992
Views
14
CrossRef citations to date
0
Altmetric
Review Articles

Role of NGS and SNP genotyping methods in sugarcane improvement programs

, , , &
Pages 865-880 | Received 09 Dec 2019, Accepted 19 Apr 2020, Published online: 07 Jun 2020

References

  • Savage N. Fuel options: the ideal biofuel. Nature. 2011;474:S9–S11.
  • Soltis DE, Visger CJ, Marchant DB, et al. Polyploidy: pitfalls and paths to a paradigm. Am J Bot. 2016;103:1146–1166.
  • Selvi A, Nair NV, Balasundaram N, et al. Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome. 2003;46:394–403.
  • Hemaprabha G, Govindaraj P, Balasundaram N, et al. Genetic diversity analysis of Indian sugarcane breeding pool based on sugarcane specific STMS markers. Sugar Tech. 2005;7:9–14.
  • Aitken KS, Li JC, Jackson P, et al. AFLP analysis of genetic diversity within Saccharum officinarum and comparison with sugarcane cultivars. Aust J Agric Res. 2006;57:1167–1184.
  • You Q, Xu L, Zheng Y, et al. Genetic diversity analysis of sugarcane parents in Chinese breeding programmes using gSSR markers. ScientificWorldJournal. 2013;2013:613062.
  • Manechini JRV, da Costa JB, Pereira BT, et al. Unraveling the genetic structure of Brazilian commercial sugarcane cultivars through microsatellite markers. PLoS One. 2018;13:e0195623.
  • You Q, Pan YB, Xu LP, et al. Genetic diversity analysis of sugarcane germplasm based on fluorescence-labeled simple sequence repeat markers and a capillary electrophoresis-based genotyping platform. Sugar Tech. 2016;18:380–390.
  • Besse P, Taylor G, Carroll B, et al. Assessing genetic diversity in a sugarcane germplasm collection using an automated AFLP analysis. Genetica. 1998;104:143–153.
  • Jannoo N, Grivet L, Seguin M, et al. Molecular investigation of the genetic base of sugarcane cultivars. Theor Appl Genet. 1999;99:171–184.
  • Pan YB, Burner DM, Legendre B, et al. An assessment of the genetic diversity within a collection of Saccharum spontaneum L. with RAPD-PCR. Genet Resour Crop Evol. 2005;51:895–903.
  • Selvi A, Nair NV, Noyer JL, et al. AFLP analysis of the phenetic organization and genetic diversity in the sugarcane complex, Saccharum and Erianthus. Genet Resour Crop Evol. 2006;53:831–842.
  • Selvi A, Nair NV, Noyer JL, et al. Genomic constitution and genetic relationship among the tropical and subtropical Indian sugarcane cultivars revealed by AFLP. Crop Sci. 2005;45:1750–1757.
  • Alwala S, Suman A, Arro JA, et al. Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Sci. 2006;46:448–455.
  • Que YX, Chen TS, Xu L, et al. Genetic diversity among key sugarcane clones revealed by TRAP markers. J Agric Biotechnol. 2009;17:496–503.
  • Yang X, Song J, You Q, et al. Mining sequence variations in representative polyploid sugarcane germplasm accessions. BMC Genomics. 2017;18:594.
  • D'Hont A, Rao PS, Feldmann P, et al. Identification and characterisation of sugarcane intergeneric hybrids, Saccharum officinarum x Erianthus arundinaceus, with molecular markers and DNA in situ hybridisation. Theor Appl Genet. 1995;91:320–326.
  • McIntyre CL, Jackson PA. Low level of selfing found in a sample of crosses in Australian sugarcane breeding programs. Euphytica. 2001;117:245–249.
  • Cai Q, Aitken K, Deng HH, et al. Verification of the introgression of Erianthus arundinaceus germplasm into sugarcane using molecular markers. Plant Breed. 2005;124:322–328.
