609
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Potential application of Leishmania tarentolae as an alternative platform for antibody expression

ORCID Icon, ORCID Icon & ORCID Icon
Pages 380-394 | Received 24 Sep 2018, Accepted 09 Nov 2018, Published online: 05 Feb 2019

References

  • Chan AC, Carter PJ. Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol. 2010;10:301–316.
  • Casadevall A, Dadachova E, Pirofski La. Passive antibody therapy for infectious diseases. Nat Rev Microbiol. 2004;2:695.
  • Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12:278.
  • Konthur Z, Hust M, Dübel S. Perspectives for systematic in vitro antibody generation. Gene. 2005;364:19–29.
  • Konthur Z, Wilde J, Lim TS. Semi-automated magnetic bead-based antibody selection from phage display libraries. In: Kontermann R, Dübel S, editors. Antibody engineering. Berlin, Heidelberg: Springer; 2010. p. 267–287.
  • Ch’ng ACW, Hamidon NHB, Konthur Z, et al. Magnetic nanoparticle-based semi-automated panning for high-throughput antibody selection. In: Hust M, Lim TS, editors. Phage display. Methods in molecular biology. New York (NY): Humana Press; 2018. p. 301–319.
  • Chin CF, Choong YS, Lim TS. Mass spectrometry immuno assay (MSIA™) streptavidin disposable automation research tips (DAR T’s®) antibody phage display biopanning. In: Hust M, Lim TS, editors. Phage display. Methods in molecular biology. New York (NY): Humana Press, 2018. p. 285–299.
  • Elgundi Z, Reslan M, Cruz E, et al. The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev. 2016;122:2–19.
  • DeFrees S, Wang ZG, Xing R, et al. GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli. Glycobiology. 2006;16:833–843.
  • Palmberger D, Rendić D, Tauber P, et al. Insect cells for antibody production: evaluation of an efficient alternative. J Biotechnol. 2011;153:160–166.
  • Sommaruga S, Lombardi A, Salvade A, et al. Highly efficient production of anti-HER2 scFv antibody variant for targeting breast cancer cells. Appl Microbiol Biotechnol. 2011;91:613–621.
  • Yao J, Weng Y, Dickey A, et al. Plants as factories for human pharmaceuticals: applications and challenges. IJMS. 2015;16:28549–28565.
  • Yin G, Garces ED, Yang J, et al. Aglycosylated antibodies and antibody fragments produced in a scalable in vitro transcription-translation system. MAbs. 2012;4:217–225.
  • Stuart K, Brun R, Croft S, et al. Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest. 2008;118:1301–1310.
  • Teixeira S. Control of gene expression in Trypanosomatidae. Braz J Med Biol Res. 1998;31:1503–1516.
  • Bates PA. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol. 2007;37:1097–1106.
  • Akhoundi M, Kuhls K, Cannet A, et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis. 2016;10:e0004349.
  • Wallbanks K, Maazoun R, Canning E, et al. The identity of Leishmania tarentolae Wenyon 1921. Parasitology. 1985;90:67–78.
  • Elwasila M. Leishmania tarentolae Wenyon, 1921 from the gecko Tarentola annularis in the Sudan. Parasitol Res. 1988;74:591–592.
  • Novo SP, Leles D, Bianucci R, et al. Leishmania tarentolae molecular signatures in a 300 hundred-years-old human Brazilian mummy. Parasit Vectors. 2015;8:1.
  • Raymond F, Boisvert S, Roy G, et al. Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Res. 2012;40:1131–1147.
  • Breitling R, Klingner S, Callewaert N, et al. Non-pathogenic trypanosomatid protozoa as a platform for protein research and production. Protein Expr Purif. 2002;25:209–218.
  • Kushnir S, Gase K, Breitling R, et al. Development of an inducible protein expression system based on the protozoan host Leishmania tarentolae. Protein Expr Purif. 2005;42:37–46.
  • Kovtun O, Mureev S, Jung W, et al. Leishmania cell-free protein expression system. Methods. 2011;55:58–64.
