1,326
Views
53
CrossRef citations to date
0
Altmetric
Review Article

Biorefinery approach and environment-friendly extraction for sustainable production of astaxanthin from marine wastes

ORCID Icon, , , &
Pages 469-488 | Received 13 Apr 2018, Accepted 22 Dec 2018, Published online: 02 Apr 2019

References

  • Li J, Zhu D, Niu J. An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol Adv. 2011;29:568–574.
  • Olaizola M, Huntley ME. Recent advances in commercial production of astaxanthin from microalgae. In: Fingerman, M, Nagabhushanam, R, editors. Biomaterials and bioprocessing. Rawalpindi, Pakistan: Science Publishers; 2003. p. 143–164.
  • Guerin M, Huntley ME, Olaizola M. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 2003;21:210–216.
  • Latscha T, editor. The role of astaxanthin in shrimp pigmentation. Adv Trop Aquacult. 1989;9:319–325.
  • Christiansen R, Lie O, Torrissen OJ. Growth and survival of Atlantic salmon, Salmo salar L., fed different dietary levels of astaxanthin. First-feeding fry. Aquacult Nutr. 1995;1:189–198.
  • López-Cervantes J, Sánchez-Machado DI, Gutiérrez-Coronado MA. Quantification of astaxanthin in shrimp waste hydrolysate by HPLC. Biomed Chromatogr. 2006;20:981–984.
  • Stepnowski P, Olafsson G, Helgason H. Recovery of astaxanthin from seafood wastewater utilizing fish scales waste. Chemosphere. 2004;54:413–417.
  • Miki W. Biological functions and activities of animal carotenoids. Pure Appl Chem. 1991;63:141–146.
  • Tominaga K, Hongo N, Karato M, et al. Cosmetic benefits of astaxanthin on humans subjects. Acta Biochim Pol. 2012;59:43.
  • Kidd P. Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern Med Rev. 2011;16:355–364.
  • Fassett RG, Coombes JS. Astaxanthin, oxidative stress, inflammation and cardiovascular disease. Future Cardiol. 2009;5:333–342.
  • Yuan JP, Peng J, Yin K, et al. Potential health‐promoting effects of astaxanthin: a high‐value carotenoid mostly from microalgae. Mol Nutr Food Res. 2011;55:150–165.
  • Mezzomo N, Tenfen L, Farias MS, et al. Evidence of anti-obesity and mixed hypolipidemic effects of extracts from pink shrimp (Penaeus brasiliensis and Penaeus paulensis) processing residue. J Supercrit Fluids. 2015;96:252–261.
  • Al-Amin MM, Rahman MM, Khan FR, et al. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism. Behav Brain Res. 2015;286:112–121.
  • Shah MMR, Liang Y, Cheng JJ, et al. Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Front Plant Sci. 2016;7:531.
  • Molino A, Rimauro J, Casella P, et al. Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction. J Biotechnol. 2018;283:51–61.
  • Perez-Lopez P, Feijoo G, Moreira MT. Sustainability assessment of blue biotechnology processes: addressing environmental, social and economic dimensions. In: Benetto E, Gericke K, Guiton M, editors. Designing sustainable technologies products and policies. Switzerland: Springer; 2018. p. 475–486.
  • Breithaupt DE. Modern application of xanthophylls in animal feeding – a review. Trends Food Sci Technol. 2007;18:501–506.
  • Li Y, Xiao G, Mangott A, et al. Nutrient efficacy of microalgae as aquafeed additives for the adult black tiger prawn, Penaeus monodon. Aquac Res. 2016;47:3625–3635.
  • Galarza JI, Gimpel JA, Rojas V, et al. Over-accumulation of astaxanthin in Haematococcus pluvialis through chloroplast genetic engineering. Algal Res. 2018;31:291–297.
  • Panis G, Carreon JR. Commercial astaxanthin production derived by green alga Haematococcus pluvialis: a microalgae process model and a techno-economic assessment all through production line. Algal Res. 2016;18:175–190.
  • Gifuni I, Pollio A, Safi C, et al. Current bottlenecks and challenges of the microalgal biorefinery. Trends Biotechnol. 2018;pii: S0167–7799:30259–30252.