  • Al-Janabi SM, Honeycutt RJ, McClelland M, et al. A genetic linkage map of Saccharum spontaneum L. 'SES 208'. Genetics. 1993;134:1249–1260.
  • Mudge J, Andersen WR, Kehrer RL, et al. A RAPD Genetic Map of Saccharum officinarum. Crop Sci. 1996;36:1362–1366.
  • Aitken KS, Jackson PA, McIntyre CL. A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet. 2005;110:789–801.
  • Ming R, Liu SC, Lin YR, et al. Detailed alignment of Saccharum and Sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics. 1998;150:1663–1682.
  • Ming R, Liu SC, Bowers JE, et al. Construction of a Saccharum consensus genetic map from two interspecific crosses. Crop Sci. 2002;42:570–583.
  • Garcia AAF, Kido EA, Meza AN, et al. Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theor Appl Genet. 2006;112:298–314.
  • Oliveira K, Pinto L, Marconi T, et al. Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Mol Breeding. 2007;20:189–208.
  • Aitken KS, Jackson PA, McIntyre CL. Construction of a genetic linkage map for Saccharum officinarum incorporating both simplex and duplex markers to increase genome coverage. Genome. 2007;50:742–756.
  • Souza GM, Berges H, Bocs S, et al. The sugarcane genome challenge: strategies for sequencing a highly complex genome. Trop Plant Biol. 2011;4:145–156.
  • Aitken KS, McNeil MD, Hermann S, et al. A comprehensive genetic map of sugarcane that provides enhanced map coverage and integrates high-throughput Diversity Array Technology (DArT) markers. BMC Genomics. 2014;15:152.
  • Sforca DA, Vautrin S, Cardoso-Silva CB, et al. Gene duplication in the sugarcane genome: a case study of allele interactions and evolutionary patterns in two genic regions. Front Plant Sci. 2019;10:553.
  • Sills GR, Bridges W, Al-Janabi SM, et al. Genetic analysis of agronomic traits in a cross between sugarcane (Saccharum officinarum L.) and its presumed progenitor (S. robustum Brandes & Jesw. ex Grassl). Mol Breed. 1995;1:355–363.
  • Daugrois JH, Grivet L, Roques D, et al. A putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar “R570”. Theor Appl Genet. 1996;92:1059–1064.
  • Ming R, Del Monte TA, Hernandez E, Moore PH, et al. Comparative analysis of QTLs affecting plant height and flowering among closely-related diploid and polyploid genomes. Genome. 2002;45:794–803.
  • Jordan DR, Casu RE, Besse P, et al. Markers associated with stalk number and suckering in sugarcane colocate with tillering and rhizomatousness QTLs in sorghum. Genome. 2004;47:988–993.
  • Aitken KS, Hermann S, Karno K, et al. Genetic control of yield related stalk traits in sugarcane. Theor Appl Genet. 2008;117:1191–1203.
  • Pastina MM, Pinto L, Oliveira K, et al. Molecular mapping of complex traits. 2010:117–148.
  • Costa E, Anoni C, Mancini M, et al. QTL mapping including codominant SNP markers with ploidy level information in a sugarcane progeny. Euphytica. 2016;211:1–16.
  • Pinto LR, Garcia AAF, Pastina MM, et al. Analysis of genomic and functional RFLP derived markers associated with sucrose content, fiber and yield QTLs in a sugarcane (Saccharum spp.) commercial cross. Euphytica. 2010;172:313–327.
  • McIntyre CL, Whan VA, Croft B, et al. Identification and validation of molecular markers associated with Pachymetra root rot and brown rust resistance in sugarcane using map- and association-based approaches. Mol Breed. 2005;16:151–161.
  • Wei X, Jackson PA, McIntyre CL, et al. Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure. Theor Appl Genet. 2006;114:155–164.
  • Debibakas S, Rocher S, Garsmeur O, et al. Prospecting sugarcane resistance to Sugarcane yellow leaf virus by genome-wide association. Theor Appl Genet. 2014;127:1719–1732.
