1,444
Views
72
CrossRef citations to date
0
Altmetric
Review Articles

Endophyte-assisted phytoremediation: mechanisms and current application strategies for soil mixed pollutants

, ORCID Icon, , ORCID Icon &
Pages 31-45 | Received 12 Sep 2018, Accepted 21 Sep 2019, Published online: 27 Oct 2019

References

  • Hu Q, Zhao X, Yang XJ. China's decadal pollution census. Nature. 2017;543(7646):491.
  • Usman M, Wakeel A, Farooq M. India and Pakistan need to collaborate against pollution. Nature. 2017;552(7685):334.
  • Doty SL, Freeman JL, Cohu CM, et al. Enhanced degradation of TCE on a superfund site using endophyte-assisted poplar tree phytoremediation. Environ Sci Technol. 2017;51(17):10050–10058.
  • Motesharezadeh B, Kamal-Poor S, Alikhani HA. Investigating the effects of plant growth promoting bacteria and Glomus mosseae on cadmium phytoremediation by Eucalyptus camaldulensis L. Pollution. 2017;3:575–588.
  • Stepniewska Z, Kuzniar A. Endophytic microorganisms-promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol. 2013;97:9589–9596.
  • Weyens N, van der Lelie D, Taghavi S, et al. Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol. 2009;27(10):591–598.
  • Wang Y, Dai CC. Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation. Ann Microbiol. 2011;61(2):207–215.
  • Lahrmann U, Ding Y, Banhara A, et al. Host-related metabolic cues affect colonization strategies of a root endophyte. Proc Natl Acad Sci USA. 2013;110(34):13965–13970.
  • Suryanarayanan TS. Endophyte research: going beyond isolation and metabolite documentation. Fungal Ecol. 2013;6(6):561–568.
  • Tripathi V, Edrisi SA, Chen B, et al. Biotechnological advances for restoring degraded land for sustainable development. Trend Biotechnol. 2017;35(9):847–859.
  • Afzal S, Begum N, Zhao H, et al. Influence of endophytic root bacteria on the growth, cadmium tolerance and uptake of switchgrass (Panicum virgatum L.). J Appl Microbiol. 2017;123(2):498–510.
  • Jia T, Cao MW, Jing JH, et al. Endophytic fungi and soil microbial community characteristics over different years of phytoremediation in a copper tailings dam of Shanxi, China. Sci Total Environ. 2017;574:881–888.
  • Etesami H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicol Environ Safe. 2018;147:175–191.
  • Chen Y, Dai C-C. Recent advances on endophytic fungi optimising soil environment. Int J Environ Eng. 2013;5(4):387–404.
  • Afzal M, Khan QM, Sessitsch A. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere. 2014;117:232–242.
  • Deng ZJ, Cao LX. Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere. 2017;168:1100–1106.
  • Ma Y, Rajkumar M, Zhang C, et al. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manage. 2016;174:14–25.
  • Feng NX, Yu J, Zhao HM, et al. Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships. Sci Total Environ. 2017;583:352–368.
  • Feng FY, Ge J, Li YS, et al. Enhanced degradation of chlorpyrifos in rice (Oryza sativa L.) by five strains of endophytic bacteria and their plant growth promotional ability. Chemosphere. 2017;184:505–513.
  • Wang L, Lin H, Dong YB, et al. Isolation of vanadium-resistance endophytic bacterium PRE01 from Pteris vittata in stone coal smelting district and characterization for potential use in phytoremediation. J Hazard Mater. 2018;341:1–9.
  • Cao LX, Jiang M, Zeng ZR, et al. Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) in Cd, Ni contaminated soils. Chemosphere. 2008;71(9):1769–1773.
  • Zhang XC, Lin L, Zhu ZQ, et al. Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum alfredii. Int J Phytoremediat. 2013;15(1):51–64.
  • Bilal S, Khan AL, Shahzad R, et al. Endophytic Paecilomyces formosus LHL10 augments Glycine max L. adaptation to Ni-contamination through affecting endogenous phytohormones and oxidative stress. Front Plant Sci. 2017;8:870.
  • Deng ZJ, Zhang RD, Shi Y, et al. Enhancement of phytoremediation of Cd- and Pb-contaminated soils by self-fusion of protoplasts from endophytic fungus Mucor sp CBRF59. Chemosphere. 2013;91(1):41–47.
  • Ho YN, Mathew DC, Hsiao SC, et al. Selection and application of endophytic bacterium Achromobacter xylosoxidans strain F3B for improving phytoremediation of phenolic pollutants. J Hazard Mater. 2012;219:43–49.
