1,034
Views
36
CrossRef citations to date
0
Altmetric
Review Articles

Functional group surface modifications for enhancing the formation and performance of exoelectrogenic biofilms on the anode of a bioelectrochemical system

& ORCID Icon
Pages 1015-1030 | Received 06 Jul 2018, Accepted 24 Jul 2019, Published online: 08 Sep 2019

References

  • Logan BE, Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science. 2013;339:906–906.
  • Logan BE. Scaling up Microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol. 2010;85(6):1665–1671.
  • Pant D, Singh A, Van Bogaert G. Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. Rsc Adv. 2012;2(4):1248–1263.
  • Maheux AF, Berube E, Boudreau DK, et al. Ability of three DNA-based assays to identify presumptive Escherichia coli colonies isolated from water by the culture-based MFC agar method. Water Res. 2011;45(8):2638–2646.
  • Isosaari P, Sillanpää M. Use of sulfate-reducing and bioelectrochemical reactors for metal recovery from mine water. Sep Purif Rev. 2017;46(1):1–20.
  • Wang X, Cheng SA, Feng YJ, et al. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ Sci Technol. 2009;43(17):6870–6874.
  • Wadgaonkar SL, Nancharaiah YV, Esposito G, et al. Environmental impact and bioremediation of seleniferous soils and sediments. Crit Rev Biotechnol. 2018;38(6):941–956.
  • Seviour TW, Hinks J. Bucking the current trend in bioelectrochemical systems: a case for bioelectroanalytics. Crit Rev Biotechnol. 2018;38(4):634–646.
  • Kim Y, Logan BE. Microbial Desalination cells for energy production and desalination. Desalination. 2013;308:122–130.
  • Parawira W. Biotechnological production of biodiesel fuel using biocatalysed transesterification: a review. Crit Rev Biotechnol. 2009;29(2):82–93.
  • Cheng SA, Logan BE. Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci USA. 2007;104(47):18871–18873.
  • Logan BE, Cheng SA, Watson V, et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol. 2007;41(9):3341–3346.
  • Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol. 2009;7(5):375–381.
  • Ren H, Pyo S, Lee J, et al. A high power density miniaturized microbial fuel cell having carbon nanotube anodes. J Power Sources. 2015;273:823–830.
  • Liang P, Duan R, Jiang Y, et al. One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Res. 2018;141:1–8.
  • Wrighton KC, Thrash JC, Melnyk RA, et al. Evidence for direct electron transfer by a Gram-positive bacterium isolated from a microbial fuel cell. Appl Environ Microbiol. 2011;77(21):7633–7639.
  • Sleutels T, Ter Heijne A, Buisman CJN, et al. Bioelectrochemical systeems: an outlook for practical applications. Chemsuschem. 2012;5(6):1012–1019.
  • Logan BE, Wallack MJ, Kim KY, et al. Assessment of microbial fuel cell configurations and power densities. Environ Sci Technol Lett. 2015;2(8):206–214.
  • Li F, Li YX, Sun LM, et al. Engineering Shewanella oneidensis enables xylose-fed microbial fuel cell. Biotechnol Biofuels. 2017;10(1):196–206.
  • Jiang XB, Shen JY, Lou S, et al. Comprehensive comparison of bacterial bommunities in a membrane-free bioelectrochemical system for removing different mononitrophenols from wastewater. Bioresource Technol. 2016;216:645–652.
  • Wang HC, Cheng HY, Cui D, et al. Corrugated stainless-steel mesh as a simple engineerable electrode module in bio-electrochemical system: hydrodynamics and the effects on decolorization performance. J Hazard Mater. 2017;338:287–295.
  • Wang YR, Gong L, Jiang JK, et al. Response of anodic biofilm to hydrodynamic shear in two-chamber bioelectrochemical systems. Electrochim Acta. 2017;258:1304–1310.
  • Mousset E, Wang ZX, Hammaker J, et al. Electrocatalytic phenol degradation by a novel nanostructured carbon fiber brush cathode coated with graphene ink. Electrochim Acta. 2017;258:607–617.