  • Singh RK, Banerjee N, Khan MS, et al. Identification of putative candidate genes for red rot resistance in sugarcane (Saccharum species hybrid) using LD-based association mapping. Mol Genet Genomics. 2016;291:1363–1377.
  • Racedo J, Gutierrez L, Perera MF, et al. Genome-wide association mapping of quantitative traits in a breeding population of sugarcane. BMC Plant Biol. 2016;16:142.
  • Gouy M, Rousselle Y, Thong Chane A, et al. Genome wide association mapping of agro-morphological and disease resistance traits in sugarcane. Euphytica. 2015;202:269–284.
  • Gouy M, Rousselle Y, Bastianelli D, et al. Experimental assessment of the accuracy of genomic selection in sugarcane. Theor Appl Genet. 2013;126:2575–2586.
  • Banerjee N, Siraree A, Yadav S, et al. Marker-trait association study for sucrose and yield contributing traits in sugarcane (Saccharum spp. hybrid). Euphytica. 2015;205:185–201.
  • Siraree A, Banerjee N, Kumar S, et al. Identification of marker-trait associations for morphological descriptors and yield component traits in sugarcane. Physiol Mol Biol Plants. 2017;23:185–196.
  • Piperidis N, Jackson PA, D’Hont A, et al. Comparative genetics in sugarcane enables structured map enhancement and validation of marker-trait associations. Mol Breeding. 2008;21:233–247.
  • Wei X, Jackson PA, Hermann S, et al. Simultaneously accounting for population structure, genotype by environment interaction, and spatial variation in marker-trait associations in sugarcane. Genome. 2010;53:973–981.
  • Ukoskit K, Posudsavang G, Pongsiripat N, et al. Detection and validation of EST-SSR markers associated with sugar-related traits in sugarcane using linkage and association mapping. Genomics. 2019;111:1–9.
  • Yang X, Islam MS, Sood S, et al. Identifying quantitative trait loci (QTLs) and developing diagnostic markers linked to orange rust resistance in sugarcane (Saccharum spp.). Front Plant Sci. 2018;9:350.
  • Parco AS, Avellaneda MC, Hale AH, et al. Frequency and distribution of the brown rust resistance gene Bru1 and implications for the Louisiana sugarcane breeding programme. Plant Breed. 2014;133:654–659.
  • Costet L, Le Cunff L, Royaert S, et al. Haplotype structure around Bru1 reveals a narrow genetic basis for brown rust resistance in modern sugarcane cultivars. Theor Appl Genet. 2012;125:825–836.
  • Aljanabi SM, Parmessur Y, Kross H, et al. Identification of a major quantitative trait locus (QTL) for yellow spot (Mycovellosiella koepkei) disease resistance in sugarcane. Mol Breeding. 2006;19:1–14.
  • Silva J. d, Bressiani JA. Sucrose synthase molecular marker associated with sugar content in elite sugarcane progeny. Genet Mol Biol. 2005;28:294–298.
  • Mayer K, Rogers J, Dolezel J, et al. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788.
  • Vogel JP, Garvin DF, Mockler TC, et al.; Initiative TIB, investigators P, assembly DNA sequencing and, sequencing P assembly and BAC end, analysis T sequencing and, annotation G analysis and, analysis R, genomics C, analysis SRNA, analysis M annotation and gene family. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010;463:763–768.
  • Schmutz J, Cannon SB, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463:178–183.
  • Xu X, Pan S, Cheng S, et al.; Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato. Nature. 2011;475:189–195.
  • Hirakawa H, Shirasawa K, Kosugi S, et al. Dissection of the octoploid strawberry genome by deep sequencing of the genomes of Fragaria species. DNA Res. 2014;21:169–181.
  • de Setta N, Monteiro-Vitorello CB, Metcalfe CJ, et al. Building the sugarcane genome for biotechnology and identifying evolutionary trends. BMC Genomics. 2014;15:540.
  • Chalhoub B, Denoeud F, Liu S, et al. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science. 2014;345:950–953.
