uptake and soil physicochemical properties under organic soil amendments and nitrogen fertilization on nitisols. Soil Tillage Res. 2016;160:1–13.
  • Farrel M, Perkins WT, Hobbs PJ, et al. Migration of heavy metals in soil as influenced by compost amendments. Environ Pollut. 2010;158:55–64.
  • Graefe G. Energy from grape marc. Vienna, Austria: Ministry of Science and Research; 1979.
  • Streichsbier F, Messner K, Wessely M, et al. The microbiological aspects of grape marc humification. Eur J Appl Microbiol Biotechnol. 1982;14:182–186.
  • Insam H, Merschak P. Nitrogen leaching from forest soil cores after amending organic recycling products and fertilizers. Waste Manage Res. 1997;15:277–292.
  • Romero E, Fernández-Bayo J, Díaz JMC, et al. Enzyme activities and diuron persistence in soil amended with vermicompost derived from spent grape marc and treated with urea. Appl Soil Ecol. 2010;44:198–204.
  • Fernández-Bayo JD, Nogales R, Romero E. Improved retention of imidacloprid (Confidor) in soils by adding vermicompost from spent grape marc. Sci Total Environ. 2007;378:95–100.
  • Fernández-Bayo JD, Romero E, Schnitzler F, et al. Assessment of pesticide availability in soil fractions after the incorporation of winery-distillery vermicomposts. Environ Pollut. 2008;154:330–337.
  • Castillo JM, Romero E, Nogales R. Dynamics of microbial communities related to biochemical parameters during vermicomposting and maturation of agroindustrial lignocellulose wastes. Bioresour Technol. 2013;146:345–354.
  • Sánchez-Hernández JC, Domínguez J. Vermicompost derived from spent coffee grounds: assessing the potential for enzymatic bioremediation. In: Galanakis CM, editor. Handbook of grape processing by-products: sustainable solutions. London, UK: Academic Press, Elsevier; 2017. p. 369–398.
  • Fernández-Gómez MJ, Nogales R, Insam H, et al. Use of DGGE and COMPOCHIP for investigating bacterial communities of various vermicomposts produced from different wastes under dissimilar conditions. Sci Total Environ. 2012;414:664–671.
  • Gopalakrishnan S, Pande S, Sharma M, et al. Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Prot. 2011;30:1070–1078.
  • Yasir M, Aslam Z, Kim SW, et al. Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity. Bioresour Technol. 2009;100:4396–4403.
  • Szczech M. Supressiveness of vermicompost against Fusarium wilt of tomato. J Phytopathol. 1999;147:155–161.
  • Zaller JG. Foliar spraying of vermicompost extracts: effects on fruit quality and indications of late-blight suppression of field-grown tomatoes. Biol Agric Hortic. 2006;24:165–180.
  • Edwards CA, Arancon NQ, Greytak S. Effects of vermicompost teas on plant growth and disease. ByoCycle. 2006;47:28–31.
  • Lores M, Gómez-Brandón M, Pérez Diaz D, et al. Using FAME profiles for the characterization of animal wastes and vermicomposts. Soil Biol Biochem. 2006;38:2993–2996.
  • Domínguez J, Aira M, Gómez-Brandón M. Vermicomposting: earthworms enhance the work of microbes. In: Insam H, Franke-Whittle I, Goberna M, editors. Microbes at work: from wastes to resources. Berlin Heidelberg: Springer; 2010. p. 93–114.
  • Gómez-Brandón M, Aira M, Lores M, et al. Epigeic earthworms exert a bottleneck effect on microbial communities through gut associated processes. PLoS One. 2011;6:1–9.
  • Domínguez J, Lores M, Álvarez Casas M, et al. Procedimiento para la obtención y aislamiento de un fertilizante orgánico y de semillas de uva a partir de residuos de uva. Patent number: ES2533501. Date of granting: 30th of November 2015. Head entities: University of Vigo and University of Santiago de Compostela, Galicia, Spain.
  • Yilmaz Y, Toledo RT. Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J Agric Food Chem. 2004;52:255–260.
  • Manach C, Scalbert A, Morand C, et al. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79:727–747.
  • Scalbert A, Johnson IT, Saltmarsh M. Polyphenols: antioxidants and beyond. Am J Clin Nutr. 2005;81:215–217.
