883
Views
27
CrossRef citations to date
0
Altmetric
Review Articles

Enzymatic biosensors for the quantification of biogenic amines: a literature update

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-14 | Received 25 Feb 2019, Accepted 29 Aug 2019, Published online: 23 Oct 2019

References

  • Calvo-Pérez A, Domínguez-Renedo O, Alonso-Lomillo MA, et al. Disposable amperometric biosensor for the determination of tyramine using plasma amino oxidase. Microchim Acta. 2013;180(3–4):253–259.
  • Silerme S, Bobyk L, Taverna-Porro M, et al. DNA-polyamine cross-links generated upon one electron oxidation of DNA. Chem Res Toxicol. 2014;27(6):1011–1018.
  • Önal A. A review: current analytical methods for the determination of biogenic amines in foods. Food chem. 2007;103(4):1475–1486.
  • Santos MS. Biogenic amines: their importance in foods. Int J Food Microbiol. 1996;29(2–3):213–231.
  • Önal A, Tekkeli SE, Önal C. A review of the liquid chromatographic methods for the determination of biogenic amines in foods. Food chem. 2013;138(1):509–515.
  • Ramani D, De Bandt JP, Cynober L. Aliphatic polyamines in physiology and diseases. Clin Nutr. 2014;33(1):14–22.
  • López MS, Redondo-Gómez E, López-Ruiz B. Electrochemical enzyme biosensors based on calcium phosphate materials for tyramine detection in food samples. Talanta. 2017;175:209–216.
  • Glória MBA. Encyclopedia of food sciences and nutrition. 2nd ed. Cambridge: Academic Press; 2003. p. 173–181.
  • Murray CK, Hobbs G, Gilbert RJ. Scombrotoxin and scombrotoxin-like poisoning from canned fish. J Hyg. 1982;88(2):215–220.
  • Taylor SL, Eitenmiller RR. Histamine food poisoning: toxicology and clinical aspects. Crit Rev Toxicol. 1986;17(2):91–128.
  • Ladero V, Linares DM, Pérez M, et al. Biogenic amines in dairy products. In: Microbial toxins in dairy products. Vol. 4; 2017. p. 94–131.
  • Yigit M, Ersoy L. Determination of tyramine in cheese by LC–UV. J Pharm Biomed Anal. 2003;31(6):1223–1228.
  • Park JS, Lee CH, Kwon EY, et al. Monitoring the contents of biogenic amines in fish and fish products consumed in Korea. Food Control. 2010;21(9):1219–1226.
  • Pastore P, Favaro G, Badocco D, et al. Determination of biogenic amines in chocolate by ion chromatographic separation and pulsed integrated amperometric detection with implemented wave-form at Au disposable electrode. J Chromatogr A. 2005;1098(1–2):111–115.
  • Nagy L, Nagy G, Gyurcsányi RE, et al. Development and study of an amperometric biosensor for the in vitro measurement of low concentration of putrescine in blood. J Biochem Biophys Methods. 2002;53(1–3):165–175.
  • Hernández-Jover T, Izquierdo-Pulido M, Veciana-Nogués MT, et al. Biogenic amine and polyamine contents in meat and meat products. J Agric Food Chem. 1997;45(6):2098–2102.
  • Eerola S, Sagués AX, Lilleberg L, et al. Biogenic amines in dry sausages during shelf-life storage. Z Lebensm Unters Forsch. 1997;205(5):351–355.
  • Kalac P, Krízek M. A review of biogenic amines and polyamines in beer. J Inst Brew. 2003;109(2):123–128.
  • Ruiz-Capillas C, Herrero AM. Impact of biogenic amines on food quality and safety. Foods. 2019;8(2):62.
  • Scombrotoxin (Histamine) formation. In Fish and fishery products hazard and controls guidance. 3rd ed. Food and Drug Administration, Center for Food Safety & Applied Nutrition. FDA; 2001. Available from: http://www.cfsan.fda.gov/∼dms/haccp2g.html
  • Burdychova R, Komprda T. Biogenic amine-forming microbial communities in cheese. FEMS Microbiol Lett. 2007;276(2):149–155.
  • Mercogliano R, De Felice A, Chirollo C, et al. Production of vasoactive amines during the ripening of Pecorino Carmasciano cheese. Vet Res Commun. 2010;34(S1):175.