  • D’hont A, Denoeud F, Aury JM, et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature. 2012;488:213–217.
  • Li F, Fan G, Lu C, et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol. 2015;33:524–530.
  • Cheavegatti-Gianotto A, de Abreu HMC, Arruda P, et al. Sugarcane (Saccharum X officinarum): a reference study for the regulation of genetically modified cultivars in Brazil. Trop Plant Biol. 2011;4:62–89.
  • Sreenivasan TV, Ahloowalia BS, Heinz DJ. Chapter 5 - Cytogenetics. In: Heinz DJ, editor. Sugarcane improvement through breeding [Internet]. Elsevier; 1987. p. 211–253. Available from: http://www.sciencedirect.com/science/article/pii/B9780444427694500102
  • Matsuoka S, Kennedy AJ, Santos E. d, et al. Energy cane: its concept, development, characteristics, and prospects. Adv Bot. 2014;2014:1–13.
  • Piperidis G, D’Hont A. Chromosome composition analysis of various Saccharum interspecific hybrids by genomic in situ hybridisation (GISH). Int Soc Sugar Cane Technol Congr. 2001;11:565–566.
  • Cuadrado A, Acevedo R, de la Espina SMD, et al. Genome remodelling in three modern S. officinarum x S. spontaneum sugarcane cultivars. J Exp Bot. 2004;55:847–854.
  • D’Hont A. Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet Genome Res. 2005;109:27–33.
  • D’Hont A, Glaszmann JC; Int Soc Sugar Cane T. Sugarcane genome analysis with molecular markers: a first decade of research. Proceedings of the 24th Congress of the International Society of Sugar Cane Technologists. 2001.
  • Le Cunff L, Garsmeur O, Raboin LM, et al. Diploid/polyploid syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resistance gene (Bru1) in highly polyploid sugarcane (2n approximately 12x approximately 115). Genetics. 2008;180:649–660.
  • Berkman P, Bundock P, Casu R, et al. Survey sequence comparison of Saccharum genotypes reveals allelic diversity differences. Tropical Plant Biol. 2014;7:71–83.
  • Yu F, Wang P, Li X, et al. Characterization of chromosome composition of sugarcane in nobilization by using genomic in situ hybridization. Mol Cytogenet. 2018;11:35.
  • Figueira T. e S, Okura V, Rodrigues da Silva F, et al. A BAC library of the SP80-3280 sugarcane variety (Saccharum sp.) and its inferred microsynteny with the sorghum genome. BMC Res Notes. 2012;5:185Apr
  • Paterson AH, Bowers JE, Bruggmann R, et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457:551–556.
  • Mancini MC, Cardoso-Silva CB, Sforca DA, et al. “Targeted Sequencing by Gene Synteny,” a new strategy for polyploid species: sequencing and physical structure of a complex sugarcane region. Front Plant Sci. 2018;9:397.
  • Karen Aitken B, Berkman P, Rae A. The first sugarcane genome assembly: how can we use it? Proc Aust Soc Sugar Cane Technol. 2016.
  • Garsmeur O, Droc G, Antonise R, et al. A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun. 2018;9:2638.
  • Cardoso-Silva CB, Costa EA, Mancini MC, Balsalobre TWA, et al. De novo assembly and transcriptome analysis of contrasting sugarcane varieties. PLoS One. 2014;9:e88462.
  • Thirugnanasambandam PP, Hoang NV, Henry RJ. The challenge of analyzing the sugarcane genome. Front Plant Sci. 2018;9:616.
  • Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–138.
  • Hatakeyama M, Aluri S, Balachadran MT, et al. Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop. DNA Res. 2018;25:39–47.
  • McCoy RC, Taylor RW, Blauwkamp TA, et al. Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements. PLoS One. 2014;9:e106689.
  • Riano-Pachon DM, Mattiello L. Draft genome sequencing of the sugarcane hybrid SP80-3280. F1000Res. 2017;6:861.
