607
Views
20
CrossRef citations to date
0
Altmetric
Review Articles

Nanotechnology and chemical engineering as a tool to bioprocess microalgae for its applications in therapeutics and bioresource management

ORCID Icon
Pages 46-63 | Received 14 Mar 2019, Accepted 20 Sep 2019, Published online: 24 Oct 2019

References

  • Hoek C, Mann D, Jahns HM. Algae: an introduction to phycology. Cambridge: Cambridge University Press; 1995.
  • DE LA Noüe J, Nonomura AM, Huntley ME. 2018. Biotreatment of agricultural wastewater. London: CRC Press.
  • John DM, Whitton BA, Brook AJ. 2002. The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae. Cambridge: Cambridge University Press.
  • Keeling PJ. Diversity and evolutionary history of plastids and their hosts. Am J Bot. 2004;91(10):1481–1493.
  • Widjaja A, Chien C-C, Ju Y-H. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng. 2009;40(1):13–20.
  • Brennan L, Owende P. Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev. 2010;14(2):557–577.
  • Metting F. Biodiversity and application of microalgae. J Ind Microbiol. 1996;17(5-6):477–489.
  • Mathimani T, Pugazhendhi A. Utilization of algae for biofuel, bio-products and bio- remediation. Biocataly Agric Biotechnol. 2019;17:326–330.
  • Chi NTL, Duc PA, Mathimani T, et al. Evaluating the potential of green alga Chlorella sp. for high biomass and lipid production in biodiesel viewpoint. Biocatalysis Agric Biotechnol. 2019;17:184–188.
  • Sudhakar M, Kumar BR, Mathimani T, et al. A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. J Cleaner Prod. 2019;228:1320.
  • Kang K-H, Qian Z-J, Ryu B, et al. Characterization of growth and protein contents from microalgae Navicula incerta with the investigation of antioxidant activity of enzymatic hydrolysates. Food Sci Biotechnol. 2011;20(1):183–191.
  • Matsunaga T, Takeyama H, Miyashita H, et al. 2005. Marine microalgae. In: Ulber R, Le Gal Y, editor. Marine biotechnology I. Berlin: Springer. p. 165–188.
  • Bule MH, Ahmed I, Maqbool F, et al. Microalgae as a source of high-value bioactive compounds. Front Biosci (Schol Ed). 2018;10:197–216.
  • Borowitzka M. 1988. Algal growth media and sources of algal cultures. Cambridge: Cambridge University Press.
  • Rogers L, Gallon JR. 1988. Biochemistry of the algae and cyanobacteria. Oxford: Clarendon Press.
  • Siqueira SF, Queiroz MI, Zepka LQ, et al. Introductory chapter: microalgae biotechnology—a brief introduction. In: Microalgal biotechnology. Brazil: Intech; 2018. Available from: https://www.intechopen.com/books/microalgal-biotechnology/introductory-chapter-microalgae-biotechnology-a-brief-introduction
  • Stewart WDP. 1974. Algal physiology and biochemistry. California: University of California Press.
  • Sun X-M, Ren L-J, Zhao Q-Y, et al. Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. Biotechnol Biofuels. 2018;11(1):272.
  • Brown MR, Jeffrey S. Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 1. Amino acids, sugars and pigments. J Exp Marine Biol Ecol. 1992;161(1):91–113.
  • Macintyre HL, Kana TM, Anning T, et al. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria1. J Phycol. 2002;38(1):17–38.
  • Gille A, Neumann U, Louis S, et al. Microalgae as a potential source of carotenoids: comparative results of an in vitro digestion method and a feeding experiment with C57BL/6J mice. J Funct Foods. 2018;49:285–294.
  • Wright S, Jeffrey SW, Mantoura R, et al. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar Ecol Prog Ser. 1991;77:183–196.
  • Borowitzka M. 1988. Vitamins and fine chemicals from micro-algae. Cambridge: Cambridge University Press.