  • Ding WJ, Cheng SA, Yu LL, et al. Effective swine wastewater treatment by combining microbial fuel cells with flocculation. Chemosphere. 2017;182:567–573.
  • Schroeder U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys. 2007;9:2619–2629.
  • Zhou M, Chi M, Luo J, et al. An overview of electrode materials in microbial fuel cells. J Power Sources. 2011;196(10):4427–4435.
  • Li FJ, Liu WF, Sun Y, et al. Enhancing hydrogen production with Ni-P coated nickel foam as cathode catalyst in single chamber microbial electrolysis cells. Int J Hydrogen Energ. 2017;42(6):3641–3646.
  • Yang JW, Cheng SA, Sun Y, et al. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns. Biotechnol Lett. 2017;39(10):1515–1520.
  • Guo K, Freguia S, Dennis PG, et al. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ Sci Technol. 2013;47(13):7563–7570.
  • Liu XW, Huang YX, Sun XF, et al. Conductive carbon nanotube ehydrogel as a bioanode for enhanced microbial electrocatalysis. ACS Appl Mater Interfaces.. 2014;6(11):8158–8164.
  • Yang G, Sun Y, Yuan Z, et al. Application of surface-modified carbon powder in microbial fuel cells. Chinese J Catal. 2014;35(5):770–775.
  • Sekoai PT, Awosusi AA, Yoro KO, et al. Microbial cell immobilization in biohydrogen production: a short overview. Crit Rev Biotechnol. 2018;38(2):157–171.
  • Bol M, Ehret AE, Albero AB, et al. Recent advances in mechanical characterisation of biofilm and their significance for material modelling. Crit Rev Biotechnol. 2013;33:145–171.
  • Oliveira NM, Martinezgarcia E, Xavier J, et al. Biofilm formation as a response to ecological competition. Plos Biol. 2015;13:1–23.
  • Puckett SD, Taylor E, Raimondo T, et al. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials. 2010;31(4):706–713.
  • Bos R, van der Mei HC, Busscher HJ. Physico-chemistry of initial microbial adhesive interactions - its mechanisms and methods for study. Fems Microbiol Rev. 1999;23(2):179–230.
  • Jain R, Jordan N, Weiss S, et al. Extracellular polymeric substances govern the surface charge of biogenic elemental selenium nanoparticles. Environ Sci Technol. 2015;49(3):1713–1720.
  • Gomes IB, Meireles A, Gonçalves AL, et al. Standardized reactors for the study of medical biofilms: a review of the principles and latest modifications. Crit Rev Biotechnol. 2018;38(5):657–670.
  • Strauman M. Electronic structure and chemical bonding. Phys Today. 1966;19:89–94.
  • Park D, Yun YS, Park JM. XAS and XPS studies on chromium-binding groups of biomaterial during Cr(VI) biosorption. J Colloid Interface Sci. 2008;317(1):54–61.
  • Lai B, Tang XH, Li HR, et al. Power production enhancement with a polyaniline modified anode in microbial fuel cells. Biosens Bioelectron. 2011;28(1):373–377.
  • Catal T, Li K, Bermek H, et al. Electricity production from twelve monosaccharides using microbial fuel cells. J Power Sources. 2008; 175 (1):196–200.
  • Li HR, Feng YL, Tang XH, et al. The Factors affecting biofilm formation in the mediatorless microbial fuel cell. Chem Biochem Eng Q. 2010;24:341–346.
  • Yeung T, Gilbert GE, Shi J, et al. Membrane phosphatidylserine regulates surface charge and protein localization. Science. 2008;319(5860):210–213.
  • Johnson WP, Logan BE. Enhanced transport of bacteria in porous media by sediment-phase and aqueous-phase natural organic matter. Water Res. 1996;30(4):923–931.
  • Sultana ST, Babauta JT, Beyenal H. Electrochemical biofilm control: a review. Biofouling. 2015;31(9-10):745–758.