  • Branton D, Deamer DW, Marziali A, et al. The potential and challenges of nanopore sequencing. Nat Biotechnol. 2008;26:1146–1153.
  • Clarke J, Wu HC, Jayasinghe L, et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol. 2009;4:265–270.
  • Kyriakidou M, Tai HH, Anglin NL, et al. Current strategies of polyploid plant genome sequence assembly. Front Plant Sci. 2018;9:1660.
  • Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods. 2015;12:733–735.
  • Zhang J, Zhang X, Tang H, et al. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet. 2018;50:1565–1573.
  • Lloyd Evans D, Hlongwane TT, Joshi SV, et al. The sugarcane mitochondrial genome: assembly, phylogenetics and transcriptomics. PeerJ. 2019;7:e7558.
  • Souza GM, Van Sluys MA, Lembke CG, et al. Assembly of the 373k gene space of the polyploid sugarcane genome reveals reservoirs of functional diversity in the world’s leading biomass crop. Gigascience. 2019;8:giz129.
  • Piriyapongsa J, Kaewprommal P, Vaiwsri S, et al. Uncovering full-length transcript isoforms of sugarcane cultivar Khon Kaen 3 using single-molecule long-read sequencing. PeerJ. 2018;6:e5818.
  • Jiao Y, Peluso P, Shi J, et al. Improved maize reference genome with single-molecule technologies. Nature. 2017;546:524–527.
  • Zhao L, Zhang H, Kohnen MV, et al. Analysis of transcriptome and epitranscriptome in plants using pacbio iso-seq and nanopore-based direct RNA sequencing. Front Genet. 2019;10:253.
  • Li C, Lin F, An D, et al. Genome sequencing and assembly by long reads in plants. Genes (Basel). 2018;9:6.
  • Abdel-Ghany SE, Hamilton M, Jacobi JL, et al. A survey of the sorghum transcriptome using single-molecule long reads. Nat Commun. 2016;7:11706.
  • Chao Y, Yuan J, Li S, et al. Analysis of transcripts and splice isoforms in red clover (Trifolium pratense L.) by single-molecule long-read sequencing. BMC Plant Biol. 2018;18:300.
  • Li S, Yamada M, Han X, et al. High-resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation. Dev Cell. 2016;39:508–522.
  • Wang B, Tseng E, Regulski M, et al. Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nat Commun. 2016;7:11708.
  • An D, Cao HX, Li C, et al. Isoform sequencing and State-Of-Art applications for unravelling complexity of plant transcriptomes. Genes. 2018;9:43.
  • Hoang NV, Furtado A, Mason PJ, et al. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing. BMC Genomics. 2017;18:395.
  • You FM, Huo N, Deal KR, et al. Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence. BMC Genomics. 2011;12:59.
  • Afzal M, Alghamdi SS, Habib Ur Rahman M, et al. Current status and future possibilities of molecular genetics techniques in Brassica napus. Biotechnol Lett. 2018;40:479–492.
  • Bundock PC, Eliott FG, Ablett G, et al. Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploid plant species using 454 sequencing. Plant Biotechnol J. 2009;7:347–354.
  • Thomson MJ. High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotech. 2014;2:195–212.
  • You Q, Yang X, Peng Z, et al. Development and applications of a high throughput genotyping tool for polyploid crops: single nucleotide polymorphism (SNP) array. Front Plant Sci. 2018;9:104.
  • Clevenger J, Chavarro C, Pearl SA, et al. Single nucleotide polymorphism identification in polyploids: a review, example, and recommendations. Mol Plant. 2015;8:831–846.
  • Korani W, Clevenger JP, Chu Y, et al. Machine learning as an effective method for identifying true single nucleotide polymorphisms in polyploid plants. Plant Genome. 2019;12:1–10.
  • Li C, Xiang X, Huang Y, et al. Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize. Nat Commun. 2020;11:17.
  • Zhao Y, Wang K, Wang W, et al. A high-throughput SNP discovery strategy for RNA-seq data. BMC Genomics. 2019;20:1–10.