  • Wright S, Jeffrey S, Mantoura R. Phytoplankton pigments in oceanography: guidelines to modern methods. Paris: UNESCO Pub; 2005.
  • Baskar G, Soumiya S, Aiswarya R, et al. Microalgae—a source for third-generation biofuels. In: Sivasubramanian V, editor. Bioprocess engineering for a green environment. New York: Taylor & Francis; 2018. p. 297–306.
  • Jacob-Lopes E, Zepka LQ, Queiroz MI. Energy from microalgae. Berlin: Springer; 2018.
  • Okada S, Murakami M, Yamaguchi K. Hydrocarbon composition of newly isolated strains of the green microalga Botryococcus braunii. J Appl Phycol. 1995;7(6):555–559.
  • Patterson GW. Sterol synthesis and distribution and algal phylogeny. In: Spector DL, editor. The metabolism, structure, and function of plant lipids. New York: Springer; 1987.
  • Borowitzka MA. Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol. 1995;7(1):3–15.
  • Metting B, Pyne JW. Biologically active compounds from microalgae. Enzyme Microb Technol. 1986;8(7):386–394.
  • Pesando D. Antibacterial and antifungal activities of marine algae. In: Akatsuka I, editor. Introduction to applied phycology. The Netherland: The Hague; 1990. p. 3–26.
  • Carmichael W. Cyanobacteria secondary metabolites—the cyanotoxins. J Appl Bacteriol. 1992;72(6):445–459.
  • Duy TN, Lam PK, Shaw GR, et al. Toxicology and risk assessment of freshwater cyanobacterial (blue-green algal) toxins in water. Rev Environ Contamin Toxicol. 2000;163:113–186.
  • Gleason FK, Porwoll J, Flippen-Anderson JL, et al. X-ray structure determination of the naturally occurring isomer of cyanobacterin. J Org Chem. 1986;51(9):1615–1616.
  • Gorham P, Carmichael W. 1988. Hazards of freshwater blue-green algae (cyanobacteria). In:Lembi CA, Waaland JR, editors. Algae and human affairs. Cambridge: Phycological Society of America, Inc.
  • Khan MI, Shin JH, Kim JD. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact. 2018;17(1):36.
  • Leavitt R. Osmotic regulation in Chlorella sp 580 as a mechanism for the production of l-proline. Beihefte zur Nova Hedwigia. 1986;139:141.
  • Witt U, Koske P, Kuhlmann D, et al. Production of Nannochloris spec.(Chlorophyceae) in large-scale outdoor tanks and its use as a food organism in marine aquaculture. Aquaculture. 1981;23(1–4):171–181.
  • Kumar BR, Deviram G, Mathimani T, et al. Microalgae as rich source of polyunsaturated fatty acids. Biocatal Agric Biotechnol. 2019;17:184–188.
  • Tang S, Qin C, Wang H, et al. Study on supercritical extraction of lipids and enrichment of DHA from oil-rich microalgae. J Supercritical Fluids. 2011;57(1):44–49.
  • Hodgson J. Heliosynthese takes on Martek infant formula market. Nat Biotechnol. 1996;14(6):700.
  • Hoeksema S, Behrens P, Gladue R, et al. An EPA-containing oil from microalgae in culture. In: Chandra RK, editor. Health effects of fish and fish oils. Berlin: Springer; 1989. p. 337–347.
  • Gustafson KR, Cardellina JH, Fuller RW, et al. AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae). JNCI. 1989;81(16):1254–1258.
  • Brown MR, Farmer CL. Riboflavin content of six species of microalgae used in mariculture. J Appl Phycol. 1994;6(1):61–65.
  • Spolaore P, Joannis-Cassan C, Duran E, et al. Commercial applications of microalgae. J Biosci Bioengin. 2006;101(2):87–96.