  • Cheng SA, Logan BE. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun. 2007;9(3):492–496.
  • Flaxer V, Marque M, Donose BC, et al. Plasma treatment of electrodes significantly enhances the development of anodic electrochemically active biofilms. Electrochim Acta. 2013;108:566–574.
  • Yu YY, Guo CX, Yong YC, et al. Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode. Chemosphere. 2015;140:26–33.
  • Saito T, Mehanna M, Wang X, et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes. Bioresource Technol. 2011;102(1):395–398.
  • Terada A, Okuyama K, Nishikawa M, et al. The Effect of surface charge property on Escherichia coli initial adhesion and subsequent biofilm formation. Biotechnol Bioeng. 2012;109(7):1745–1754.
  • Terada A, Yuasa A, Tsuneda S, et al. Elucidation of dominant effect on initial bacterial adhesion onto polymer surfaces prepared by radiation-induced graft polymerization. Colloids Surf B Biointerfaces. 2005;43(2):99–107.
  • Santoro C, Babanova S, Artyushkova K, et al. Influence of anode surface chemistry on microbial fuel cell operation. Bioelectrochem. 2015; 106:141–149.
  • Cai X, Huang L, Yang G, et al. Transcriptomic, proteomic, and bioelectrochemical characterization of an exoelectrogen Geobacter soli grown with different electron acceptors. Front Microbiol. 2018;9:1075–1089.
  • Busalmen JP, Esteve-Núñez ABRAHAM, Berná ANTONIO, et al. C-type cytochromes wire electricity-producing bacteria to electrodes. Angew Chem Int Ed. 2008;47(26):4874–4877.
  • Picot M, Lapinsonniere L, Rothballer M, et al. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output. Biosens Bioelectron. 2011;28(1):181–188.
  • Gottenbos B, Grijpma DW, van der Mei HC, et al. Antimicrobial effects of positively charged surfaces on adhering gram-positive and gram-negative bacteria. J Antimicrob Chemoth. 2001;48(1):7–13.
  • O'Hanley H, Coyle C, Buongiorno J, et al. Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux. Appl Phys Lett. 2013;103:58–67.
  • Boks NP, Norde W, Mei H, et al. Forces Involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. Microbiol-SGM. 2008;154(10):3122–3133.
  • Lai Y, Pan F, Xu C, et al. In situ surface-modification-induced superhydrophobic patterns with reversible wettability and adhesion. Adv Mater. 2013;25(12):1682–1686.
  • Zhang X, Wang L, Levanen E. Superhydrophobic surfaces for the reduction of bacterial adhesion. Rsc Adv. 2013;3(30):12003–12020.
  • Hizal F, Rungraeng N, Lee J, et al. Nanoengineered superhydrophobic surfaces of aluminum with extremely low bacterial adhesivity. Acs Appl Mater Interfaces. 2017;9(13):12118–12129.
  • Wang Z, Elimelech M, Lin S. Environmental applications of interfacial materials with special wettability. Environ Sci Technol. 2016;50(5):2132–2150.
  • Kobayashi M, Terayama Y, Yamaguchi H, et al. Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes. Langmuir. 2012;28(18):7212–7222.
  • Wang W, Lu Y, Zhu H, et al. Superdurable coating fabricated from a double-sided tape with long term “zero” bacterial adhesion. Adv Mater. 2017;29:1–7.
  • Liu Y, Yang SF, Li Y, et al. The influence of cell and substratum surface hydrophobicities on microbial attachment. J Biotechnol. 2004;110(3):251–256.
  • Yuan Y, Hays MP, Hardwidge PR, et al. Surface characteristics influencing bacterial adhesion to polymeric substrates. Rsc Adv. 2017;7(23):14254–14261.
  • Artyushkova K, Cornejo JA, Ista LK, et al. Relationship between surface chemistry, biofilm structure, and electron transfer in Shewanella anodes. Biointerphases. 2015;10(1):019013–019012.