  • Wiese M, Ilg T, Lottspeich F, et al. Ser/Thr-rich repetitive motifs as targets for phosphoglycan modifications in Leishmania mexicana secreted acid phosphatase. EMBO J. 1995;14:1067–1074.
  • Jones JD. Leishmania tarentolae: an alternative approach to the production of monoclonal antibodies to treat emerging viral infections. Infect Dis Poverty. 2015;4:8.
  • Blackburn EH. Structure and function of telomeres. Nature. 1991;350:569.
  • Krakow JL, Hereld D, Bangs JD, et al. Identification of a glycolipid precursor of the Trypanosoma brucei variant surface glycoprotein. J Biol Chem. 1986;261:12147–12153.
  • Simpson L, Thiemann OH, Savill NJ, et al. Evolution of RNA editing in trypanosome mitochondria. Proc Natl Acad Sci U S A. 2000;97:6986–6993.
  • Simpson L, Douglass SM, Lake JA, et al. Comparison of the mitochondrial genomes and steady state transcriptomes of two strains of the trypanosomatid parasite, Leishmania tarentolae. PLoS Negl Trop Dis. 2015;9:e0003841.
  • Klatt S, Konthur Z. Secretory signal peptide modification for optimized antibody-fragment expression-secretion in Leishmania tarentolae. Microb Cell Fact. 2012;11:97.
  • Wong CH. Protein glycosylation: new challenges and opportunities. J Org Chem. 2005;70:4219–4225.
  • Walsh G. Biopharmaceutical benchmarks 2010. Nat Biotechnol. 2010;28:917.
  • Roth J, Zuber C, Park S, et al. Protein N-glycosylation, protein folding, and protein quality control. Mol Cells. 2010;30:497–506.
  • Ferguson MA. The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci. 1999;112:2799–2809.
  • Khan AH, Bayat H, Rajabibazl M, et al. Humanizing glycosylation pathways in eukaryotic expression systems. World J Microbiol Biotechnol. 2017;33:4.
  • Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. mAbs. 2015;7:9–14.
  • Jefferis R. Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol Sci. 2009;30:356–362.
  • Reichert JM. Marketed therapeutic antibodies compendium. MAbs. 2012;4:413–415.
  • Jefferis R. Recombinant proteins and monoclonal antibodies. In: Advances in biochemical engineering/biotechnology. Berlin, Heidelberg: Springer; 2017.
  • Edelman GM, Cunningham BA, Gall WE, et al. The covalent structure of an entire gammaG immunoglobulin molecule. Proc Natl Acad Sci U S A. 1969;63:78–85.
  • Alzari P, Lascombe M, Poljak R. Three-dimensional structure of antibodies. Annu Rev Immunol. 1988;6:555–580.
  • Narciso JET, Uy IDC, Cabang AB, et al. Analysis of the antibody structure based on high-resolution crystallographic studies. N Biotechnol. 2011;28:435–447.
  • Hanson QM, Barb AW. A perspective on the structure and receptor binding properties of immunoglobulin G Fc. Biochemistry. 2015;54:2931–2942.
  • Wang Y, Tian Z, Thirumalai D, et al. Neonatal Fc receptor (FcRn): a novel target for therapeutic antibodies and antibody engineering. J Drug Target. 2014;22:269–278.
  • Nimmerjahn F, Ravetch JV. FcγRs in health and disease. Curr Top Microbiol Immunol. 2011;350:105–125.
  • Hayes JM, Cosgrave EF, Struwe WB, et al. Glycosylation and Fc receptors. In: Daeron M, Nimmerjahn F, editors. Fc receptors. Current topics in microbiology and immunology. Cham: Springer; 2014. p. 165–199.
  • Bruhns P, Jönsson F. Mouse and human FcR effector functions. Immunol Rev. 2015;268:25–51.
  • Jefferis R. Isotype and glycoform selection for antibody therapeutics. Arch Biochem Biophys. 2012;526:159–166.
  • Subedi GP, Barb AW. The immunoglobulin G1 N-glycan composition affects binding to each low affinity Fcγ receptor. MAbs. 2016;8:1512–1524.
  • Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520.
  • Reusch D, Tejada ML. Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology. 2015;25:1325–1334.
  • Zheng K, Bantog C, Bayer R. The impact of glycosylation on monoclonal antibody conformation and stability. MAbs. 2011;3:568–576.
  • Liu H, May K. Disulfide bond structures of IgG molecules: structural variations, chemical modifications and possible impacts to stability and biological function. MAbs. 2012;4:17–23.
  • Wörn A, der Maur AA, Escher D, et al. Correlation between in vitro stability and in vivo performance of anti-GCN4 intrabodies as cytoplasmic inhibitors. J Biol Chem. 2000;275:2795–2803.
  • Arbabi-Ghahroudi M, Tanha J, MacKenzie R. Prokaryotic expression of antibodies. Cancer Metastasis Rev. 2005;24:501–519.
  • Aebi M. N-linked protein glycosylation in the ER. Biochim Biophys Acta. 2013;1833:2430–2437.
  • Breitling J, Aebi M. N-linked protein glycosylation in the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 2013;5:a013359.
  • Costa AR, Rodrigues ME, Henriques M, et al. Glycosylation: impact, control and improvement during therapeutic protein production. Crit Rev Biotechnol. 2014;34:281–299.
  • Higel F, Seidl A, Sörgel F, et al. N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. Eur J Pharm Biopharm. 2016;100:94–100.
  • Spiro RG. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology. 2002;12:43R–56R.
  • Liu L. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins. J Pharm Sci. 2015;104:1866–1884.
  • Zielinska DF, Gnad F, Wiśniewski JR, et al. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell. 2010;141:897–907.
  • Krapp S, Mimura Y, Jefferis R, et al. Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol. 2003;325:979–989.
  • Meier S, Duus J. Carbohydrate dynamics: antibody glycans wiggle and jiggle. Nat Chem Biol. 2011;7:131–132.
  • Dalziel M, Crispin M, Scanlan CN, et al. Emerging principles for the therapeutic exploitation of glycosylation. Science. 2014;343:1235681.
  • Shibata-Koyama M, Iida S, Misaka H, et al. Nonfucosylated rituximab potentiates human neutrophil phagocytosis through its high binding for FcgammaRIIIb and MHC class II expression on the phagocytotic neutrophils. Exp Hematol. 2009;37:309–321.
  • Lin CW, Tsai MH, Li ST, et al. A common glycan structure on immunoglobulin G for enhancement of effector functions. Proc Natl Acad Sci U S A. 2015;112:10611–10616.
  • Borrok MJ, Jung ST, Kang TH, et al. Revisiting the role of glycosylation in the structure of human IgG Fc. ACS Chem Biol. 2012;7:1596–1602.
  • Lifely MR, Hale C, Boyce S, et al. Glycosylation and biological activity of CAMPATH-1H expressed in different cell lines and grown under different culture conditions. Glycobiology. 1995;5:813–822.
  • Li H, d’Anjou M. Pharmacological significance of glycosylation in therapeutic proteins. Curr Opin Biotechnol. 2009;20:678–684.
  • Padler-Karavani V, Yu H, Cao H, et al. Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease. Glycobiology. 2008;18:818–830.
  • Macher BA, Galili U. The Galα1,3Galβ1,4GlcNAc-R (α-Gal) epitope: a carbohydrate of unique evolution and clinical relevance. Biochim Biophys Acta. 2008;1780:75–88.
  • Chung CH, Mirakhur B, Chan E, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med. 2008;358:1109–1117.
  • Qian J, Liu T, Yang L, et al. Structural characterization of N-linked oligosaccharides on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight tandem mass spectrometry and sequential enzymatic digestion. Anal Biochem. 2007;364:8–18.
  • Goh JB, Ng SK. Impact of host cell line choice on glycan profile. Crit Rev Biotechnol. 2017;38(6):1–17.
  • Basile G, Peticca M. Recombinant protein expression in Leishmania tarentolae. Mol Biotechnol. 2009;43:273–278.
  • Terpe K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 2006;72:211.