  • Demirbaş A. Oily products from mosses and algae via pyrolysis. Energy Sources Part A. 2006;28(10):933–940.
  • Meher L, Sagar DV, Naik S. Technical aspects of biodiesel production by transesterification—a review. Renew Sustain Energy Rev. 2006;10(3):248–268.
  • Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008;26(3):126–131.
  • Miao X, Wu Q. Biodiesel production from heterotrophic microalgal oil. Bioresource Technol. 2006;97(6):841–846.
  • Beuckels A, Smolders E, Muylaert K. 2014. Wastewater treatment using microalgae. Water Res. 2015;77:98–106.
  • Kwong YS, Tam NF. 2013. Wastewater treatment with algae. Berlin: Springer Science & Business Media.
  • Lincoln EP, Earle JF. 1990. Wastewater treatment with microalgae. The Hague, Netherland: SPB Academic Publishing.
  • Harun R, Singh M, Forde GM, et al. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev. 2010;14(3):1037–1047.
  • Kothari R, Pandey A, Ahmad S, et al. Microalgal cultivation for value-added products: a critical enviro-economical assessment. Biotech. 2017;7(4):243.
  • León-Bañares R, González-Ballester D, Galván A, et al. Transgenic microalgae as green cell-factories. Trends Biotechnol. 2004;22(1):45–52.
  • Takagi M, Yoshida T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng. 2006;101:223–226.
  • Popoola T, Yangomodou O. Extraction, properties and utilization potentials of cassava seed oil. Biotechnology. 2006;5:38–41.
  • Narayanan KB, Sakthivel N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Sci. 2011;169(2):59–79.
  • Bao Z, Cao J, Kang G, et al. Effects of reaction conditions on light-dependent silver nanoparticle biosynthesis mediated by cell extract of green alga Neochloris oleoabundans. Environ Sci Pollut Res. 2019;26(3):2873–2881.
  • Kanchi S, Ahmed S. 2018. Green metal nanoparticles: synthesis, characterization and their applications. New York: John Wiley & Sons.
  • Namasivayam S, Jayakumar D, Kumar VR, et al. Anti bacterial and anti cancerous biocompatible silver nanoparticles synthesised from the cold tolerant strain of Spirulina platensis. Res J Pharmacy Technol. 2014;7:1404–1412.
  • Dar MA, Ingle A, Rai M. Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomed: Nanotechnol Biol Med. 2013;9(1):105–110.
  • Cao X, Cheng C, Ma Y, et al. Preparation of silver nanoparticles with antimicrobial activities and the researches of their biocompatibilities. J Mater Sci: Mater Med. 2010;21:2861–2868.
  • Feng X, Qi X, Li J, et al. Preparation, structure and photo-catalytic performances of hybrid Bi 2 SiO 5 modified Si nanowire arrays. Appl Surf Sci. 2011;257(13):5571–5575.
  • Gottesman R, Shukla S, Perkas N, et al. Sonochemical coating of paper by microbiocidal silver nanoparticles. Langmuir. 2011;27(2):720–726.
  • Martínez-Gutierrez F, Thi EP, Silverman JM, et al. Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomed: Nanotechnol Biol Med. 2012;8(3):328–336.
  • You C, Han C, Wang X, et al. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep. 2012;39(9):9193–9201.
  • Jena J, Pradhan N, Dash BP, et al. Biosynthesis and characterization of silver nanoparticles using microalga Chlorococcum humicola and its antibacterial activity. Int J Nanomater Biostruct. 2013;3:1–8.
  • DE Stefano L, DE Stefano M, DE Tommasi E, et al. A natural source of porous biosilica for nanotech applications: the diatoms microalgae. Phys Status Solidi C. 2011;8(6):1820–1825.
  • Parial D, Patra HK, Dasgupta AK, et al. Screening of different algae for green synthesis of gold nanoparticles. Eur J Phycol. 2012;47(1):22–29.