  • Gezginc Y, Akyol I, Kuley E, et al. Biogenic amines formation in Streptococcus thermophilus isolated from home-made natural yogurt. Food Chem. 2013;138(1):655–662.
  • Di Fusco M, Federico R, Boffi A, et al. Characterization and application of a diamine oxidase from Lathyrus sativus as component of an electrochemical biosensor for the determination of biogenic amines in wine and beer. Anal Bioanal Chem. 2011;401(2):707–716.
  • Draisci R, Volpe G, Lucentini L, et al. Determination of biogenic amines with an electrochemical biosensor and its application to salted anchovies. Food Chem. 1998;62(2):225–232.
  • Castilho TJ, Sotomayor MD, Kubota LT. Amperometric biosensor based on horseradish peroxidase for biogenic amine determinations in biological samples. J Pharm Biomed Anal. 2005;37(4):785–791.
  • Mureşan L, Ronda Valera R, Frébort I, et al. Amine oxidase amperometric biosensor coupled to liquid chromatography for biogenic amines determination. Microchim Acta. 2008;163(3–4):219–225.
  • Carelli D, Centonze D, Palermo C, et al. An interference free amperometric biosensor for the detection of biogenic amines in food products. Biosen Bioelectron. 2007;23(5):640–647.
  • Compagnone D, Isoldi G, Moscone D, et al. Amperometric detection of biogenic amines in cheese using immobilised diamine oxidase. Anal Lett. 2001;34(6):841–854.
  • Lange J, Wittmann C. Enzyme sensor array for the determination of biogenic amines in food samples. Anal Bioanal Chem. 2002;372(2):276–283.
  • Halász A, Barath A, Simon-Sarkadi L, et al. Biogenic amines and their production by microorganisms in food. Trends Food Sci Technol. 1994;5(2):42–49.
  • Heerthana VR, Preetha R. Biosensors: a potential tool for quality assurance and food safety pertaining to biogenic amines/volatile amines formation in aquaculture systems/products. Rev Aquacult. 2019;11(1):220–233.
  • Rokka M, Eerola S, Smolander M, et al. Monitoring of the quality of modified atmosphere packaged broiler chicken cuts stored in different temperature conditions: B. Biogenic amines as quality-indicating metabolites. Food Control. 2004;15(8):601–607.
  • Kaneki N, Miura T, Shimada K, et al. Measurement of pork freshness using potentiometric sensor. Talanta. 2004;62(1):215–219.
  • Steiner MS, Meier RJ, Spangler C, et al. Determination of biogenic amines by capillary electrophoresis using a chameleon type of fluorescent stain. Microchim Acta. 2009;167(3–4):259.
  • Li WL, Ge JY, Pan YL, et al. Direct analysis of biogenic amines in water matrix by modified capillary zone electrophoresis with 18-crown-6. Microchim Acta. 2012;177(1–2):75–80.
  • Romano A, Klebanowski H, La Guerche S, et al. Determination of biogenic amines in wine by thin-layer chromatography/densitometry. Food Chem. 2012;135(3):1392–1396.
  • Martin RP, Franco JM, Molist P, et al. Gas chromatographic method for the determination of volatile amines in seafoods. J. Food Sci Technol. 2007;22(5):509–514.
  • Laleye LC, Simard RE, Gosselin C, et al. Assessment of cheddar cheese quality by chromatographic analysis of free amino acids and biogenic amines. J Food Sci. 1987;52(2):303–305.
  • Marks HS, Anderson CR. Rapid determination and confirmation of biogenic amines in tuna loin by gas chromatography/mass spectrometry using ethylchloroformate derivative. J AOAC Int. 2006;89(6):1591–1599.
  • Standara S, Vesela M, Drdak M. Determination of biogenic amines in cheese by ion exchange chromatography. Nahrung. 2000;44(1):28–31.
  • Gatti R, Lotti C, Morigi R, et al. Determination of octopamine and tyramine traces in dietary supplements and phytoextracts by high performance liquid chromatography after derivatization with 2, 5-dimethyl-1H-pyrrole-3, 4-dicarbaldehyde. J Chromatogr A. 2012;1220:92–100.
  • Bockhardt A, Krause I, Klostermeyer H. Determination of biogenic amines by RP-HPLC of the dabsyl derivates. Z Lebensm Unters Forch. 1996;203(1):65–70.