  • Cjevik J, Miljic U, Puškaš V. Extraction of bioactive compounds from grape processing by-products. In: Galanakis CM, editor. Handbook of grape processing by-products: sustainable solutions. London, UK: Academic Press, Elsevier; 2017. p. 105–135.
  • Galanakis CM. Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci Technol. 2012;26:68–87.
  • Galanakis CM, Schieber A. Editorial. Special issue on recovery and utilization of valuable compounds from food processing by-products. Food Res Int. 2014;65:299–230.
  • Yu J, Ahmedna M. Functional components of grape pomace: their composition, biological properties and potential applications. Int J Food Sci Technol. 2013;48:221–237.
  • Cvejic J, Gojkovic-Bukarica L. Wine phenolics—clinical trials. In: Red wine consumption and health. New York: Nova Science Publishers, Inc. NOVA; 2016; p. 1–29.
  • Lavelli V, Kerr WL, García-Lomillo J, et al. Applications of recovered bioactive compounds in food products. In: Galanakis CM, editor. Handbook of grape processing by-products: sustainable solutions. London, UK: Academic Press, Elsevier; 2017; p. 233–259.
  • Leopoldini M, Russo N, Toscano M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011;15:288–306.
  • Nunes MA, Rodrigues F, Oliveira MBPP. Grape processing by-products as active ingredients for cosmetic purposes. In: Galanakis CM, editor. Handbook of grape processing by-products: sustainable solutions. London, UK: Academic Press, Elsevier; 2017; p. 267–286.
  • Rockenbach II, Gonzaga LV, Rizelio VM, et al. Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Res Int. 2011;44:897–901.
  • Rockenbach II, Rodrigues E, Gonzaga LV, et al. Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L) widely produced in Brazil. Food Chem. 2011;127:174–179.
  • Teixeira A, Baenas N, Dominguez-Perles R, et al. Natural bioactive compounds from winery by-products as health promoters: a review. IJMS. 2014;15:15638–15678.
  • Castro-López C, Rojas R, Sánchez-Alejo EJ, et al. Phenolic compounds recovery from grape fruit and by-products: an overview of extraction methods. In: Morata A, Loira I, editors. Grape and wine biotechnology. Rijeka, Croatia: Intech Open Science; 2016. p. 103–123.
  • Pastrana-Bonilla E, Akoh CC, Sellappan S, et al. Phenolic content and antioxidant capacity of muscadine grapes. J Agric Food Chem. 2003;51:5497–5503.
  • Negro C, Tommasi L, Miceli A. Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresour Technol. 2003;87:41–44.
  • Montealegre PR, Peces RR, Vozmediano JLC, et al. Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. J Food Comp Anal. 2006;19:687–693.
  • Amico V, Chillemi R, Mangiafico S, et al. Polyphenol-enriched fraction from Sicilian grape pomace: HPLC–DAD analysis and antioxidant activity. Bioresour Technol. 2008;99:5960–5966.
  • Rondeau P, Gambier F, Jolibert F, et al. Compositions and chemical variability of grape from French vineyard. Ind Crops Prod. 2013;43:251–254.
  • Ma W, Guo A, Zhang Y, et al. A review on astringency and bitterness perception of tannins in wine. Trends Food Sci Technol. 2014;40:6–19.
  • González-Centeno MR, Jourdes M, Femenia A, et al. Characterization of polyphenols and antioxidant potential of white grape pomace byproducts (Vitis vinifera L.). J Agric Food Chem. 2013;61:11579–11581.
  • Galanakis CM. Emerging technologies for the production of nutraceuticals from agricultural by-products: a viewpoint of opportunities and challenges. Food Bioprod Process. 2013;91:575–579.
  • Maroun RG, Rajha HN, Vorobiev E, et al. Emerging technologies for the recovery of valuable compounds from grape-processing by-products. In: Galanakis CM, editor. Handbook of grape processing by-products: sustainable solutions. London, UK: Academic Press, Elsevier; 2017. p. 155–181.
  • Fernandes L, Casal S, Cruz R, et al. Seed oils of ten traditional Portuguese grape varieties with interesting chemical and antioxidant properties. Food Res Int. 2013;50:161–166.
  • Go¨ktu¨rk Baydar N, O¨zkan G, Çetin ES, Characterization of grape seed and pomace oil extracts. Grasas Aceites. 2007;58:29–33.