  • Gericke M, Pinches A. Microbial production of gold nanoparticles. Gold Bull. 2006;39(1):22–28.
  • Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28(11):580–588.
  • Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346.
  • Shrivastava S, Bera T, Roy A, et al. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18(22):225103.
  • Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles. Nanomed: Nanotechnol Biol Med. 2007;3(1):95–101.
  • Ravishankar Rai V, Jamuna Bai A. Nanoparticles and their potential application as antimicrobials, science against microbial pathogens: communicating current research and technological advances. In: Méndez-Vilas A, editor, Formatex, Microbiology Series. Vol. 1, no. 3. 2011. p. 197–209.
  • Dixit D, Gangadharan D, Popat K, et al. Synthesis, characterization and application of green seaweed mediated silver nanoparticles (AgNPs) as antibacterial agents for water disinfection. Water Sci Technol. 2018;78(1-2):235–246.
  • Feng QL, Wu J, Chen G, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662–668.
  • Ananthi V, Prakash GS, Rasu KM, et al. Comparison of integrated sustainable biodiesel and antibacterial nano silver production by microalgal and yeast isolates. J Photochem Photobiol B: Biol. 2018;186:232–242.
  • Jung WK, Koo HC, Kim KW, et al. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74(7):2171–2178.
  • Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177–182.
  • Kvitek L, PanáčEk A, Soukupova J, et al. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C. 2008;112:5825–5834.
  • EL-Sheekh MM, EL-Kassas HY. Algal production of nano-silver and gold: their antimicrobial and cytotoxic activities: a review. J Genetic Eng Biotechnol. 2016;14(2):299–310.
  • Aymonier C, Schlotterbeck U, Antonietti L, et al. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun. 2002;(24):3018–3019.
  • Kumar R, Münstedt H. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials. 2005;26(14):2081–2088.
  • Melaiye A, Sun Z, Hindi K, et al. Silver (I)−imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: Formation of nanosilver particles and antimicrobial activity. J Am Chem Soc. 2005;127(7):2285–2291.
  • Banerjee M, Mallick S, Paul A, et al. Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan − silver nanoparticle composite. Langmuir. 2010;26(8):5901–5908.
  • Rajeshkumar S. Antifungal impact of nanoparticles against different plant pathogenic fungi. In: Nanomaterials in plants, algae and microorganisms. New York: Elsevier; 2019.
  • Reidy B, Haase A, Luch A, et al. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials. 2013;6(6):2295–2350.
  • Khalid M, et al. Comparative studies of three novel freshwater microalgae strains for synthesis of silver nanoparticles: insights of characterization, antibacterial, cytotoxicity and antiviral activities. Journal of applied phycology. 2017;29(4):1851–1863.
  • Dorau B, Arango R, Green F. An investigation into the potential of ionic silver as a wood preservative. Proceedings from the Woodframe Housing Durability and Disaster Issues Conference: October 4–6, 2004, Las Vegas, Nevada, USA. Madison, WI: Forest Products Society, 2004. p. 133–145, 2004.
  • Gajbhiye M, Kesharwani J, Ingle A, et al. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed: Nanotechnol Biol Med. 2009;5(4):382–386.
  • Sriram MI, Kanth SBM, Kalishwaralal K, et al. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int J Nanomed. 2010;5:753.
  • Martins D, Frungillo L, Anazzetti MC, et al. Antitumoral activity of L-ascorbic acid-poly-D, L-(lactide-co-glycolide) nanoparticles containing violacein. Int J Nanomed. 2010;5:77.
  • Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, et al. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol. 2010;8(1):1.
  • Galdiero S, Falanga A, Vitiello M, et al. Silver nanoparticles as potential antiviral agents. Molecules. 2011;16(10):8894–8918.
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustainable Energy Rev. 2010;14(1):217–232.
  • Schenk PM, Thomas-Hall SR, Stephens E, et al. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res. 2008;1(1):20–43.