  • Clevenger JP, Korani W, Ozias-Akins P, et al. Haplotype-Based Genotyping in Polyploids. Front Plant Sci. 2018;9:564.
  • Wang B, Tseng E, Baybayan P, et al. Variant phasing and haplotypic expression from single-molecule long-read sequencing in maize. bioRxiv. 2019.
  • Balsalobre TWA, da Silva Pereira G, Margarido GRA, et al. GBS-based single dosage markers for linkage and QTL mapping allow gene mining for yield-related traits in sugarcane. BMC Genomics. 2017;18:72.
  • Xu S, Wang J, Shang H, et al. Transcriptomic characterization and potential marker development of contrasting sugarcane cultivars. Sci Rep. 2018;8:1683.
  • Gayathri S, Arockiyajainmary M, Shalini R, et al. Identification of single nucleotide polymorphisms (SNPs) in the transcriptome of sugarcane variety Co 86032 exposed to oxidative stress. J Sugarcane Res. 2019;9:71–85.
  • Thiel T, Kota R, Grosse I, et al. SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res. 2004;32:e5.
  • Schleinitz D, Distefano JK, Kovacs P. Targeted SNP genotyping using the TaqMan® assay. Methods Mol Biol. 2011;700:77–87.
  • Semagn K, Babu R, Hearne S, et al. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breeding. 2014;33:1–14.
  • He C, Holme J, Anthony J. SNP genotyping: the KASP assay. Methods Mol Biol. 2014;1145:75–86.
  • Dobosy JR, Rose SD, Beltz KR, et al. RNase H-dependent PCR (rhPCR): improved specificity and single nucleotide polymorphism detection using blocked cleavable primers. BMC Biotechnol. 2011;11:80.
  • LaFramboise T. Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res. 2009;37:4181–4193.
  • Allen AM, Winfield MO, Burridge AJ, et al. Characterization of a Wheat Breeders' Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum) ). Plant Biotechnol J. 2017;15:390–401.
  • Mason AS, Higgins EE, Snowdon RJ, et al. A user guide to the Brassica 60K Illumina Infinium™ SNP genotyping array. Theor Appl Genet. 2017;130:621–633.
  • Gabriel S, Ziaugra L, Tabbaa D. SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet. 2009;Chapter 2:Unit 2.12.
  • Garcia AAF, Mollinari M, Marconi TG, Serang OR, et al. SNP genotyping allows an in-depth characterisation of the genome of sugarcane and other complex autopolyploids. Sci Rep. 2013;3:3399.
  • Baird NA, Etter PD, Atwood TS, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One. 2008;3:e3376.
  • Elshire RJ, Glaubitz JC, Sun Q, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6:e19379.
  • Beacham TD, Wallace C, Macconnachie C, et al. Population and individual identification of coho salmon in British Columbia through parentage-based tagging and genetic stock identification: an alternative to coded-wire tags. Can J Fish Aquat Sci. 2017;74:1391–1410.
  • Feltus FA, Wan J, Schulze SR, et al. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res. 2004;14:1812–1819.
  • Spindel J, Wright M, Chen C, et al. Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theor Appl Genet. 2013;126:2699–2716.
  • Arbelaez JD, Moreno LT, Singh N, et al. Development and GBS-genotyping of introgression lines (ILs) using two wild species of rice, O. meridionalis and O. rufipogon, in a common recurrent parent, O. sativa cv. Curinga. Mol Breed. 2015;35:81.
  • Bandillo N, Raghavan C, Muyco PA, et al. Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice (N Y). 2013;6:11.
  • Begum H, Spindel JE, Lalusin A, et al. Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa). PLoS One. 2015;10:e0119873.
  • Furuta T, Ashikari M, Jena KK, et al. Adapting genotyping-by-sequencing for rice F2 populations. G3 (Bethesda). 2017;7:881–893.