  • Cinquina AL, Calı A, Longo F, et al. Determination of biogenic amines in fish tissues by ion-exchange chromatography with conductivity detection. J Chromatogr A. 2004;1032(1–2):73–77.
  • Saccani G, Tanzi E, Pastore P, et al. Determination of biogenic amines in fresh and processed meat by suppressed ion chromatography-mass spectrometry using a cation-exchange column. J Chromatogr A. 2005;1082(1):43–50.
  • Su HH, Chuang LY, Tseng WL, et al. Micro-scale strategy to detect spermine and spermidine by MALDI–TOF MS in foods and identification of apoptosis-related proteins by nano-flow UPLC–MS/MS after treatment with spermine and spermidine. J Chromatogr B. 2015;978:131–137.
  • Li JS, Wang H, Huang KJ, et al. Determination of biogenic amines in apples and wine with 8-phenyl-(4-oxy-acetic acid N-hydroxysuccinimide ester)-4, 4-difluoro-1, 3, 5, 7-tetramethyl-4-bora-3a, 4a-diaza-s-indacene by high performance liquid chromatography. Anal Chim Acta. 2006;575(2):255–261.
  • Marks HS, Anderson CR. Determination of putrescine and cadaverine in seafood (finfish and shellfish) by liquid chromatography using pyrene excimer fluorescence. J Chromatogr A. 2005;1094(1–2):60–69.
  • De Borba BM, Rohrer JS. Determination of biogenic amines in alcoholic beverages by ion chromatography with suppressed conductivity detection and integrated pulsed amperometric detection. J Chromatogr A. 2007;1155(1):22–30.
  • Favaro G, Pastore P, Saccani G, et al. Determination of biogenic amines in fresh and processed meat by ion chromatography and integrated pulsed amperometric detection on Au electrode. Food Chem. 2007;105(4):1652–1658.
  • Erim FB. Recent analytical approaches to the analysis of biogenic amines in food samples. TRAC-Trend Anal Chem. 2013;52:239–247.
  • Kantaria UD, Gokani RH. Quality and safety of biogenic amines. IJRPBS. 2011;2(4):1461–1468.
  • Bóka B, Adányi N, Szamos J, et al. Putrescine biosensor based on putrescine oxidase from Kocuria rosea. Enzyme Microb Technol. 2012;51(5):258–262.
  • Chaubey A, Malhotra B. Mediated biosensors. Biosens Bioelectron. 2002;17(6–7):441–456.
  • Henao-Escobar W, Domínguez-Renedo O, Alonso-Lomillo MA, et al. A screen-printed disposable biosensor for selective determination of putrescine. Microchim Acta. 2013;180(7–8):687–693.
  • Freire RS, Pessoa CA, Mello LD, et al. Direct electron transfer: an approach for electrochemical biosensors with higher selectivity and sensitivity. J Braz Chem Soc. 2003;14(2):230–243.
  • Torre R, Costa-Rama E, Lopes P, et al. Amperometric enzyme sensor for the rapid determination of histamine. Anal Methods. 2019;11(9):1264–1269.
  • Da Silva W, Ghica ME, Ajayi RF, et al. Impedimetric sensor for tyramine based on gold nanoparticle doped-poly (8-anilino-1-naphthalene sulphonic acid) modified gold electrodes. Talanta. 2019;195:604–612.
  • Vanegas D, Patiño L, Mendez C, et al. Laser scribed graphene biosensor for detection of biogenic amines in food samples using locally sourced materials. Biosensors. 2018;8(2):42.
  • Lin YT, Chen CH, Lin MS. Enzyme-free amperometric method for rapid determination of histamine by using surface oxide regeneration behavior of copper electrode. Sensor Actuat B-Chem. 2018;255:2838–2843.
  • Chauhan N, Jain U, Gandotra R, et al. Zeolites-AuNPs assembled interface towards amperometric biosensing of spermidine. Electrochim Acta. 2017;230:106–115.
  • Hooda V. Enzymes loaded chitosan/coconut fibre/zinc oxide nanoparticles strip for polyamine determination. Food chem. 2018;239:1100–1109.
  • Tortolini C, Favero G, Mazzei F. Development of amine-oxidase-based biosensors for spermine and spermidine analysis. In: Polyamines. New York (NY): Humana Press; 2018. p.75–80.