  • Stephenson PG, Moore CM, Terry MJ, et al. Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol. 2011;29(12):615–623.
  • Seo YH, Lee Y, Jeon DY, et al. Enhancing the light utilization efficiency of microalgae using organic dyes. Bioresource Technol. 2015;181:355–359.
  • Amrei HD, Ranjbar R, Rastegar S, et al. Using fluorescent material for enhancing microalgae growth rate in photobioreactors. J Appl Phycol. 2015;27:67–74.
  • Abu-Ghosh S, Fixler D, Dubinsky Z, et al. Continuous background light significantly increases flashing-light enhancement of photosynthesis and growth of microalgae. Bioresource Technol. 2015;187:144–148.
  • Sun H, Wu L, Wei W, et al. Recent advances in graphene quantum dots for sensing. Materials Today. 2013;16(11):433–442.
  • Zhu S, Song Y, Zhao X, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 2015;8(2):355–381.
  • Jin SH, Kim DH, Jun GH, et al. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. Acs Nano. 2013;7(2):1239–1245.
  • Zhu S, Zhang J, Qiao C, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun. 2011;47(24):6858–6860.
  • Gokus T, Nair RR, Bonetti A, et al. Making graphene luminescent by oxygen plasma treatment. ACS Nano. 2009;3(12):3963.
  • Jiang D, Chen Y, Li N, et al. Synthesis of luminescent graphene quantum dots with high quantum yield and their toxicity study. PloS One. 2015;10(12):e0144906.
  • Chakravarty D, Erande MB, Late DJ. Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants. J Sci Food Agric. 2015;95(13):2772–2778.
  • Zheng L, Hong F, Lu S, et al. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. BTER. 2005;104(1):83–91.
  • Khodakovskaya MV, Kim BS, Kim JN, et al. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small. 2013;9(1):115–123.
  • Khodakovskaya M, Dervishi E, Mahmood M, et al. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano. 2009;3(10):3221–3227.
  • Khot LR, Sankaran S, Maja JM, et al. Applications of nanomaterials in agricultural production and crop protection: a review. Crop Protect. 2012;35:64–70.
  • Kaur H. 2018. Biochemical modulations for enhanced lipid accumulation in microalgae for biodiesel production. Ludhiana: Punjab Agricultural University.
  • Lambreva MD, Lavecchia T, Tyystjärvi E, et al. Potential of carbon nanotubes in algal biotechnology. Photosynth Res. 2015;125(3):451–471.
  • Mandotra SK, Kumar R, Upadhyay SK, et al. Nanotechnology: a new tool for biofuel production. In: Srivastava N, Srivastava M, Pandey H, et al., editors. Green nanotechnology for biofuel production. Berlin: Springer; 2018. p. 17–28.
  • Wang Z, Xia J, Zhou C, et al. Synthesis of strongly green-photoluminescent graphene quantum dots for drug carrier. Colloids Surfaces B: Biointerfaces. 2013;112:192–196.
  • Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect. 2006;114(2):165–172.
  • Ahn B, Park SE, Oh BK, et al. Effect of nanoparticle on cellular growth and lipid production in Chlorella vulgaris culture. Biotechnol Progress. 2018;34(4):929–933.
  • Matouke MM, Elewa DT, Abdullahi K. Binary effect of titanium dioxide nanoparticles (nTio2) and phosphorus on microalgae (Chlorella ‘Ellipsoides Gerneck, 1907). Aquatic Toxicol. 2018;198:40–48.
  • Tabatabai B, Fathabad SG, Bonyi E, et al. Nanoparticle-mediated impact on growth and fatty acid methyl ester composition in the Cyanobacterium Fremyella diplosiphon. Bioenerg Res. 2019;12:1–10.
  • Pattarkine MV, Pattarkine VM. Nanotechnology for algal biofuels. In: Gordon R, Seckbach J, editors. The Science of Algal Fuels. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 25. Berlin: Springer; 2012. p. 147–163.