  • Ambati RR, Phang SM, Ravi S, et al. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications – a review. Marine Drugs. 2014;12:128–152.
  • Roth MS, Cokus SJ, Gallaher SD, et al. Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production. Proc Natl Acad Sci. 2017;114:E4296–E4305.
  • Hasunuma T, Miyazawa SI, Yoshimura S, et al. Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant J. 2008;55:857–868.
  • Breitenbach J, Nogueira M, Farré G, et al. Engineered maize as a source of astaxanthin: processing and application as fish feed. Transgenic Res. 2016;25:785–793.
  • Campbell R, Morris WL, Mortimer CL, et al. Optimising ketocarotenoid production in potato tubers: effect of genetic background, transgene combinations and environment. Plant Sci. 2015;234:27–37.
  • Pérez-Gálvez A, Negro-Balmaseda J, Mínguez-Mosquera M, et al. Astaxanthin from crayfish (Procambarus clarkii) as a pigmentary ingredient in the feed of laying hens. Grasas Aceites. 2008;59:139–145.
  • Akiba Y, Sato K, Takahashi K, et al. Meat color modification in broiler chickens by feeding yeast Phaffia rhodozyma containing high concentrations of astaxanthin. J Appl Poult Res. 2001;10:154–161.
  • Negro JJ, Garrido-Fernández J. Astaxanthin is the major carotenoid in tissues of white storks (Ciconia ciconia) feeding on introduced crayfish (Procambarus clarkii). Comp Biochem Physiol B. 2000;126:347–352.
  • Dobreva D, Panayotova V, Stancheva R, et al. Simultaneous HPLC determination of fat soluble vitamins, carotenoids and cholesterol in seaweed and mussel tissue. Bulg Chem Commun. 2017;49:112–117.
  • Chuchird N, Rorkwiree P, Rairat T. Effect of dietary formic acid and astaxanthin on the survival and growth of Pacific white shrimp (Litopenaeus vannamei) and their resistance to Vibrio parahaemolyticus. SpringerPlus. 2015;4:440.
  • Phuong PTD, Minh NC, Cuong HN, et al. Recovery of protein hydrolysate and chitosan from black tiger shrimp (Penaeus monodon) heads: approaching a zero waste process. J Food Sci Technol. 2017;54:1850–1856.
  • Coral G, Huberman A, de la Lanza G, et al. Muscle pigmentation of rainbow trout (Oncorhynchus mykiss) fed on oil-extracted pigment from langostilla (Pleuroncodes planipes) compared with two commercial sources of astaxanthin. J Aquat Food Prod Technol. 1998;7:31–45.
  • Lin WC, Chien JT, Chen BH. Determination of carotenoids in spear shrimp shells (Parapenaeopsis hardwickii) by liquid chromatography. J Agric Food Chem. 2005;53:5144–5149.
  • Parjikolaei BR, Cardosob LC, Fernandez-Ponceb MT, et al. Northern shrimp (Pandalus borealis) processing waste: effect of supercritical fluid extraction technique on carotenoid extract concentration. Chem Eng. 2015;43.
  • Mustapha I. Study of antimicrobial, antioxidant and chromatographic profiling of gills and carapaces extracts of mud crab, scylla serrata: faculty of agro-based industry [master’s thesis]. Kelantan, Malaysia: Universiti Malaysia Kelantan. 2016.
  • Hinostroza GC, Huberman A, de la Lanza G, et al. Pigmentation of the rainbow trout (Oncorhynchus mykiss) with oil-extracted astaxanthin from the langostilla (Pleuroncodes planipes). Arch Latinoam Nutr. 1997;47:237–241.
  • Bloedon LT, Szapary PO. Flaxseed and cardiovascular risk. Nutr Rev. 2004;62:18–27.
  • Vilasoa-Martínez M, Calaza-Ramos C, López-Hernández J, et al. Determination of vitamin E and carotenoid pigments by high performance liquid chromatography in shell of Chionoecetes opilio. Anal Chim Acta. 2008;617:225–229.