  • Lumactud R, Shen SY, Lau M, et al. Bacterial endophytes isolated from plants in natural oil seep soils with chronic hydrocarbon contamination. Front Microbiol. 2016;7:755.
  • Yousaf S, Afzal M, Reichenauer TG, et al. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ Pollut. 2011;159(10):2675–2683.
  • Yousaf S, Ripka K, Reichenauer TG, et al. Hydrocarbon degradation and plant colonization by selected bacterial strains isolated from Italian ryegrass and birdsfoot trefoil. J Appl Microbiol. 2010;109(4):1389–1401.
  • Hong YW, Liao D, Chen JS, et al. A comprehensive study of the impact of polycyclic aromatic hydrocarbons (PAHs) contamination on salt marsh plants Spartina alterniflora: implication for plant–microbe interactions in phytoremediation. Environ Sci Pollut Res. 2015;22(9):7071–7081.
  • Garcia-Suarez R, Verduzco-Rosas LA, Del R, et al. Translocation of Bacillus thuringiensis in Phaseolus vulgaris tissues and vertical transmission in Arabidopsis thaliana. J Appl Microbiol. 2017;122:1092–1100.
  • Luo JP, Luo Q, Radek J, et al. Role of vertical transmission of shoot endophytes in root-associated microbiome assembly and heavy metal hyperaccumulation in Sedum alfredii. Environ Sci Technol. 2019;53:6954–6963.
  • Nisa H, Kamili AN, Nawchoo IA, et al. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog. 2015;82:50–59.
  • Schulz B, Boyle C. What are endophytes? In: Sieber TN, editor. Microbial root endophytes. Soil biology. Berlin, Heidelberg: Springer; 2006. p. 1–13.
  • Pentimone I, Lebron R, Hackenberg M, et al. Identification of tomato miRNAs responsive to root colonization by endophytic Pochonia chlamydosporia. Appl Microbiol Biotechnol. 2018;102(2):907–919.
  • Pinski A, Hupert-Kocurek K. Genetic basis of endophytic bacteria-plant interactions. Postep Mikrobiol. 2016;55:404–412.
  • Fatima K, Imran A, Amin I, et al. Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil. Environ Sci Pollut Res. 2016;23(7):6188–6196.
  • Dhayanithy G, Subban K, Chelliah J. Diversity and biological activities of endophytic fungi associated with Catharanthus roseus. BMC Microbiol. 2019;19(1):22.
  • Oliveira V, Gomes NCM, Almeida A, et al. Hydrocarbon contamination and plant species determine the phylogenetic and functional diversity of endophytic degrading bacteria. Mol Ecol. 2014;23(6):1392–1404.
  • Babu AG, Kim JD, Oh BT. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater. 2013;250:477–483.
  • Visioli G, Vamerali T, Mattarozzi M, et al. Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens. Front Plant Sci. 2015;6:638.
  • Lacercat-Didier L, Berthelot C, Foulon J, et al. New mutualistic fungal endophytes isolated from poplar roots display high metal tolerance. Mycorrhiza. 2016;26(7):657–671.
  • Amini I, Tahmourespour A, Abdollahi A. Biodegradation of polycyclic aromatic hydrocarbons by Pseudomonas species. Pollution. 2017;3:9–19.
  • Andreolli M, Lampis S, Poli M, et al. Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons. Chemosphere. 2013;92(6):688–694.
  • Zhu XZ, Ni X, Waigi MG, et al. Biodegradation of mixed PAHs by PAH-degrading endophytic bacteria. Int J Environ Res Public Health. 2016;13:pii: E805.
  • Zamani J, Hajabbasi MA, Alaie E, et al. The effect of Piriformospora indica on the root development of maize (Zea mays L.) and remediation of petroleum contaminated soil. Int J Phytoremediat. 2016;18(3):278–287.
  • Wang HW, Dai CC, Zhu H, et al. Survival of a novel endophytic fungus Phomopsis liquidambari B3 in the indole-contaminated soil detected by real-time PCR and its effects on the indigenous microbial community. Microbiol Res. 2014;169(12):881–887.
  • Weyens N, Croes S, Dupae J, et al. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut. 2010;158(7):2422–2427.
  • Weyens N, Truyens S, Saenen E, et al. Endophytes and their potential to deal with co-contamination of organic contaminants (toluene) and toxic metals (nickel) during phytoremediation. Int J Phytoremediat. 2011;13(3):244–255.
  • Weyens N, Schellingen K, Beckers B, et al. Potential of willow and its genetically engineered associated bacteria to remediate mixed Cd and toluene contamination. J Soils Sediments. 2013;13(1):176–188.