  • Jones E, Chu WC, Ayele M, et al. Development of single nucleotide polymorphism (SNP) markers for use in commercial maize (Zea mays L.) germplasm. Mol Breed. 2009.
  • Wu Y, San Vicente F, Huang K, et al. Molecular characterization of CIMMYT maize inbred lines with genotyping-by-sequencing SNPs. Theor Appl Genet. 2016;129:753–765.
  • Waugh R, Jannink JL, Muehlbauer GJ, et al. The emergence of whole genome association scans in barley. Curr Opin Plant Biol. 2009;12:218–222.
  • Hyten DL, Cannon SB, Song Q, et al. High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics. 2010;11:38.
  • Hamilton JP, Hansey CN, Whitty BR, et al. Single nucleotide polymorphism discovery in elite North American potato germplasm. BMC Genomics. 2011;12:302.
  • Allen AM, Barker GLA, Berry ST, et al. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J. 2011;9:1086–1099.
  • Nelson JC, Wang S, Wu Y, et al. Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum. BMC Genomics. 2011;12:352.
  • Barchi L, Lanteri S, Portis E, et al. Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics. 2011;12:304.
  • Cortes AJ, Chavarro MC, Blair MW. SNP marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet. 2011;123:827–845.
  • Oliver RE, Lazo GR, Lutz JD, et al. Model SNP development for complex genomes based on hexaploid oat using high-throughput 454 sequencing technology. BMC Genomics. 2011;12:77.
  • Byers RL, Harker DB, Yourstone SM, et al. Development and mapping of SNP assays in allotetraploid cotton. Theor Appl Genet. 2012;124:1201–1214.
  • Thomson MJ, Singh N, Dwiyanti MS, et al. Large-scale deployment of a rice 6 K SNP array for genetics and breeding applications. Rice (N Y)). 2017;10:40.
  • Chen H, Xie W, He H, et al. A high-density SNP genotyping array for rice biology and molecular breeding. Mol Plant. 2014;7:541–553.
  • McCouch SR, Wright MH, Tung CW, et al. Open access resources for genome-wide association mapping in rice. Nat Commun. 2016;7:10532.
  • Singh N, Jayaswal PK, Panda K, et al. Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice. Sci Rep. 2015;5:11600.
  • Yu H, Xie W, Li J, et al. A whole-genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnol J. 2014;12:28–37.
  • Unterseer S, Bauer E, Haberer G, et al. A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array. BMC Genomics. 2014;15:823.
  • Ganal MW, Durstewitz G, Polley A, et al. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One. 2011;6:e28334.
  • Bianco L, Cestaro A, Linsmith G, et al. Development and validation of the Axiom(®) Apple480K SNP genotyping array. Plant J. 2016;86:62–74.
  • Chagné D, Crowhurst RN, Troggio M, et al. Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS One. 2012;7:e31745.
  • Cavanagh CR, Chao S, Wang S, et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci U S A. 2013;110:8057–8062.
  • Wang S, Wong D, Forrest K, et al.; International Wheat Genome Sequencing Consortium. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J. 2014;12:787–796.
  • Rimbert H, Darrier B, Navarro J, et al.; on behalf of The International Wheat Genome Sequencing Consortium. High throughput SNP discovery and genotyping in hexaploid wheat. PLoS One. 2018;13:e0186329.
  • Winfield MO, Allen AM, Burridge AJ, et al. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J. 2016;14:1195–1206.
  • Bayer MM, Rapazote-Flores P, Ganal M, et al. Development and evaluation of a barley 50k iSelect SNP array. Front Plant Sci. 2017;8:1792.
  • Dalton-Morgan J, Hayward A, Alamery S, et al. A high-throughput SNP array in the amphidiploid species Brassica napus shows diversity in resistance genes. Funct Integr Genomics. 2014;14:643–655.
  • Tumino G, Voorrips RE, Rizza F, et al. Population structure and genome-wide association analysis for frost tolerance in oat using continuous SNP array signal intensity ratios. Theor Appl Genet. 2016;129:1711–1724.