  • Sørensen HP, Mortensen KK. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact. 2005;4:1.
  • Naegeli A, Neupert C, Fan YY, et al. Molecular analysis of an alternative N-glycosylation machinery by functional transfer from Actinobacillus pleuropneumoniae to Escherichia coli. J Biol Chem. 2014;289:2170–2179.
  • Wacker M, Linton D, Hitchen PG, et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science. 2002;298:1790–1793.
  • Ghaderi D, Zhang M, Hurtado-Ziola N, et al. Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol Genet. 2012;28:147–176.
  • Vaughn J, Goodwin R, Tompkins G, et al. The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro. 1977;13:213–217.
  • Wickham T, Davis T, Granados R, et al. Screening of insect cell lines for the production of recombinant proteins and infectious virus in the baculovirus expression system. Biotechnol Prog. 1992;8:391–396.
  • Davis TR, Wickham TJ, McKenna KA, et al. Comparative recombinant protein production of eight insect cell lines. In Vitro Cell Dev Biol Anim. 1993;29a:388–390.
  • Pennock G, Shoemaker C, Miller L. Strong and regulated expression of Escherichia coli beta-galactosidase in insect cells with a baculovirus vector. Mol Cell Biol. 1984;4:399–406.
  • Luckow VA, Lee S, Barry G, et al. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol. 1993;67:4566–4579.
  • Cérutti M, Golay J. Lepidopteran cells, an alternative for the production of recombinant antibodies? MAbs. 2012;4:294–309.
  • Hsu TA, Takahashi N, Tsukamoto Y, et al. Differential N-glycan patterns of secreted and intracellular IgG produced in Trichoplusia ni cells. J Biol Chem. 1997;272:9062–9070.
  • Geisler C, Aumiller JJ, Jarvis DL. A fused lobes gene encodes the processing beta-N-acetylglucosaminidase in Sf9 cells. J Biol Chem. 2008;283:11330–11339.
  • Kim YK, Kim KR, Kang DG, et al. Expression of β-1,4-galactosyltransferase and suppression of β-N-acetylglucosaminidase to aid synthesis of complex N-glycans in insect Drosophila S2 cells. J Biotechnol. 2011;153:145–152.
  • Hollister JR, Jarvis DL. Engineering lepidopteran insect cells for sialoglycoprotein production by genetic transformation with mammalian β1, 4-galactosyltransferase and α2, 6-sialyltransferase genes. Glycobiology. 2001;11:1–9.
  • Mattanovich D, Branduardi P, Dato L, et al. Recombinant protein production in yeasts. In: Lorence A, editor. Recombinant gene expression. Methods in molecular biology. Totowa (NJ): Humana Press; 2011. p. 329–358.
  • Wildt S, Gerngross TU. The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol. 2005;3:119.
  • Chiba Y, Suzuki M, Yoshida S, et al. Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae. J Biol Chem. 1998;273:26298–26304.
  • Hamilton SR, Gerngross TU. Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol. 2007;18:387–392.
  • Hamilton SR, Bobrowicz P, Bobrowicz B, et al. Production of complex human glycoproteins in yeast. Science. 2003;301:1244–1246.
  • Gerngross TU. Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol. 2004;22:1409–1414.
  • Li H, Sethuraman N, Stadheim TA, et al. Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol. 2006;24:210.
  • Jin C, Altmann F, Strasser R, et al. A plant-derived human monoclonal antibody induces an anti-carbohydrate immune response in rabbits. Glycobiology. 2007;18:235–241.
  • Cox KM, Sterling JD, Regan JT, et al. Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol. 2006;24:1591.
  • Castilho A, Strasser R, Stadlmann J, et al. In planta protein sialylation through overexpression of the respective mammalian pathway. J Biol Chem. 2010;285:15923–15930.
  • Chen Q. Glycoengineering of plants yields glycoproteins with polysialylation and other defined N-glycoforms. Proc Natl Acad Sci U S A. 2016;113:9404–9406.
  • Zeitlin L, Pettitt J, Scully C, et al. Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. Proc Natl Acad Sci U S A. 2011;108:20690–20694.