  • Ma XK, Wu LL, Fam H. Heavy metal ions affecting the removal of polycyclic aromatic hydrocarbons by fungi with heavy-metal resistance. Appl Microbiol Biotechnol. 2014;98(23):9817–9827.
  • Fester T, Giebler J, Wick LY, et al. Plant–microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants. Curr Opin Biotechnol. 2014;27:168–175.
  • Schwitzguebel JP. Phytoremediation of soils contaminated by organic compounds: hype, hope and facts. J Soils Sediments. 2017;17:1492–1502.
  • Yu Q, Powles S. Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production. Plant Physiol. 2014;166(3):1106–1118.
  • Sauvetre A, May R, Harpaintner R, et al. Metabolism of carbamazepine in plant roots and endophytic rhizobacteria isolated from Phragmites australis. J Hazard Mater. 2018;342:85–95.
  • Ma Y, Rajkumar M, Luo YM, et al. Inoculation of endophytic bacteria on host and non-host plants – effects on plant growth and Ni uptake. J Hazard Mater. 2011;195:230–237.
  • Park JH, Bolan N, Megharaj M, et al. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. J Hazard Mater. 2011;185(2–3):829–836.
  • Cao XD, Ma LQ, Singh SP, et al. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions. Environ Pollut. 2008;152(1):184–192.
  • Sharma RK, Archana G. Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Appl Soil Ecol. 2016;107:66–78.
  • Rajkumar M, Ae N, Freitas H. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere. 2009;77(2):153–160.
  • Zloch M, Thiem D, Gadzala-Kopciuch R, et al. Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd2+. Chemosphere. 2016;156:312–325.
  • Bruins MR, Kapil S, Oehme FW. Microbial resistance to metals in the environment. Ecotoxicol Environ Safe. 2000;45(3):198–207.
  • Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda MD, et al. Plant growth-promoting bacterial endophytes. Microbiol Res. 2016;183:92–99.
  • Kotrba P, Najmanova J, Macek T, et al. Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv. 2009;27(6):799–810.
  • Choppala G, Saifullah, Bolan N, et al. Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci. 2014;33:374–391.
  • Khan AR, Ullah I, Waqas M, et al. Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi. Ecotoxicol Environ Safe. 2017;136:180–188.
  • Sharma S, Tiwari KL, Jadhav SK. Diversity of fungal endophytes in Typha latifolia (L.) and their lead biosorption activity. Euro-Med J Environ Integr. 2018;3:4.
  • Khan AR, Waqas M, Ullah I, et al. Culturable endophytic fungal diversity in the cadmium hyperaccumulator Solanum nigrum L. and their role in enhancing phytoremediation. Environ Exp Bot. 2017;135:126–135.
  • Mesa J, Mateos-Naranjo E, Caviedes MA, et al. Endophytic cultivable bacteria of the metal bioaccumulator Spartina maritima improve plant growth but not metal uptake in polluted marshes soils. Front Microbiol. 2015;6:1450.
  • Bisht S, Pandey P, Kaur G, et al. Utilization of endophytic strain Bacillus sp SBER3 for biodegradation of polyaromatic hydrocarbons (PAH) in soil model system. Eur J Soil Biol. 2014;60:67–76.
  • Lemaire B, Van Oevelen S, De Block P, et al. Identification of the bacterial endosymbionts in leaf nodules of Pavetta (Rubiaceae). Int J Syst Evol Microbiol. 2012;62(1):202–209.
  • Carlier AL, Omasits U, Ahrens CH, et al. Proteomics analysis of Psychotria leaf nodule symbiosis: improved genome annotation and metabolic predictions. Mol Plant Microbe Interact. 2013;26(11):1325–1333.
  • Carlier A, Fehr L, Pinto-Carbó M, et al. The genome analysis of candidatus Burkholderia crenata reveals that secondary metabolism may be a key function of the Ardisia crenata leaf nodule symbiosis. Environ Microbiol. 2016;18(8):2507–2522.
  • Li X, Ma L, Bu N, et al. Endophytic infection modifies organic acid and mineral element accumulation by rice under Na2CO3 stress. Plant Soil. 2017;420(1–2):93–103.
  • Pan FS, Meng Q, Wang Q, et al. Endophytic bacterium Sphingomonas SaMR12 promotes cadmium accumulation by increasing glutathione biosynthesis in Sedum alfredii Hance. Chemosphere. 2016;154:358–366.
  • Torres MS, White JF, Zhang X, et al. Endophyte-mediated adjustments in host morphology and physiology and effects on host fitness traits in grasses. Fungal Ecol. 2012;5(3):322–330.
  • Glick BR. Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo). 2012;2012:963401.