  • Boonyapakdee A, Pootangon Y, Laudadio V, et al. Astaxanthin extraction from golden apple snail (Pomacea canaliculata) eggs to enhance colours in fancy carp (Cyprinus carpio). J Appl Anim Res. 2015;43:291–294.
  • Sühnel S, Lagreze F, Bercht M, et al. Sexual stages of the female portion in the scallop Nodipecten nodosus (Linné, 1758) and astaxanthin quantity in each stage. Braz J Biol. 2010;70:651–658.
  • Jagruthi C, Yogeshwari G, Anbazahan SM, et al. Effect of dietary astaxanthin against Aeromonas hydrophila infection in common carp, Cyprinus carpio. Fish Shellfish Immunol. 2014;41:674–680.
  • Tzanova M, Argirova M, Atanasov V. HPLC Quantification of astaxanthin and canthaxanthin in Salmonidae eggs. Biomed Chromatogr. 2017;31:e3852.
  • Tzanova M. Accumulation of astaxanthin and canthaxanthin in muscle tissues of rainbow trout (Oncorhynchus mykiss W.) fed with xanthophyll supplemented feed. Agric Sci Technol. 2017;9:77–82.
  • Gouveia L, Gomes E, Empis J. Potential use of a microalga (Chlorella vulgaris) in the pigmentation of rainbow trout (Oncorhynchus mykiss) muscle. Z Lebensm Unters Forch. 1996;202:75–79.
  • Olsen RE, Mortensen A. The influence of dietary astaxanthin and temperature on flesh colour in arctic charr Salvelinus alpinus L. Aquac Res. 1997;28:51–58.
  • Torrissen O, Tidemann E, Hansen F, et al. Ensiling in acid—a method to stabilize astaxanthin in shrimp processing by-products and improve uptake of this pigment by rainbow trout (Salmo gairdneri). Aquaculture. 1981;26:77–83.
  • Birkeland S, Bjerkeng B. Extractabilities of astaxanthin and protein from muscle tissue of Atlantic salmon (Salmo salar) as affected by brine concentration and pH. Food Chem. 2004;85:559–568.
  • Saha MR, Ross NW, Olsen RE, et al. Astaxanthin binding to solubilized muscle proteins of Atlantic salmon (Salmo salar L.), haddock (Melanogrammus aeglefinus L.) and Atlantic halibut (Hippoglossus hippoglossus L.). Comp Biochem Physiol B Biochem Mol Biol. 2006;144:488–495.
  • Auerswald L, Gäde G. Simultaneous extraction of chitin and astaxanthin from waste of lobsters Jasus lalandii, and use of astaxanthin as an aquacultural feed additive. Afr J Marine Sci. 2008;30:35–44.
  • Rønneberg H, Renstrøm B, Aareskjold K, et al. Natural occurrence of enantiomeric and meso‐Astaxanthin 1. Ex Lobster Eggs (Homarus gammarus). Helv Chim Acta. 1980;63:711–715.
  • Chen HM, Meyers SP. Effect of antioxidants on stability of astaxanthin pigment in crawfish waste and oil extract. J Agric Food Chem. 1982;30:469–473.
  • Meyers SP, Bligh D. Characterization of astaxanthin pigments from heat-processed crawfish waste. J Agric Food Chem. 1981;29:505–508.
  • Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM. Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr. 2006;46:185–196.
  • Dursun D, Dalgıç AC. Optimization of astaxanthin pigment bioprocessing by four different yeast species using wheat wastes. Biocatal Agric Biotechnol. 2016;7:1–6.
  • Eryılmaz EB, Dursun D, Dalgıç AC. Multiple optimization and statistical evaluation of astaxanthin production utilizing olive pomace. Biocatal Agric Biotechnol. 2016;7:224–227.
  • Zhou G, Wang W, Tan X. Review on astaxanthin production from agricultural wastes by Phaffia rhodozyma. Trans Chin Soc Agric Eng. 2016;32:308–314.
  • Katsuda T, Lababpour A, Shimahara K, et al. Astaxanthin production by Haematococcus pluvialis under illumination with LEDs. Enzyme Microb Technol. 2004;35:81–86.
  • Chougle JA, Singhal RS. Metabolic precursors and cofactors stimulate astaxanthin production in Paracoccus MBIC 01143. Food Sci Biotechnol. 2012;21:1695–1700.
