1,024
Views
48
CrossRef citations to date
0
Altmetric
Review Articles

Current applications of nanotechnology to develop plant growth inducer agents as an innovation strategy

, , , &
Pages 15-30 | Received 15 Jan 2019, Accepted 28 Aug 2019, Published online: 28 Oct 2019

References

  • Balafoutis A, Beck B, Fountas S, et al. Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability. 2017;9:1339.
  • Savci S. Investigation of effect of chemical fertilizers on environment. APCBEE Procedia. 2012;1:287–292.
  • Ditta A. How helpful is nanotechnology in agriculture? Adv Nat Sci Nanosci Nanotechnol. 2012;3:033002.
  • Mukhopadhyay S. Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl. 2014;7:63–71.
  • Rubilar O, Diez MC, Tortella GR, et al. New strategies and challenges for nanobiotechnology in agriculture. J Biobased Mat Bioenergy. 2014;8:1–12.
  • Jeevanandam J, Barhoum A, Chan YS, et al. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9:1050–1074.
  • Rai PK, Kumar V, Lee S, et al. Nanoparticle-plant interaction: implications in energy, environment, and agriculture. Environ Int. 2018;119:1–19.
  • Kreyling W, Semmler-Behnke M, Chaudhry Q. A complementary definition of nanomaterial. NanoToday. 2010;5:165–168.
  • Parisi C, Vigani M, Rodríguez-Cerezo E. Agricultural nanotechnologies: what are the current possibilities? NanoToday. 2015;10:124–127.
  • Kumar V, Kim KH, Kumar P, et al. Functional hybrid nanostructure materials: advanced strategies for sensing applications toward volatile organic compounds. Coord Chem Rev. 2017;342:80–105.
  • Manjunatha SB, Biradar DP, Aladakatti YR. Nanotechnology and its applications in agriculture: a review. J Farm Sci. 2016;29:1–13.
  • Wang P, Lombi E, Zhao FJ, et al. Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci. 2016;21:699–712.
  • Fraceto LF, Grillo R, de Medeiros GA, et al. Nanotechnology in agriculture: which innovation potential does it have? Front Environ. Sci. 2016;4:20.
  • Aschberger K, Gottardo S, Amenta V, et al. Nanomaterials in food - current and future applications and regulatory aspects. J Phys Conf Ser. 2015;617:012032.
  • Sadeghi R, Rodriguez RJ, Yao Y, et al. Advances in nanotechnology as they pertain to food and agriculture: benefits and risks. Annu Rev Food Sci Technol. 2017;8:467–492.
  • Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut. 2007;150:5–22.
  • Thakur S, Thakur S, Kumar R. Bio-nanotechnology and its role in agriculture and food industry. J Mol Genet Med. 2018;12:1.
  • Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2017.
  • Wu HL, Kuo CH, Huang MH. Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures. Langmuir. 2010;26:12307–12313.
  • Schreck E, Foucault Y, Sarret G, et al. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: mechanisms involved for lead. Sci Total Environ. 2012;427:253–262.
  • Pérez de Luque A. Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci. 2017;5:12.
  • Lee WM, An YJ, Yoon H, et al. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem. 2008;27:1915–1921.
  • Zhang P, Ma Y, Zhang Z, et al. Species-specific toxicity of ceria nanoparticles to Lactuca plants. Nanotoxicology. 2015;9:1–8.
  • Yang J, Cao W, Rui Y. Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interact. 2017;12:158–169.
  • Kole C, Kole P, Manoj Randunu KM, et al. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol. 2013;13:37.
  • Cañas JE, Long M, Nations S, et al. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem. 2008;27:1922–1931.
  • Liu Q, Chen B, Wang Q, et al. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 2009;9:1007–2010.
  • Lin D, Xing B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut. 2007;150:243–250.
  • Khodakovskaya M, Dervishi E, Mahmood M, et al. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano. 2009;3:3221–3227.
  • Lahiani MH, Chen J, Irin F, et al. Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon. 2015;81:607–619.
  • Zhang H, Yue M, Zheng X, et al. Physiological effects of single- and multi-walled carbon nanotubes on rice seedlings. IEEE Transon Nanobioscience. 2017;16:563–570.
  • Arora S, Sharma P, Kumar S, et al. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 2012;66:303–310.
  • Gopinath K, Gowri S, Karthika V, et al. Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J Nanostructure Chem. 2014;4:115.
  • Ndeh NT, Maensiri S, Maensiri D. The effect of green synthesized gold nanoparticles on rice germination and roots. Adv Nat Sci Nanosci Nanotechnol. 2017;8:035008.