  • Wang Q, Chung CY, Chough S, et al. Antibody glycoengineering strategies in mammalian cells. Biotechnol Bioeng. 2018;115:1378–1393.
  • Ezure T, Suzuki T, Shikata M, et al. A cell-free protein synthesis system from insect cells. In: Endo Y, Takai K, Ueda T, editors. Cell-free protein production. Methods in molecular biology. Humana Press; 2010. p. 31–42.
  • Sissons CH. Yeast protein synthesis. Preparation and analysis of a highly active cell-free system. Biochem J. 1974;144:131–140.
  • Arduengo M, Schenborn E, Hurst R. The role of cell-free rabbit reticulocyte expression systems in functional proteomics. Cell-free expression. Austin (TX): Landes Bioscience; 2007. p. 1–18.
  • Brodel AK, Sonnabend A, Kubick S. Cell-free protein expression based on extracts from CHO cells. Biotechnol Bioeng. 2014;111:25–36.
  • Johnston WA, Alexandrov K. Production of eukaryotic cell-free lysate from Leishmania tarentolae. In: Alexandrov K, Johnston WA, editors. Cell-free protein synthesis. Methods in molecular biology. Totowa (NJ): Humana Press; 2014. p. 1–15.
  • Hunter DJB, Bhumkar A, Giles N, et al. Unexpected instabilities explain batch-to-batch variability in cell-free protein expression systems. Biotechnol Bioeng. 2018;115:1904–1914.
  • Jørgensen ML, Friis NA, Just J, et al. Expression of single-chain variable fragments fused with the Fc-region of rabbit IgG in Leishmania tarentolae. Microb Cell Fact. 2014;13:9.
  • Lee MGS, Van der Ploeg LH. Transcription of protein-coding genes in trypanosomes by RNA polymerase I. Annu Rev Microbiol. 1997;51:463–489.
  • Wirtz E, Hartmann C, Clayton C. Gene expression mediated by bacteriophage T3 and 17 RNA polymerases in transgenic trypanosomes. Nucl Acids Res. 1994;22:3887–3894.
  • Misslitz A, Mottram JC, Overath P, et al. Targeted integration into a rRNA locus results in uniform and high level expression of transgenes in Leishmania amastigotes. Mol Biochem Parasitol. 2000;107:251–261.
  • Kushnir S, Cirstea IC, Basiliya L, et al. Artificial linear episome-based protein expression system for protozoon Leishmania tarentolae. Mol Biochem Parasitol. 2011;176:69–79.
  • Beverley SM, Clayton CE. Transfection of Leishmania and Trypanosoma brucei by electroporation. In: Hyde JE, editor. Protocol in molecular parasitology. Methods in molecular biology. Humana Press; 1993. p. 333–348.
  • Gazdag EM, Cirstea IC, Breitling R, et al. Purification and crystallization of human Cu/Zn superoxide dismutase recombinantly produced in the protozoan Leishmania tarentolae. Acta Crystallogr F Struct Biol Cryst Commun. 2010;66:871–877.
  • Phan HP, Sugino M, Niimi T. The production of recombinant human laminin-332 in a Leishmania tarentolae expression system. Protein Expr Purif. 2009;68:79–84.
  • Klatt S, Rohe M, Alagesan K, et al. Production of glycosylated soluble amyloid precursor protein alpha (sAPPalpha) in Leishmania tarentolae. J Proteome Res. 2013;12:396–403.
  • Just J, Lykkemark S, Nielsen CH, et al. Pericyte modulation by a functional antibody obtained by a novel single‐cell selection strategy. Microcirculation. 2017;24:e12365.
  • Pereira M. A developmentally regulated neuraminidase activity in Trypanosoma cruzi. Science. 1983;219:1444–1446.
  • Schenkman S, Eichinger D, Pereira M, et al. Structural and functional properties of Trypanosoma trans-sialidase. Annu Rev Microbiol. 1994;48:499–523.
  • Grilo AL, Mantalaris A. The increasingly human and profitable monoclonal antibody market. Trends Biotechnol. 2018;37:9–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.