  • Ding W, Zhao P, Peng J, et al. Melatonin enhances astaxanthin accumulation in the green microalga Haematococcus pluvialis by mechanisms possibly related to abiotic stress tolerance. Algal Res. 2018;33:256–265.
  • Zhao Y, Shang M, Xu J-W, et al. Enhanced astaxanthin production from a novel strain of Haematococcus pluvialis using fulvic acid. Proc Biochem. 2015;50:2072–2077.
  • Zhou J, Xu T, Wang X, et al. A low-cost and water resistant biomass adhesive derived from the hydrolysate of leather waste. RSC Adv. 2017;7:4024–4029.
  • Lemuth K, Steuer K, Albermann C. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. Microb Cell Fact. 2011;10:29.
  • Choi SK, Matsuda S, Hoshino T, et al. Characterization of bacterial β-carotene 3,3′-hydroxylases, CrtZ, and P450 in astaxanthin biosynthetic pathway and adonirubin production by gene combination in Escherichia coli. Appl Microbiol Biotechnol. 2006;72:1238.
  • Ma T, Zhou Y, Li X, et al. Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp. ATCC 55669 for heterologous overproduction in Escherichia coli. Biotechnol J. 2016;11:228–237.
  • Henke N, Heider S, Peters-Wendisch P, et al. Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum. Marine Drugs. 2016;14:124.
  • Kim JH, Kim SH, Kim KH, et al. Sphingomonas lacus sp. nov., an astaxanthin-dideoxyglycoside-producing species isolated from soil near a pond. Int J Syst Evolut Microbiol. 2015;65:2824–2830.
  • Kim SH, Kim JH, Lee BY, et al. The astaxanthin dideoxyglycoside biosynthesis pathway in Sphingomonas sp. PB304. Appl Microbiol Biotechnol. 2014;98:9993–10003.
  • Asker D, Amano SI, Morita K, et al. Astaxanthin dirhamnoside, a new astaxanthin derivative produced by a radio-tolerant bacterium, Sphingomonas astaxanthinifaciens. J Antibiot. 2009;62:397.
  • Gong M, Bassi A. Carotenoids from microalgae: a review of recent developments. Biotechnol Adv. 2016;34:1396–1412.
  • Hu J, Nagarajan D, Zhang Q, et al. Heterotrophic cultivation of microalgae for pigment production: a review. Biotechnol Adv. 2017;36:54–67.
  • Armenta RE, Guerrero-Legarreta I. Amino acid profile and enhancement of the enzymatic hydrolysis of fermented shrimp carotenoproteins. Food Chem. 2009;112:310–315.
  • De Holanda HD, Netto FM. Recovery of components from shrimp (Xiphopenaeus kroyeri) processing waste by enzymatic hydrolysis. J Food Sci. 2006;71:C298–C303.
  • Ali-Nehari A, Kim SB, Lee YB, et al. Characterization of oil including astaxanthin extracted from krill (Euphausia superba) using supercritical carbon dioxide and organic solvent as comparative method. Korean J Chem Eng. 2012;29:329–336.
  • Amado IR, González M, Murado MA, et al. Shrimp (Penaueus vannamei) cooking wastewater as a source of astaxanthin and bioactive peptides. J Chem Technol Biotechnol. 2015;91(3):793–805.
  • Armenta ‐López R, Guerrero I, et al. Astaxanthin extraction from shrimp waste by lactic fermentation and enzymatic hydrolysis of the carotenoprotein complex. J Food Sci. 2002;67:1002–1006.
  • Aranday-García R, Román Guerrero A, Ifuku S, et al. Successive inoculation of Lactobacillus brevis and Rhizopus oligosporus on shrimp wastes for recovery of chitin and added-value products. Proc Biochem. 2017;58:17–24.
  • Bi W, Tian M, Zhou J, et al. Task-specific ionic liquid-assisted extraction and separation of astaxanthin from shrimp waste. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878:2243–2248.
  • Charest D, Balaban M, Marshall M, et al. Astaxanthin extraction from crawfish shells by supercritical CO2 with ethanol as cosolvent. J Aquat Food Prod Technol. 2001;10:81–96.