  • Wie M, Sung J, Choi Y, et al. Tocopherols and tocotrienols in grape seeds from 14 cultivars grown in Korea. Eur J Lipid Sci Technol. 2009;111:1255–1258.
  • Apolinar-Valiente R, Romero-Cascales I, Gómez-Plaza E, et al. The composition of cell walls from grape marcs is affected by grape origin and enological technique. Food Chem. 2015;167:370–377.
  • Rubio L, Lamas JP, Lores M, et al. Matrix solid-phase dispersion using limonene as greener alternative for grape seeds extraction, followed by GC–MS analysis for varietal fatty acids profiling. Food Anal Methods. 2018;11:3235–3242.
  • Lutterodt H, Slavin M, Whent M, et al. Fatty acid composition, oxidative stability, antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flour. Food Chem. 2011;128:391–399.
  • Duba KS, Fiori L. Solubility of grape seed oil in supercritical CO2: experiments and modeling. J Chem Thermodyn. 2016;100:44–52.
  • Soquetta MB, Terra LM, Bastos CP. Green technologies for the extraction of bioactive compounds in fruits and vegetables. CYTA J Food. 2018;16:400–412.
  • Otero-Pareja M, Casas L, Fernández-Ponce M, et al. Green extraction of antioxidants from different varieties of red grape pomace. Molecules. 2015;20:9686–9702.
  • Palma M, Piñeiro Z, Barroso CG. In-line pressurized-fluid extraction-solid-phase extraction for determining phenolic compounds in grapes. J Chromatogr A. 2002;968:1–6.
  • Solyom K, Solá R, Cocero MJ, et al. Thermal degradation of grape marc polyphenols. Food Chem. 2014;159:361–366.
  • Liazid A, Guerrero RF, Cantos E, et al. Microwave assisted extraction of anthocyanins from grape skins. Food Chem. 2011;124:1238–1243.
  • Bittar SA, Perino-Issartier S, Dangles O, et al. An innovative grape juice enriched in polyphenols by microwave-assisted extraction. Food Chem. 2013;141:3268–3272.
  • Yu HB, Ding LF, Wang Z, et al. Study on extraction of polyphenol from grape peel microwave-assisted activity. AMR. 2013;864–867:520–525.
  • Filly A, Fernandez X, Minuti M, et al. Solvent-free microwave extraction of essential oil from aromatic herbs: from laboratory to pilot and industrial scale. Food Chem. 2014;150:193–198.
  • Petigny L, Périno S, Minuti M, et al. Simultaneous microwave extraction and separation of volatile and non-volatile organic compounds of boldo leaves. From lab to industrial scale. IJMS. 2014;15:7183–7198.
  • Minuti L, Pellegrino R. Determination of phenolic compounds in wines by novel matrix solid-phase dispersion extraction and gas chromatography/mass spectrometry. J Chromatogr A. 2008; 1185:23–30.
  • Bogialli S, Di Corcia A. Matrix solid-phase dispersion as a valuable tool for extracting contaminants from foodstuffs. J Biochem Biophys Methods. 2007;70:163–179.
  • Lores M, García-Jares C, Álvarez-Casas M, et al. Extracto polifenólico a partir de residuos de uva blanca. Patent number: ES2443547. Date of granting: 29th of September 2014. Head entity: University of Santiago de Compostela, Galicia, Spain.
  • Lores M, García-Jares C, Álvarez-Casas M, et al. Polyphenolic extract from white grape residue. Patent number: WO2014/013122A1. Date of Granting: 23th of January 2014. Head entity: University of Santiago de Compostela, Galicia, Spain.
  • Boussetta N, Vorobiev E. Extraction of valuable biocompounds assisted by high voltage electrical discharges: a review. CR Chim. 2014;17:197–203.
  • Boussetta N, Vorobiev E, Reess T, et al. Scale-up of high voltage electrical discharges for polyphenols extraction from grape pomace: effect of the dynamic shock waves. Innov Food Sci Emerg Technol. 2012;16:129–136.
  • Brianceau S, Turk M, Vitrac X, et al. Combined densification and pulsed electric field treatment for selective polyphenols recovery from fermented grape pomace. Innov Food Sci. Emerg Technol. 2015;29:2–8.
  • El Darra N, Grimi N, Maroun R, et al. Pulsed electric field, ultrasound, and thermal pretreatments for better phenolic extraction during red fermentation. Eur Food Res Technol. 2013;236:47–56.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.