  • Khaksar G, Treesubsuntorn C, Thiravetyan P. Euphorbia milii-native bacteria interactions under airborne formaldehyde stress: effect of epiphyte and endophyte inoculation in relation to IAA, ethylene and ROS levels. Plant Physiol Biochem. 2017;111:284–294.
  • Defez R, Andreozzi A, Bianco C. The overproduction of indole-3-acetic acid (IAA) in endophytes upregulates nitrogen fixation in both bacterial cultures and inoculated rice plants. Microb Ecol. 2017;74(2):441–452.
  • Bianco C, Defez R. Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot. 2009;60(11):3097–3107.
  • Ullah A, Mushtaq H, Ali H, et al. Diazotrophs-assisted phytoremediation of heavy metals: a novel approach. Environ Sci Pollut Res. 2015;22(4):2505–2514.
  • Taghavi S, Wu X, Ouyang LM, et al. Transcriptional responses to sucrose mimic the plant-associated life style of the plant growth promoting endophyte Enterobacter sp 638. PLoS One. 2015;10(1):e0115455.
  • Khan AL, Hamayun M, Kang SM, et al. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol. 2012;12:3.
  • Islam F, Yasmeen T, Ali Q, et al. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ Safe. 2014;104:285–293.
  • Kusari S, Singh S, Jayabaskaran C. Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trend Biotechnol. 2014;32(6):297–303.
  • Kusari P, Kusari S, Spiteller M, et al. Implications of endophyte–plant crosstalk in light of quorum responses for plant biotechnology. Appl Microbiol Biotechnol. 2015;99(13):5383–5390.
  • Brader G, Compant S, Mitter B, et al. Metabolic potential of endophytic bacteria. Curr Opin Biotechnol. 2014;27:30–37.
  • Singh B, Kaur T, Kaur S, et al. Insecticidal potential of an endophytic Cladosporium velox against Spodoptera litura mediated through inhibition of alpha glycosidases. Pest Biochem Physiol. 2016;131:46–52.
  • Ben Abdallah RA, Mokni-Tlili S, Nefzi A, et al. Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol Control. 2016;97:80–88.
  • Bacon CW, Hinton DM, Mitchell TR, et al. Characterization of endophytic strains of Bacillus mojavensis and their production of surfactin isomers. Biol Control. 2012;62(1):1–9.
  • Sheoran N, Nadakkakath AV, Munjal V, et al. Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds. Microbiol Res. 2015;173:66–78.
  • Zheng YK, Qiao XG, Miao CP, et al. Diversity, distribution and biotechnological potential of endophytic fungi. Ann Microbiol. 2016;66(2):529–542.
  • Mahmud T. The C 7 N aminocyclitol family of natural products. Nat Prod Rep. 2003;20(1):137–166.
  • Aravind R, Eapen SJ, Kumar A, et al. Screening of endophytic bacteria and evaluation of selected isolates for suppression of burrowing nematode (Radopholus similis Thorne) using three varieties of black pepper (Piper nigrum L.). Crop Prot. 2010;29(4):318–324.
  • Dharni S, Srivastava AK, Samad A, et al. Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicida PsF610 on metal uptake and production of secondary metabolite (monoterpenes) by rose-scented geranium (Pelargonium graveolens cv. bourbon) grown on tannery sludge amended soil. Chemosphere. 2014;117:433–439.
  • Germaine KJ, Liu XM, Cabellos GG, et al. Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol. 2006;57(2):302–310.
  • Ambrose KV, Tian ZP, Wang YF, et al. Functional characterization of salicylate hydroxylase from the fungal endophyte Epichloe festucae. Sci Rep. 2015;5(1):10939.
  • Grishchenkov VG, Shishmakov DA, Kosheleva IA, et al. Growth of bacteria degrading naphthalene and salicylate at low temperatures. Appl Biochem Microbiol. 2003;39(3):282–288.
  • Zhang XY, Liu XY, Wang Q, et al. Diesel degradation potential of endophytic bacteria isolated from Scirpus triqueter. Int Biodeterior Biodegrad. 2014;87:99–105.
  • Fu WQ, Xu M, Sun K, et al. Biodegradation of phenanthrene by endophytic fungus Phomopsis liquidambari in vitro and in vivo. Chemosphere. 2018;203:160–169.
  • Leroy C, Jauneau A, Martinez Y, et al. Exploring fungus-plant N transfer in a tripartite ant–plant–fungus mutualism. Ann Bot. 2017;120(3):417–426.
  • Chen F, Ren CG, Zhou T, et al. A novel exopolysaccharide elicitor from endophytic fungus Gilmaniella sp AL12 on volatile oils accumulation in Atractylodes lancea. Sci Rep. 2016;6:34735.