  • Felix‐Valenzuela L, Higuera‐Ciapara I, Goycoolea‐Valencia F, et al. Supercritical CO2/ethanol extraction of astaxanthin from blue crab (Callinectes sapidus) shell waste. J Food Proc Eng. 2001;24:101–112.
  • Handayani AD, Sutrisno IN, et al. Extraction of astaxanthin from giant tiger (Panaeus monodon) shrimp waste using palm oil: studies of extraction kinetics and thermodynamic. Bioresour Technol. 2008;l99:4414–4419.
  • Irna C, Jaswir I, Othman R, et al. Comparison between high-pressure processing and chemical extraction: astaxanthin yield from six species of shrimp carapace. J Diet Suppl. 2018;15:805–813.
  • Khanafari A, Saberi A, Azar M, et al. Extraction of astaxanthin esters from shrimp waste by chemical and microbial methods. Iranian J Environ Health Sci Eng. 2007;4:93–98.
  • Lee SH, Roh SK, Park KH, et al. Effective extraction of astaxanthin pigment from shrimp using proteolytic enzymes. Biotechnol Bioprocess Eng. 1999;4:199–204.
  • Sukan A, Roy I, Keshavarz T. A strategy for dual biopolymer production of P (3HB) and γ‐PGA. J Chem Technol Biotechnol. 2017;92:1548–1557.
  • Pu J, Bechtel PJ, Sathivel S. Extraction of shrimp astaxanthin with flaxseed oil: Effects on lipid oxidation and astaxanthin degradation rates. Biosyst Eng. 2010;107:364–371.
  • Quan C, Turner C. Extraction of astaxanthin from shrimp waste using pressurized hot ethanol. Chromatographia. 2009;70:247–251.
  • Sila A, Nasri M, Bougatef A. Isolation and characterisation of carotenoproteins from deep-water pink shrimp processing waste. Int J Biol Macromol. 2012;51:953–959.
  • Takeungwongtrakul S, Benjakul S, Santoso J, et al. Extraction and stability of carotenoid‐containing lipids from Hepatopancreas of pacific white shrimp (Litopenaeus vannamei). J Food Proc Preserv. 2015;39:10.–18.
  • Zhang H, Tang B, Row KH. A green deep eutectic solvent-based ultrasound-assisted method to extract astaxanthin from shrimp byproducts. Anal Lett. 2014;47:742–749.
  • Amado IR, Vázquez JA. Mussel processing wastewater: a low-cost substrate for the production of astaxanthin by Xanthophyllomyces dendrorhous. Microb Cell Fact. 2015;14:177.
  • Mann V, Harker M, Pecker I, et al. Metabolic engineering of astaxanthin production in tobacco flowers. Nat Biotechnol. 2000;18:888.
  • Johnson EA, Lewis MJ, Grau CR. Pigmentation of egg yolks with astaxanthin from the yeast Phaffia rhodozyma. Poult Sci. 1980;59:1777–1782.
  • Johnson EA, Conklin DE, Lewis MJ. The yeast Phaffia rhodozyma as a dietary pigment source for salmonids and crustaceans. J Fish Res Bd Can. 1977;34:2417–2421.
  • Liu ZW, Zeng XA, Cheng JH, et al. The efficiency and comparison of novel techniques for cell wall disruption in astaxanthin extraction from Haematococcus pluvialis. Int J Food Sci Technol. 2018;53:2212–2219.
  • Chen HM, Meyers SP. Ensilage treatment of crawfish waste for improvement of astaxanthin pigment extraction. J Food Sci. 1983;48:1516–1520.
  • Gimeno M, Ramírez-Hernández JY, Mártinez-Ibarra C, et al. One-solvent extraction of astaxanthin from lactic acid fermented shrimp wastes. J Agric Food Chem. 2007;55:10345–10350.
  • Gogate PR, Nadar SG. Ultrasound-assisted intensification of extraction of astaxanthin from Phaffia rhodozyma. Indian Chem Eng. 2015;57:240–255.
  • Chen HM, Meyers SP. Extraction of astaxanthin plgment from crawfish waste using a soy oil process. J Food Sci. 1982;47:892–896.