  • Xia HQ, Kitazumi Y, Shirai O, et al. Putrescine oxidase/peroxidase-co-immobilized and mediator-less mesoporous microelectrode for diffusion-controlled steady-state amperometric detection of putrescine. J Electroanal Chem. 2017;804:128–132.
  • Apetrei I, Apetrei C. Amperometric biosensor based on diamine oxidase/platinum nanoparticles/graphene/chitosan modified screen-printed carbon electrode for histamine detection. Sensors. 2016;16(4):422.
  • Henao-Escobar W, Del Torno-de Roman L, Domínguez-Renedo O, et al. Dual enzymatic biosensor for simultaneous amperometric determination of histamine and putrescine. Food Chem. 2016;190:818–823.
  • Bagheryan Z, Noori A, Bathaie SZ, et al. Preparation of a new nanobiosensor for the determination of some biogenic polyamines and investigation of their interaction with DNA. Biosens Bioelectron. 2016;77:767–773.
  • Bonaiuto E, Magro M, Baratella D, et al. Ternary hybrid γ‐Fe2O3/CrVI/amine oxidase nanostructure for electrochemical sensing: application for polyamine detection in tumor tissue. Chem Eur J. 2016;22(20):6846–6852.
  • Boffi A, Favero G, Federico R, et al. Amine oxidase-based biosensors for spermine and spermidine determination. Anal Bioanal Chem. 2015;407(4):1131–1137.
  • Henao-Escobar W, Domínguez-Renedo O, Alonso-Lomillo MA, et al. Simultaneous determination of cadaverine and putrescine using a disposable monoamine oxidase based biosensor. Talanta. 2013;117:405–411.
  • Shanmugam S, Thandavan K, Gandhi S, et al. Development and evaluation of a highly sensitive rapid response enzymatic nanointerfaced biosensor for detection of putrescine. Analyst. 2011;136(24):5234–5240.
  • Lin MS, Chen CH, Chen Z. Development of structure-specific electrochemical sensor and its application for polyamines determination. Electrochim Acta. 2011;56(3):1069–1075.
  • Bóka B, Adányi N, Virág D, et al. Spoilage detection with biogenic amine biosensors, comparison of different enzyme electrodes. Electroanal. 2012;24(1):181–186.
  • Alonso-Lomillo MA, Domínguez-Renedo O, Matos P, et al. Disposable biosensors for determination of biogenic amines. Anal Chim Acta. 2010;665(1):26–31.
  • Piermarini S, Volpe G, Federico R, et al. Detection of biogenic amines in human saliva using a screen-printed biosensor. Anal Lett. 2010;43(7–8):1310–1316.
  • Mehdinia A, Kazemi SH, Bathaie SZ, et al. Electrochemical DNA nano-biosensor for the study of spermidine–DNA interaction. J Pharm Biomed Anal. 2009;49(3):587–593.
  • Keow CM, Bakar FA, Salleh AB, et al. An amperometric biosensor for the rapid assessment of histamine level in tiger prawn (Penaeus monodon) spoilage. Food Chem. 2007;105(4):1636–1641.
  • Frebort I, Skoupa L, Peč P. Amine oxidase-based flow biosensor for the assessment of fish freshness. Food Control. 2000;11(1):13–18.
  • Carsol MA, Mascini M. Diamine oxidase and putrescine oxidase immobilized reactors in flow injection analysis: a comparison in substrate specificity. Talanta. 1999;50(1):141–148.
  • Wimmerova M, Macholan L. Sensitive amperometric biosensor for the determination of biogenic and synthetic amines using pea seedlings amine oxidase: a novel approach for enzyme immobilisation. Biosens Bioelectron. 1999;14(8–9):695–702.
  • Tombelli S, Mascini M. Electrochemical biosensors for biogenic amines: a comparison between different approaches. Anal Chim Acta. 1998;358(3):277–284.
  • Nagy G, Xu CX, Cosofret VV, et al. Amperometric measuring cell for the determination of putrescine oxidase activity. Talanta. 1998;47(2):367–376.
  • Xu CX, Marzouk SA, Cosofret VV, et al. Development of a diamine biosensor. Talanta. 1997;44(9):1625–1632.