  • Persoh D. Plant-associated fungal communities in the light of meta'omics. Fungal Divers. 2015;75:1–25.
  • Wang YH, Li HH, Feng GJ, et al. Biodegradation of diuron by an endophytic fungus Neurospora intermedia DP8-1 isolated from sugarcane and its potential for remediating diuron-contaminated soils. PLoS One. 2017;12:e0182556.
  • Mendarte-Alquisira C, Gutierrez-Rojas M, Gonzalez-Marquez H, et al. Improved growth and control of oxidative stress in plants of Festuca arundinacea exposed to hydrocarbons by the endophytic fungus Lewia sp. Plant Soil. 2017;411(1–2):347–358.
  • Zahoor M, Irshad M, Rahman H, et al. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp MHR-7. Ecotoxicol Environ Safe. 2017;142:139–149.
  • Xie XG, Huang CY, Fu WQ, et al. Potential of endophytic fungus Phomopsis liquidambari for transformation and degradation of recalcitrant pollutant sinapic acid. Fungal Biol. 2016;120(3):402–413.
  • Xie XG, Dai CC. Degradation of a model pollutant ferulic acid by the endophytic fungus Phomopsis liquidambari. Bioresour Technol. 2015;179:35–42.
  • Wang HW, Zhang W, Su CL, et al. Biodegradation of the phytoestrogen luteolin by the endophytic fungus Phomopsis liquidambari. Biodegradation. 2015;26(3):197–210.
  • Chen Y, Xie XG, Ren CG, et al. Degradation of N-heterocyclic indole by a novel endophytic fungus Phomopsis liquidambari. Bioresour Technol. 2013;129:568–574.
  • Wang J, Liu J, Ling WT, et al. Composite of PAH-degrading endophytic bacteria reduces contamination and health risks caused by PAHs in vegetables. Sci Total Environ. 2017;598:471–478.
  • Burges A, Epelde L, Benito G, et al. Enhancement of ecosystem services during endophyte-assisted aided phytostabilization of metal contaminated mine soil. Sci Total Environ. 2016;562:480–492.
  • Sanchez-Lopez AS, Thijs S, Beckers B, et al. Community structure and diversity of endophytic bacteria in seeds of three consecutive generations of Crotalaria pumila growing on metal mine residues. Plant Soil. 2018;422:51–66.
  • Brune KD, Bayer TS. Engineering microbial consortia to enhance biomining and bioremediation. Front Microbiol. 2012;3:203.
  • Said SB, Or D. Synthetic microbial ecology: engineering habitats for nodular consortia. Front Microbiol. 2017;8:1125.
  • Toju H, Peay KG, Yamamichi M, et al. Core microbiomes for sustainable agroecosystems. Nat Plant. 2018;4(9):733–733.
  • Wang Y, Tian H, Huang F, et al. Time-resolved analysis of a denitrifying bacterial community revealed a core microbiome responsible for the anaerobic degradation of quinoline. Sci Rep. 2017;7:14778.
  • Ijaz A, Iqbal Z, Afzal M. Remediation of sewage and industrial effluent using bacterially assisted floating treatment wetlands vegetated with Typha domingensis. Water Sci Technol. 2016;74(9):2192–2201.
  • Ashraf S, Afzal M, Naveed M, et al. Endophytic bacteria enhance remediation of tannery effluent in constructed wetlands vegetated with Leptochloa fusca. Int J Phytoremediat. 2018;20(2):121–128.
  • Kaul S, Sharma T, Dhar MK. “Omics” tools for better understanding the plant–endophyte interactions. Front Plant Sci. 2016;7:955.
  • Gaiero JR, McCall CA, Thompson KA, et al. Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot. 2013;100(9):1738–1750.
  • Ijaz A, Imran A, Ul Haq MA, et al. Phytoremediation: recent advances in plant–endophytic synergistic interactions. Plant Soil. 2016;405(1–2):179–195.
  • Barac T, Taghavi S, Borremans B, et al. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol. 2004;22(5):583–588.
  • Weyens N, Van Der Lelie D, Artois T, et al. Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environ Sci Technol. 2009;43(24):9413–9418.
  • Romao-Dumaresq AS, Dourado MN, Favaro LCD, et al. Diversity of cultivated fungi associated with conventional and transgenic sugarcane and the interaction between endophytic Trichoderma virens and the host plant. PLoS One. 2016;11:e0158974.
  • Taghavi S, Barac T, Greenberg B, et al. Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. App Environ Microbiol. 2005;71(12):8500–8505.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.