  • Kang CD, Sim SJ. Direct extraction of astaxanthin from Haematococcus culture using vegetable oils. Biotechnol Lett. 2008;30:441–444.
  • Zhao L, Chen G, Zhao G, et al. Optimization of microwave-assisted extraction of astaxanthin from Haematococcus pluvialis by response surface methodology and antioxidant activities of the extracts. Separat Sci Technol. 2009;44:243–262.
  • Rodriguez GA. Extraction, isolation, and purification of carotenoids. Curr Protocol Food Anal Chem. 2001;F2.1.1–F2.1.8.
  • Sachindra NM, Mahendrakar NS. Process optimization for extraction of carotenoids from shrimp waste with vegetable oils. Bioresour Technol. 2005;96:1195–1200.
  • Kaiser P, Surmann P, Vallentin G, et al. A small-scale method for quantitation of carotenoids in bacteria and yeasts. J Microbiol Methods. 2007;70:142–149.
  • Omara-Alwala TR, Chen HM, Ito Y, et al. Carotenoid pigment and fatty acid analyses of crawfish oil extracts. J Agric Food Chem. 1985;33:260–263.
  • Cheng X, Qi Z, Burdyny T, et al. Low pressure supercritical CO2 extraction of astaxanthin from Haematococcus pluvialis demonstrated on a microfluidic chip. Bioresour Technol. 2018;250:481–485.
  • Shahidi F, Synowiecki J. Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. J Agric Food Chem. 1991;39:1527–1532.
  • Adkins Y, Kelley DS. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem. 2010;21:781–792.
  • Mezzomo N, Maestri B, dos Santos RL, et al. Pink shrimp (P. brasiliensis and P. paulensis) residue: influence of extraction method on carotenoid concentration. Talanta. 2011;85:1383–1391.
  • Sánchez-Camargo AP, Martinez-Correa HA, Paviani LC, et al. Supercritical CO 2 extraction of lipids and astaxanthin from Brazilian redspotted shrimp waste (Farfantepenaeus paulensis). J Supercrit Fluids. 2011;56:164–173.
  • Sánchez-Camargo AP, Meireles MAA, Ferreira AL, et al. Extraction of ω-3 fatty acids and astaxanthin from Brazilian redspotted shrimp waste using supercritical CO 2+ ethanol mixtures. J Supercrit Fluids. 2012;61:71–77.
  • López M, Arce L, Garrido J, et al. Selective extraction of astaxanthin from crustaceans by use of supercritical carbon dioxide. Talanta. 2004;64:726–731.
  • Shazana AR, Masturah M, Badlishah SB, et al. Optimisation of supercritical fluid extraction of astaxanthin from Penaeus monodon waste using ethanol-modified carbon dioxide. J Eng Sci Technol. 2016;11:722–736.
  • Krichnavaruk S, Shotipruk A, Goto M, et al. Supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis with vegetable oils as co-solvent. Bioresour Technol. 2008;99:5556–5560.
  • Simpson B, Haard N. The use of proteolytic enzymes to extract carotenoproteins from shrimp wastes. J Appl Biochem. 1985;7:212–222.
  • Manu-Tawiah W, Haard N. Recovery of carotenoprotein from the exoskeleton of snow crab Chionocetes opilio. Can Inst Food Sci Technol J. 1987;20:31–33.
  • Sachindra N, Bhaskar N, Siddegowda G, et al. Recovery of carotenoids from ensilaged shrimp waste. Bioresour Technol. 2007;98:1642–1646.
  • Bhaskar N, Suresh P, Sakhare P, et al. Shrimp biowaste fermentation with Pediococcus acidolactici CFR2182: optimization of fermentation conditions by response surface methodology and effect of optimized conditions on deproteination/demineralization and carotenoid recovery. Enzyme Microb Technol. 2007;40:1427–1434.
  • Pacheco N, Garnica-González M, Ramírez-Hernández JY, et al. Effect of temperature on chitin and astaxanthin recoveries from shrimp waste using lactic acid bacteria. Bioresour Technol. 2009;100:2849–2854.