  • Chemnitius GC, Bilitewski U. Development of screen-printed enzyme electrodes for the estimation of fish quality. Sens Actuat B-Chem. 1996;32(2):107–113.
  • Loughran MG, Hall JM, Turner AP, et al. Amperometric detection of histamine at a quinoprotein dehydrogenase enzyme electrode. Biosens Bioelectron. 1995;10(6–7):569–576.
  • Botrè F, Botre C, Lorenti G, et al. Plant tissue biosensors for the determination of biogenic diamines and of their amino acid precursors: effect of carbonic anhydrase. Sensor Actuat B-Chem. 1993;15(1–3):135–140.
  • Chemnitius GC, Suzuki M, Isobe K, et al. Thin-film polyamine biosensor: substrate specificity and application to fish freshness determination. Anal Chim Acta. 1992;263(1–2):93–100.
  • Gasparini R, Scarpa M, Di Paolo ML, et al. A. Amino oxidase amperometric biosensor for polyamines. Bioelectrochem Bioenerg. 1991;25(2):307–315.
  • Sharma SK, Sehgal N, Kumar A. Biomolecules for development of biosensors and their applications. Curr Appl Phys. 2003;3(2–3):307–316.
  • Šebela M, Frébort I, Petřivalský M, et al. Copper/topa quinone-containing amine oxidases- recent research developments. Stud Nat Prod Chem. 2002;26:1259–1299.
  • García-García P, Rocha-Martin J, Fernandez-Lorente G, et al. Co-localization of oxidase and catalase inside a porous support to improve the elimination of hydrogen peroxide: oxidation of biogenic amines by amino oxidase from Pisum sativum. Enzyme Microb Technol. 2018;115:73–80.
  • Bouvrette P, Male KB, Luong JH, et al. Amperometric biosensor for diamine using diamine oxidase purified from porcine kidney. Enzyme Microb Technol. 1997;20(1):32–38.
  • He SG, Joyce D, Wang MZ. Characterization of polyamine oxidase from the aquatic nitrogen-fixing fern Azolla imbricata. Plant sci. 2005;169(1):185–190.
  • Chen M, Zeng G, Xu P, et al. How do enzymes ‘meet’ nanoparticles and nanomaterials? Trends Biochem Sci. 2017;42(11):914–930.
  • Rawat KA, Bhamore JR, Singhal RK, et al. Microwave assisted synthesis of tyrosine protected gold nanoparticles for dual (colorimetric and fluorimetric) detection of spermine and spermidine in biological samples. Biosens Bioelectron. 2017;88:71–77.
  • Wu S, Liu Y, Wu J, et al. Prussian blue nanoparticles doped nanocage for controllable immobilization and selective biosensing of enzyme. Electrochem Commun. 2008;10(3):397–401.
  • Dong H, Yan F, Ji H, et al. Quantum‐dot‐functionalized poly (styrene‐co‐acrylic acid) microbeads: step‐wise self‐assembly, characterization, and applications for sub‐femtomolar electrochemical detection of DNA hybridization. Adv Funct Mater. 2010;20(7):1173–1179.
  • Agostinelli E, Vianello F, Magliulo G, et al. Nanoparticle strategies for cancer therapeutics: nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles. Int J Oncol. 2015;46(1):5–16.
  • Hubbell JA, Chilkoti A. Nanomaterials for drug delivery. Science. 2012;337(6092):303–305.
  • Gawande MB, Goswami A, Asefa T, et al. Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev. 2015;44(21):7540–7590.
  • Spehar-Délèze AM, Almadaghi S, O′Sullivan C. Development of solid-state electrochemiluminescence (ECL) sensor based on Ru (bpy) 32+-encapsulated silica nanoparticles for the detection of biogenic polyamines. Chemosensors. 2015;3(2):178–189.
  • Marcus RA, Sutin N. Electron transfers in chemistry and biology. Biochimic Biophys Acta. 1985;811(3):265–322.
  • Rochette JF, Sacher E, Meunier M, et al. A mediatorless biosensor for putrescine using multiwalled carbon nanotubes. Anal Biochem. 2005;336(2):305–311.
  • Niculescu M, Ruzgas T, Nistor C, et al. Electrooxidation mechanism of biogenic amines at amine oxidase modified graphite electrode. Anal Chem. 2000;72(24):5988–5993.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.