  • Epifanio M, Inguva S, Kitching M, et al. Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells. Bioelectrochemistry. 2015;106:186–193.
  • He YR, Xiao X, Li WW, et al. Enhanced electricity production from microbial fuel cells with plasma-modified carbon paper anode. Phys Chem Chem Phys. 2012;14(28):9966–9971.
  • Li BK, Logan BE. Bacterial adhesion to glass and metal-oxide surfaces. Colloid Surface B. 2004;36(2):81–90.
  • Webb K, Hlady V, Tresco PA. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J Biomed Mater Res. 1998;41(3):422–430.
  • Marshall KC, Blainey BL. Role of bacterial adhesion in biofilm formation and biocorrosion. Amsterdam: Springer; 1991. 1:29–46.
  • Sharp RR, Cunningham AB, Komlos J, et al. Observation of thick biofilm accumulation and structure in porous media and corresponding hydrodynamic and mass transfer effects. Water Sci Technol. 1999;7:195–201.
  • Karl S, Logan BE. Effect of molecular scale roughness of glass beads on colloidal and bacterial deposition. Environ Sci Technol. 2002;36:184–189.
  • Terada A, Yuasa A, Kushimoto T, et al. Bacterial adhesion to and viability on positively charged polymer surfaces. Microbiology (Reading, Engl)). 2006;152(Pt 12):3575–3583.
  • Liu J, Liu J, He W, et al. Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode. J Power Sources. 2014;265:391–396.
  • Hidalgo D, Sacco A, Hernandez S, et al. Electrochemical and impedance characterization of microbial fuel cells based on 2D and 3D anodic electrodes working with seawater microorganisms under continuous operation. Bioresource Technol. 2015;195:139–146.
  • Ben-Yoav H, Melamed S, Freeman A, et al. Whole-cell biochips for bio-sensing: integration of live cells and inanimate surfaces. Crit Rev Biotechnol. 2011;31(4):337–353.
  • Ghigo JM. Are there biofilm-specific physiological pathways beyond a reasonable doubt? Res Microbiol. 2003;154(1):1–8.
  • Costerton JW, Lewandowski Z, Caldwell DE, et al. Microbial biofilms. Annu Rev Microbiol. 1995;49:711–745.
  • Busscher HJ, Bos R, van der Mei HC. Initial microbial adhesion is a determinant for the strength of biofilm adhesion. Fems Microbiol Lett. 1995;128(3):229–234.
  • Fang Y, Deng C, Chen J, et al. Accelerating the start-up of the cathodic biofilm by adding acyl-homoserine lactone signaling molecules. Bioresour Technol. 2018;266:548–554.
  • Kadier A, Kalil MS, Abdeshahian P, et al. Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals. Renew Sust Energ Rev. 2016;61:501–525.
  • Kumar G, Bakonyi P, Zhen G, et al. Microbial electrochemical systems for sustainable biohydrogen production: surveying the experiences from a start-up viewpoint. Renew Sust Energ Rev. 2017;70:589–597.
  • Georgieva N, Bryaskova R, Lazarova N, et al. PVA-based hybrid materials for immobilization of trichosporon cutaneum R57 efficient in removal of chromium ions. C R Acad Bulg Sci. 2013;66:35–44.
  • Zhang J, Li J, Ye D, et al. Tubular bamboo charcoal for anode in microbial fuel cells. J Power Sources. 2014;272:277–282.
  • Kitsos HM, Roberts RS, Jones WJ, et al. An experimental study of mass diffusion and reaction rate in an anaerobic biofilm. Biotechnol Bioeng. 1992;39(11):1141–1146.
  • Karamanev DG, Nikolov LN. Influence of some physiochemical parameters on bacterial activity of biofilm. Biotechnol Bioeng. 1988;31(4):295–299.
  • Guimerà X, Dorado AD, Bonsfills A, et al. Dynamic characterization of external and internal mass transport in heterotrophic biofilms from microsensors measurements. Water Res. 2016;102:551–560.