  • Torkamani S, Wani S, Tang Y, et al. Plasmon-enhanced microalgal growth in miniphotobioreactors. Appl Phys Lett. 2010;97(4):043703.
  • Eroglu E, Eggers PK, Winslade M, et al. Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices. Green Chem. 2013;15(11):3155–3159.
  • Lee Y-C, Lee K, Oh Y-K Recent nanoparticle engineering advances in microalgal cultivation and harvesting processes of biodiesel production: a review. Bioresource technology. 2015;184:63–72.
  • Kang NK, Lee B, Choi G-G, et al. Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO 2 nanoparticles. Korean J Chem Eng. 2014;31(5):861–867.
  • Shin YS, Choi HI, Choi JW, et al. Multilateral approach on enhancing economic viability of lipid production from microalgae: a review. Bioresource Technol. 2018;258:335–344.
  • Velmurugan R, Incharoensakdi A. Nanoparticle mediated NADPH regeneration for enhanced ethanol production by engineered Synechocystis sp. PCC 6803. bioRxiv. 2019. doi: https://doi.org/10.1101/529420
  • Xu Y, Wang X, Fu Y, et al. Interaction energy and detachment of magnetic nanoparticles-algae. Environ Technol. 2019: 29:1–7.
  • Zhang X, Yan S, Tyagi RD, et al. Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production. Renew Sustain Energy Rev. 2013;26:216–223.
  • Sarma SJ, DAS RK, Brar SK, et al. Application of magnesium sulfate and its nanoparticles for enhanced lipid production by mixotrophic cultivation of algae using biodiesel waste. Energy. 2014;78:16–22.
  • San NO, Kurşungöz C, Tümtaş Y, et al. Novel one-step synthesis of silica nanoparticles from sugarbeet bagasse by laser ablation and their effects on the growth of freshwater algae culture. Particuology. 2014;17:29–35.
  • Wirth R, Lakatos G, Böjti T, et al. Anaerobic gaseous biofuel production using microalgal biomass – a review. Anaerobe. 2018;52:1.
  • Mussgnug JH, Klassen V, Schlüter A, et al. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol. 2010;150(1):51–56.
  • Golueke CG, Oswald WJ, Gotaas HB. Anaerobic digestion of algae. Appl Microbiol. 1957;5(1):47.
  • Khalid M, Johnson E, Vij A, et al. Anaerobic digestion restricted to phase I for nutrient release and energy production using waste-water grown Chlorella vulgaris. Chem Eng J. 2018;352:756–764.
  • Bohutskyi P. Algal biofuels: enhancing energy yield, nutrient supply from waste and nutrient recycling from Algal Residues. 2014, Johns Hopkins University.
  • Ehimen E, Sun Z, Carrington C, et al. Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Appl Energy. 2011;88(10):3454–3463.
  • Hernández ES, Córdoba LT. Anaerobic digestion of Chlorella vulgaris for energy production. Resources Conserv Recycl. 1993;9:127–132.
  • Chen PH. 1987. Factors influencing methane fermentation of micro-algae. Berkeley, USA: California University.
  • DE Schamphelaire L, Verstraete W. Revival of the biological sunlight‐to‐biogas energy conversion system. Biotechnol Bioeng. 2009;103(2):296–304.
  • Yen H-W, Brune DE. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technol. 2007;98(1):130–134.
  • Marzano C-M, Legros A, Naveau H, et al. Biomethanation of the marine algae Tetraselmis. Int J Solar Energy. 1982;1(4):263–272.
  • Golueke CG, Oswald WJ. Biological conversion of light energy to the chemical energy of methane. Appl Microbiol. 1959;7(4):219–227.
  • Saratale RG, Kumar G, Banu R, et al. A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation. Bioresource Technol. 2018;262:319–332.