  • Syu YY, Hung JH, Chen JC, et al. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem. 2014;83:57–64.
  • Jasim B, Thomas R, Mathew J, et al. Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J. 2017;25:443–447.
  • Pallavi Mehta CM, Srivastava R, et al. Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. Biotech. 2016;6:254.
  • Li X, Yang Y, Gao B, et al. Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations. PLoS One. 2015;10:e0122884.
  • Pariona N, Martínez AI, Hdz-García HM, et al. Effects of hematite and ferrihydrite nanoparticles on germination and growth of maize seedlings. Saudi J Biol Sci. 2017;24:1547–1554.
  • Jalali M, Ghanati F, Modarres-Sanavi AM, et al. Physiological effects of repeated foliar application of magnetite nanoparticles on maize plants. J Agro Crop Sci. 2017;203:593–602.
  • Yuan J, Chen Y, Li H, et al. New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Sci Rep. 2018;8:3228.
  • Rafique R, Arshad M, Khokhar MF, et al. Growth response of wheat to titania nanoparticles application. NJES. 2014;7:42–46.
  • Rui M, Ma C, Hao Y, et al. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci. 2016;7:815.
  • Shankramma K, Yallappa S, Shivanna MB, et al. Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci. 2016;6:983–990.
  • Askary M, Mehdi Talebi S, Amino F, et al. Effects of iron nanoparticles on Mentha piperita L. under salinity stress. Biologija. 2017;64:65–75.
  • Faizan M, Faraz A, Yusuf M, et al. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica. 2018;56:678–686.
  • Awasthi A, Bansal S, Jangir K, et al. Effect of ZnO nanoparticles on germination of Triticum aestivum seeds. Macromol Symp. 2017;376:1700043.
  • Mukherjee A, Majumdar S, Servin AD, et al. Carbon nanomaterials in agriculture: a critical review. Front Plant Sci. 2016;7:172.
  • Saxena M, Maity S, Sarkar S. Carbon nanoparticles in ‘biochar’ boost wheat (Triticum aestivum) plant growth. RSC Adv. 2014;4:39948–39954.
  • Tripathi S, Sarkar S. Influence of water soluble carbon dots on the growth of wheat plant. Appl Nanosci. 2015;5:609–916.
  • Tiwari DK, Dasgupta-Schubert N, Villaseñor Cendejas LM, et al. Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci. 2014;4:577–591.
  • Ghorbanpour M, Hadian J. Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro. Carbon. 2015;94:749–759.
  • Stampoulis D, Sinha S, White J. Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol. 2009;43:9473–9479.
  • Morales-Díaz AB, Ortega-Ortíz H, Juárez-Maldonado A, et al. Application of nanoelements in plant nutrition and its impact in ecosystems. Adv Nat Sci Nanosci Nanotechnol. 2017;8:13.
  • Nair PM, Chung IM. A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biol Trace Elem Res. 2014;162:342–352.
  • Prasad A, Astete CE, Bodoki AE, et al. Zein nanoparticles uptake and translocation in hydroponically grown sugarcane plants. J Agric Food Chem. 2018;66:6544–6551.
  • Li J, Hu J, Ma C, et al. Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere. 2016;159:326–334.
  • Liu R, Zhang H, Lal R. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut. 2016;227:42.
  • Navarro E, Baun A, Behra R, et al. Environmental behavior and ecotoxicity of engineered nano particles to algae, plants, and fungi. Ecotoxicology. 2008;17:372–386.
  • Schwab F, Zhai G, Kern M, et al. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants - Critical review. Nanotoxicology. 2015;10:257–278.
  • Höfte H, Voxeur A. Primer: plant cell wall. Curr Biol. 2017;27:R853–R909.
  • Mishra S, Keswani C, Abhilash PC, et al. Integrated approach of agri-nanotechnology: challenges and future trends. Front Plant Sci. 2017;8:471.
  • Taylor AF, Rylott EL, Anderson CWN, et al. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One. 2014;9:e93793.
  • Ma X, Geiser-Lee J, Deng Y, et al. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ. 2010;408:3053–3061.
  • Guo J, Chi J. Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant Soil. 2014;375:205–214.
  • Neuenkamp L, Moora M, Öpik M, et al. The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities. New Phytol. 2018;220:1236–1247.
  • Whiteside MD, Treseder KK, Atsatt PR. The brighter side of soils: quantum dots track organic nitrogen through fungi and plants. Ecology. 2009;90:100–108.
  • Feng Y, Cui X, He S, et al. The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol. 2013;47:9496–9504.