  • Pocaznoi D, Erable B, Etcheverry L, et al. Forming microbial anodes under delayed polarisation modifies the electron transfer network and decreases the polarisation time required. Bioresource Technol. 2012;114:334–341.
  • Logan BE, Hamelers B, Rozendal RA, et al. Microbial fuel cells: methodology and technology. Environ Sci Technol. 2006;40(17):5181–5192.
  • Marsili E, Baron DB, Shikhare ID, et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA.. 2008;105(10):3968–3973.
  • Baron D, LaBelle E, Coursolle D, et al. Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J Biol Chem. 2009;284(42):28865–28873.
  • Michelson K, Sanford RA, Valocchi AJ, et al. Nanowires of Geobacter sulfurreducens require redox cofactors to reduce metals in pore spaces too small for cell passage. Environ Sci Technol. 2017;51(20):11660–11668.
  • Reguera G, McCarthy KD, Mehta T, et al. Extracellular electron transfer via microbial nanowires. Nature. 2005;435(7045):1098–1101.
  • Marsili E, Rollefson JB, Baron DB, et al. Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms. Appl Environ Microb. 2008;74(23):7329–7337.
  • Crittenden SR, Sund CJ, Sumner JJ. Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer. Langmuir. 2006;22(23):9473–9476.
  • Breuer M, Rosso KM, Blumberger J. Electron flow in multiheme bacterial cytochromes is a balancing act between heme electronic interaction and redox potentials. Proc Natl Acad Sci USA. 2014;111(2):611–616.
  • Shi L, Squier TC, Zachara JM, et al. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol. 2007;65(1):12–20.
  • Okamoto A, Nakamura R, Ishii K, et al. In vivo electrochemistry of c-type cytochrome-mediated electron-transfer with chemical marking. Chembiochem. 2009;10(14):2329–2332.
  • Zhou ZM, Swenson RP. The cumulative electrostatic effect of aromatic stacking interactions and the negative electrostatic environment of the flavin mononucleotide binding site is a major determinant of the reduction ootential for the flavodoxin from desulfovibrio vulgaris hildenborough. Biochemistry. 1996;35:15980–15988.
  • El Kasmi A, Wallace JM, Bowden EF, et al. Controlling interfacial electron-transfer kinetics of cytochrome c with mixed self-assembled monolayers. J Am Chem Soc. 1998;120(1):225–226.
  • Ding CM, Lv ML, Zhu Y, et al. Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4. Angew Chem Int Ed.. 2015;54(5):1446–1451.
  • Tang X, Guo K, Li H, et al. Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes. Bioresource Technol. 2011;102(3):3558–3560.
  • Qu XG, Lu TH, Dong SJ, et al. Electrochemical reaction of cytochrome-c at gold electrodes modified with thiophene containing one functional-group. Bioelectrochem bioennerg. 1994;2:153–156.
  • Contera SA, Lemaitre V, de Planque MRR, et al. Unfolding and extraction of a transmembrane alpha-helical peptide: dynamic force spectroscopy and molecular dynamics simulations. Biophys J. 2005;89(5):3129–3140.
  • Khedr MG. Nanofiltration of oil field-produced water for reinjection and optimum protection of oil formation. Desalin Water Treat. 2015;55:3460–3468.
  • Pohl S, Madzgalla M, Manz W, et al. Biofouling on polymeric heat exchanger surfaces with E. coli and native biofilms. Biofouling. 2015;31(9–10):699–707.
  • Ferrari M, Benedetti A, Santini E, et al. Biofouling control by superhydrophobic surfaces in shallow euphotic seawater. Colloid Surface A. 2015;480:369–375.
  • Chen Y, Wang XY, Huang YC, et al. Study on the structure of candida albicans-staphylococcus epidermidis mixed species biofilm on polyvinyl chloride biomaterial. Cell Biochem Biophys. 2015;73(2):461–468.
  • Yuan Y, Zhou S, Tang J. In situ investigation of cathode and local biofilm microenvironments reveals important roles of OH- and oxygen transport in microbial fuel cells. Environ Sci Technol. 2013;47(9):4911–4917.