  • Tapia C, Fermoso FG, Serrano A, et al. Potential of a local microalgal strain isolated from anaerobic digester effluents for nutrient removal. J Appl Phycol. 2019;31(1):345–353.
  • Woertz I, Feffer A, Lundquist T, et al. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng. 2009;135(11):1115–1122.
  • Gujer W, Zehnder AJ. Conversion processes in anaerobic digestion. Water Sci Technol. 1983;15(8-9):127–167.
  • Chakraborty D, Mohan SV. Effect of food to vegetable waste ratio on acidogenesis and methanogenesis during two-stage integration. Bioresource Technol. 2018;254:256–263.
  • Ding L, Gutierrez EC, Cheng J, et al. Assessment of continuous fermentative hydrogen and methane co-production using macro-and micro-algae with increasing organic loading rate. Energy. 2018;151:760–770.
  • Wu C, Huang Q, Yu M, et al. Effects of digestate recirculation on a two-stage anaerobic digestion system, particularly focusing on metabolite correlation analysis. Bioresource Technol. 2018;251:40–48.
  • Appels L, Baeyens J, Degrève J, et al. Principles and potential of the anaerobic digestion of waste-activated sludge. Progress Energy Combust Sci. 2008;34(6):755–781.
  • Krakat N, Westphal A, Schmidt S, et al. Anaerobic digestion of renewable biomass: thermophilic temperature governs methanogen population dynamics. Appl Environ Microbiol. 2010;76(6):1842–1850.
  • Cirne D, Lehtomäki A, Björnsson L, et al. Hydrolysis and microbial community analyses in two‐stage anaerobic digestion of energy crops. J Appl Microbiol. 2007;103(3):516–527.
  • DE Souza WR. 2013. Microbial degradation of lignocellulosic biomass. In: Chandel A, Da Silva S, editors. Sustainable degradation of lignocellulosic biomass-techniques, applications and commercialization. Brazil: InTech.
  • Adekunle KF, Okolie JA. A review of biochemical process of anaerobic digestion. ABB. 2015;06(03):205.
  • Lansing S, Botero RB, Martin JF. Waste treatment and biogas quality in small-scale agricultural digesters. Bioresource Technol. 2008;99(13):5881–5890.
  • Ali Shah F, Mahmood Q, Maroof Shah M, et al. Microbial ecology of anaerobic digesters: the key players of anaerobiosis. Scientific World J. 2014;2014:1.
  • Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: a review. Bioresource Technol. 2008;99(10):4044–4064.
  • Latif MA, Mehta CM, Batstone DJ. Low pH anaerobic digestion of waste activated sludge for enhanced phosphorous release. Water Res. 2015;81:288–293.
  • Sung S, Liu T. Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere. 2003;53(1):43–52.
  • Schnurer A, Jarvis A. Microbiological handbook for biogas plants. Swedish Waste Management U. 2010;2009:1–74.
  • Ward AJ, Hobbs PJ, Holliman PJ, et al. Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technol. 2008;99(17):7928–7940.
  • Hansen TL, Schmidt JE, Angelidaki I, et al. Method for determination of methane potentials of solid organic waste. Waste Manag. 2004;24(4):393–400.
  • Muthudineshkumar R, Anand R. 2019. Anaerobic digestion of various feedstocks for second- generation biofuel production. In: Kalam Azad, editor. Advances in eco-fuels for a sustainable environment. New York: Elsevier.
  • Salama E-S, Saha S, Kurade MB, et al. Recent trends in anaerobic co-digestion: fat, oil, and grease (FOG) for enhanced biomethanation. Prog Energy Combust Sci. 2019;70:22–42.
  • Becker EW. 1994. Microalgae: biotechnology and microbiology. Cambridge: Cambridge University Press.
  • Khalid M. Bioprocessing Microalgae for Its Applications in Therapeutics and Bioresource Management, in Atta ur Rahman School of Applied Biosciences. 2019, National University of Sciences and Technology.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.