  • McManus P, Hortin J, Anderson AJ, et al. Rhizosphere interactions between copper oxide nanoparticles and wheat root exudates in a sand matrix: influences on Cu bioavailability and uptake. Environ Toxicol Chem. 2018;37:2619–2632.
  • Baetz U, Martinoia E. Root exudates: the hidden part of plant defense. Trends Plant Sci. 2014;19:90–98.
  • Navarro DA, Bisson MA, Aga DS. Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. J Hazard Mater. 2012;211:427–435.
  • Lee S, Kim S, Kim S, et al. Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. Environ Sci Pollut Res. 2013;20:848–854.
  • Zhu ZJ, Wang H, Yan B, et al. Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol. 2012;46:12391–12398.
  • Hussain HI, Yi Z, Rookes JE, et al. Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. J Nanopart Res. 2013;15:1676.
  • Nadiminti PP, Dong YD, Sayer C, et al. Nanostructured liquid crystalline particles as an alternative delivery vehicle for plant agrochemicals. ACS Appl Mater Interfaces. 2013;5:1818–1826.
  • Hu Y, Li J, Ma L, et al. High efficiency transport of quantum dots into plant roots with the aid of Silwet L-77. Plant Physiol Biochem. 2010;48:703–709.
  • Zhai G, Walters KS, Peate DW, et al. Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett. 2014;1:146–151.
  • Samaj J. Endocytosis in Plants. Berlin (Germany): Springer; 2012.
  • Eichert T, Kurtz A, Steiner U, et al. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant. 2008;134:151–160.
  • Shen CX, Zhang QF, Li J, et al. Induction of programmed cell death in Arabidopsis and rice by single wall carbon nanotubes. Am J Bot. 2010;97:1602–1609.
  • Wild E, Jones KC. Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol. 2009; 15:5290–5294.
  • Rico C, Majumdar S, Duarte-Gardea M, et al. Carbon nanomaterials in agriculture: a critical review. J Agric Food Chem. 2011;59:3485–3498.
  • Lin S, Reppert J, Hu Q, et al. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small. 2009; 5:1128–1132.
  • Chen R, Ratnikova TA, Stone MB, et al. Differential uptake of carbon nanoparticles by plant and mammalian cells. Small. 2010;6:612–617.
  • Cifuentes Z, Custardoy L, de la Fuente JM, et al. Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J Nanobiotechnol. 2010;8:26.
  • Miralles P, Johnson E, Church TL, et al. Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J R Soc Interface. 2012;9:3514–3527.
  • Ashfaq M, Verma N, Khan S. Carbon nanofibers as a micronutrient carrier in plants: efficient translocation and controlled release of Cu nanoparticles. Environ Sci Nano. 2016;4:138–148.
  • Rubilar O, Rai M, Tortella G, et al. Biogenic Nanoparticles: copper, copper oxides, copper sulfides, complex copper nanostructures and their applications. Biotechnol Lett. 2013;35:1365–1375.
  • Rajput VD, Minkina TM, Behal A, et al. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotechnol Monit Manag. 2018;9:76–84.
  • Li T, Dai Y. The translocation and distribution of CeO2 nanoparticles in plants (Soybeans, Chili, Eggplant and Tomato). IOP Conf Ser Earth Environ Sci. 2018; 113:012024.
  • Zhu H, Han J, Xiao JQ, et al. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit. 2008;10:713–717.
  • Kurepa J, Paunesku T, Vogt S, et al. Uptake and distribution of ultra-small anatase TiO2 alizarin red S nano conjugates in Arabidopsis thaliana. Nano Lett. 2010;10:2296–2302.
  • Peng C, Duan D, Xu C, et al. Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environ Pollut. 2015;197:99–107.
  • Sun D, Hussain HI, Yi Z, et al. Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep. 2014;33:1389–1402.
  • Le VN, Rui Y, Gui X, et al. Uptake, transport, distribution and Bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol. 2014;12:50.
  • Corredor E, Testillano PS, Coronado MJ, et al. Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol. 2009;9:45.
  • Tan XM, Fugetsu B. Multi-walled carbon nanotubes interact with cultured rice cells: evidence of a self-defense response. J Biomed Nanotechnol. 2007;3:285–288.
  • U.S. EPA. Integrated Risk Information System (IRIS) Toxicological Review and Summary documents for silver, CASRN 7440-22-4. Washington, D.C: U.S. Environmental Protection Agency; 1996 [accessed 2018 Oct 09]. Available from: http://www.epa.gov/iris/index.html
  • OECD. Guideline for testing of chemicals. Terrestrial plant test 208: seedling emergence and seedling growth test. Paris: Organization for Economic Co-operation and Development; 2003. Available from: https://doi.org/10.1787/20745761
  • Nhan LV, Ma C, Rui Y, et al. Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Nature. 2015; 5:11618.