  • Chae KJ, Choi M, Ajayi FF, et al. Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy Fuels. 2008;22(1):169–176.
  • Tiller JC, Liao CJ, Lewis K, et al. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA.. 2001;98(11):5981–5985.
  • Liu WF, Cheng SA, Sun D, et al. Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer. Biosens Bioelectron. 2015;72:44–50.
  • Zhu N, Chen X, Zhang T, et al. Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes. Bioresource Technol. 2011;102(1):422–426.
  • Xie X, Ye M, Hu LB, et al. Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes. Eenerg Environ Sci. 2012;5(1):5265–5270.
  • Park DH, Kim SK, Shin IH, et al. Electricity production in biofuel cell using modified graphite electrode with neutral red. Biotechnol Lett. 2000;22(16):1301–1304.
  • Baranitharan E, Khan MR, Prasad DMR, et al. Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mill effluent. Bioprocess Biosyst Eng. 2015;38(1):15–24.
  • Gooding JJ. Advances in interfacial design sensors: aryl diazonium salts for electrochemical biosensors and for modifying carbon and metal electrodes. Electroanalysis. 2008;20(6):573–582.
  • Feng Y, Yang Q, Wang X, et al. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells. J Power Sources. 2010;195(7):1841–1844.
  • Lowy DA, Tender LM, Zeikus JG, et al. Harvesting energy from the marine sediment-water interface II- Kinetic activity of anode materials. Biosens Bioelectron. 2006;21(11):2058–2063.
  • Feng C, Ma L, Li F, et al. A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosens Bioelectron. 2010;25(6):1516–1520.
  • Jiang D, Li B. Novel electrode materials to enhance the bacterial adhesion and increase the power generation in microbial fuel cells (MFCs). Water Sci Technol. 2009;59(3):557–563.
  • Zhou M, Chi M, Wang H, et al. Anode modification by electrochemical oxidation: a new practical method to improve the performance of microbial fuel cells. Biochem Eng J. 2012;60:151–155.
  • Zhang J, Li J, Ye D, et al. Enhanced performances of microbial fuel cells using surface-modified carbon cloth anodes: a comparative study. Int J Hydrogen Energ. 2014;39(33):19148–19155.
  • Park DH, Zeikus JG. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl Microbiol Biot. 2002;59:58–61.
  • Lu N, Zhou SG, Zhuang L, et al. Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem Eng J. 2009;3:246–251.
  • Gajda I, Greenman J, Ieropoulos IA. Recent advancements in real-world microbial fuel cell applications. Curr Opin Electrochem. 2018; 11:78–83.
  • Balaji M, Jegatheeswaran S, Selvam S, et al. Highly biological active antibiofilm, anticancer and osteoblast adhesion efficacy from MWCNT/PPy/Pd nanocomposite. Appl Surf Sci. 2018;434:400–411.
  • Park S, You J, Ahn Y, et al. Evaluating the effects of organic matter bioavailability on nanofiltration membrane using real-time monitoring. J Membrane Sci. 2018;548:519–525.
  • Randriamahazaka H, Ghilane J. Electrografting and controlled surface functionalization of carbon based surfaces for electroanalysis. Electroanalysis. 2016;28(1):13–26.
  • Park HJ, Jung HW, Han SW. Functional and proteomic analyses reveal that wxcB is involved in virulence, motility, detergent tolerance, and biofilm formation in Xanthomonas campestris pv. vesicatoria. Biochem Bioph Res Co. 2014;452(3):389–394.
  • Ren H, Torres CI, Parameswaran P, et al. Improved current and power density with a micro-scale microbial fuel cell due to a small characteristic length. Biosens Bioelectron. 2014;61:587–592.
  • Sun D, Cheng SA, Wang AJ, et al. Temporal-spatial changes in viabilities and electrochemical properties of anode biofilms. Environ Sci Technol. 2015;8:5227–5235.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.