  • Wang SL, Chio SH. Deproteinization of shrimp and crab shell with the protease of Pseudomonas aeruginosa K-187. Enzyme Microb Technol. 1998;22:629–633.
  • Flores-Albino B, Arias L, Gómez J, et al. Chitin and L (+)-lactic acid production from crab (Callinectes bellicosus) wastes by fermentation of Lactobacillus sp. B2 using sugar cane molasses as carbon source. Bioprocess Biosyst Eng. 2012;35:1193–1200.
  • Jung W, Kuk J, Kim K, et al. Demineralization of red crab shell waste by lactic acid fermentation. Appl Microbiol Biotechnol. 2005;67:851–854.
  • Armenta RE, Guerrero-Legarreta I. Stability studies on astaxanthin extracted from fermented shrimp byproducts. J Agric Food Chem. 2009;57:6095–6100.
  • Franco -Zavaleta M, Jiménez, et al. Astaxanthin extraction from shrimp wastes and its stability in 2 model systems. J Food Sci. 2010;75:C394–C399.
  • Pu J, Bankston JD, Sathivel S. Developing microencapsulated flaxseed oil containing shrimp (Litopenaeus setiferus) astaxanthin using a pilot scale spray dryer. Biosyst Eng. 2011;108:121–132.
  • Gomez-Estaca J, Comunian TA, Montero P, et al. Encapsulation of an astaxanthin-containing lipid extract from shrimp waste by complex coacervation using a novel gelatin–cashew gum complex. Food Hydrocoll. 2016;61:155–162.
  • Montero P, Calvo MM, Gómez-Guillén MC, et al. Microcapsules containing astaxanthin from shrimp waste as potential food coloring and functional ingredient: characterization, stability, and bioaccessibility. LWT Food Sci Technol. 2016;70:229–236.
  • Arancibia MY, Alemán A, Calvo MM, et al. Antimicrobial and antioxidant chitosan solutions enriched with active shrimp (Litopenaeus vannamei) waste materials. Food Hydrocoll. 2014;35:710–717.
  • Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea F, et al. Microencapsulation of astaxanthin in a chitosan matrix. Carbohydr Polym. 2004;56:41–45.
  • Gómez-Estaca J, Calvo MM, Álvarez-Acero I, et al. Characterization and storage stability of astaxanthin esters, fatty acid profile and α-tocopherol of lipid extract from shrimp (L. vannamei) waste with potential applications as food ingredient. Food Chem. 2017;216:37–44.
  • Gildberg A, Stenberg E. A new process for advanced utilization of shrimp waste. Process Biochem. 2001;36:809–812.
  • Sachindra NM, Bhaskar N, Mahendrakar NS. Recovery of carotenoids from shrimp waste in organic solvents. Waste Manag. 2006;26:1092–1098.
  • de Campos LM, Leimann FV, Pedrosa RC, et al. Free radical scavenging of grape pomace extracts from cabernet sauvingnon (Vitis vinifera). Bioresour Technol. 2008;99:8413–8420.
  • Butler TO, McDougall GJ, Campbell R, et al. Media screening for obtaining Haematococcus pluvialis red motile macrozooids rich in astaxanthin and fatty acids. Biology. 2017;7:2.
  • Dave D, Pohling J, Ramakrishnan VV, et al. Evaluation of enzymatic methods for the extraction of biomedical chitosan from shrimp and crab waste – year 2. Canada: Unpublished Final report to Barry Group Inc., Department of Fisheries and Aquaculture Newfoundland, Canadian Centre for Fisheries Innovation, The Department of Innovation, Business and Rural Development of Newfoundland, National Research Council; 2013.
  • Gentles A, Haard NF. Pigmentation of rainbow-trout with enzyme-treated and spray-dried phaffia-rhodozyma. Prog Fish-Culturist. 1991;53:1–6.
  • Delgado-Vargas F, Jiménez AR, Paredes-López O. Natural pigments: carotenoids, anthocyanins, and betalains–characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr. 2000;40:173–289.
  • Mageswari A, Subramanian P, Srinivasan R, et al. Astaxanthin from psychrotrophic Sphingomonas faeni exhibits antagonism against food-spoilage bacteria at low temperatures. Microbiol Res. 2015;179:38–44.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.