  • Dimkpa CO, McLean JE, Martineau N, et al. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol. 2013;47:1082–1090.
  • Atha DH, Wang H, Petersen EJ, et al. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol. 2012;46:1819–1827.
  • Lee CW, Mahendra S, Zodrow K, et al. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem. 2010; 29:269–275.
  • Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, et al. Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics. 2014;6:132–138.
  • Jacob DL, Borchardt JD, Navaratnam L, et al. Uptake and translocation of Ti from nanoparticles in crops and wetland plants. Int J Phytorem. 2013;15:142–153.
  • Mirzajani F, Askari H, Hamzelou S, et al. Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicol Environ Saf. 2014; 108:335–339.
  • Qian H, Peng X, Han X, et al. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci. 2013;25:1947–1955.
  • Begum P, Fugetsu B. Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L.) and the role of ascorbic acid as an antioxidant. J Hazard Mater. 2012; 243:212–222.
  • Castiglione MR, Giorgetti L, Geri C, et al. The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res. 2011; 13:2443–2449.
  • Kumari M, Mukherjee A, Chandrasekaran N. Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ. 2009;407:5243–5246.
  • Tripathi DK, Shweta SS, et al. An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem. 2017;110:2–12.
  • Ghosh M, Bandyopadhyay M, Mukherjee A. Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels plant and human lymphocytes. Chemosphere. 2010;81:1253–1262.
  • Ruttkay-Nedecky B, Krystofova O, Nejdl L, et al. Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol. 2017;15:33.
  • Begum P, Ikhtiari R, Fugetsu B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon. 2011;49:3907–3919.
  • de La Torre-Roche R, Hawthorne J, Deng Y, et al. Fullerene-enhanced accumulation of p,p′-DDE in agricultural crop species. Environ Sci Technol. 2012;46:9315–9323.
  • He Y, Hu R, Yujia Zhong Y, et al. Graphene oxide as a water transporter promoting germination of plants in soil. Nano Res. 2018;11:1928–1937.
  • Wang S, Kurepa J, Smalle JA. Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ. 2011;34:811–820.
  • Marslin G, Sheeba CJ, Franklin G. Nanoparticles alter secondary metabolism in plants via ROS burst. Front Plant Sci. 2017; 8:832.
  • Tan WJ, Peralta-Videa JR, Gardea-Torresdey JL. Interaction of titanium dioxide nanoparticles with soil components 1 and plants: current 2 knowledge and future research need-A critical review. Environ Sci Nano. 2018; 5:257–278.
  • Rico CM, Hong J, Morales MI, et al. Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol. 2013;47:5635–5642.
  • Yan A, Chen Z. Impacts of silver nanoparticles on plants: a focus on the phytotoxicity and underlying mechanism. Int J Mol Sci. 2019;20:1003.
  • Tarasenko V, Garnik EY, Shmakov V, et al. Modified alternative oxidase expression results in different reactive oxygen species contents in Arabidopsis cell culture but not in whole plants. Biol Plant. 2012;56:635–640.
  • Dai H, Wang Z, Zhao J, et al. Interaction of CuO nanoparticles with plant cells: internalization, oxidative stress, electron transport chain disruption, and toxicogenomic responses. Environ Sci Nano. 2018; 5:2269–2281.
  • Ahmed B, Dwivedi S, Zainul Abdin M, et al. Mitochondrial and chromosomal damage induced by oxidative stress in Zn 2+ ions, ZnO-Bulk and ZnO-NPs treated Allium cepa roots. Sci rep. 2017;7:40685.
  • Homaee M, Ehsanpour A. Silver nanoparticles and silver ions: oxidative stress responses and toxicity in potato (Solanum tuberosum L) grown in vitro. Hortic Environ Biotechnol. 2016; 57:544–553.
  • Nair PM, Min Chung I. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere. 2014;112:105–113.
  • Vannini C, Domingo G, Onelli E, et al. Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol. 2014;171:1142–1148.
  • Liman R. Genotoxic effects of bismuth (III) oxide nanoparticles by allium and comet assay. Chemosphere. 2013;93:269–273.
  • Cunningham FJ, Goh NS, Demirer GS, et al. Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol. 2018;36:882–897.
  • Karny A, Zinger A, Kajal A, et al. Therapeutic nanoparticles penetrate leaves and deliver nutrients to agricultural crops. Sci Rep. 2018;8:7589.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.