  • Perez-Lara E, Semagn K, Tran VA, et al. Population structure and genomewide association analysis of resistance to disease and insensitivity to Ptr toxins in Canadian spring wheat using 90k SNP array. Crop Sci. 2017;57:1522–1539.
  • Bali S, Robinson BR, Sathuvalli V, et al. Single Nucleotide Polymorphism (SNP) markers associated with high folate content in wild potato species. PLoS One. 2018;13:e0193415.
  • Yu X, Li X, Guo T, et al. Genomic prediction contributing to a promising global strategy to turbocharge gene banks. Nat Plants. 2016;2:16150.
  • Clarke WE, Higgins EE, Plieske J, et al. A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theor Appl Genet. 2016;129:1887–1899.
  • Bianco L, Cestaro A, Sargent DJ, et al. Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus × domestica Borkh)). PLoS One. 2014;9:e110377.
  • Clevenger J, Chu Y, Chavarro C, et al. Genome-wide SNP genotyping resolves signatures of selection and tetrasomic recombination in peanut. Mol Plant. 2017;10:309–322.
  • Pandey MK, Agarwal G, Kale SM, et al. Development and evaluation of a high density genotyping 'Axiom_Arachis' array with 58 K SNPs for accelerating genetics and breeding in groundnut. Sci Rep. 2017;7:40577.
  • Bassil NV, Davis TM, Zhang H, et al. Development and preliminary evaluation of a 90 K Axiom® SNP array for the allo-octoploid cultivated strawberry Fragaria × ananassa . BMC Genomics. 2015;16:155.
  • Aitken KS, Farmer A, Berkman P, et al. Generation of a 345K sugarcane SNP chip. Int Sugar J. 2017.
  • You Q, Yang X, Peng Z, et al. Development of an axiom Sugarcane100K SNP array for genetic map construction and QTL identification. Theor Appl Genet. 2019;132:2829–2845.
  • Scheben A, Batley J, Edwards D. Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnol J. 2017;15:149–161.
  • He J, Zhao X, Laroche A, et al. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci. 2014;5:484.
  • Deschamps S, Llaca V, May GD. Genotyping-by-sequencing in plants. Biology (Basel). 2012;1:460–483.
  • Beissinger TM, Hirsch CN, Sekhon RS, et al. Marker density and read depth for genotyping populations using genotyping-by-sequencing. Genetics. 2013;193:1073–1081.
  • Poland JA, Brown PJ, Sorrells ME, et al. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One. 2012;7:e32253.
  • Poland JA, Rife TW. Genotyping-by-sequencing for plant breeding and genetics. Plant Genome. 2012;5.
  • Poland J, Endelman J, Dawson J, et al. Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome. 2012;5:103–113.
  • Pérez-Enciso M, Rincón JC, Legarra A. Sequence- vs. chip-assisted genomic selection: accurate biological information is advised. Genet Sel Evol. 2015;47:43.
  • Peterson WG, Dong Y, Horbach C, et al. Genotyping-by-sequencing for plant genetic diversity analysis: a lab guide for SNP genotyping. Diversity. 2014;6:665–680.
  • Rasheed A, Hao Y, Xia X, et al. Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol Plant. 2017;10:1047–1064.
  • Hutchison JL, Cole JB, Bickhart DM. Short communication: use of young bulls in the United States. J Dairy Sci. 2014;97:3213–3220.
  • Druet T, Macleod IM, Hayes BJ. Toward genomic prediction from whole-genome sequence data: impact of sequencing design on genotype imputation and accuracy of predictions. Heredity (Edinb). 2014;112:39–47.
  • Negro SS, Millet EJ, Madur D, et al. Genotyping-by-sequencing and SNP-arrays are complementary for detecting quantitative trait loci by tagging different haplotypes in association studies. BMC Plant Biol. 2019;19:318.
  • Chang LY, Toghiani S, Ling A, et al. High density marker panels, SNPs prioritizing and accuracy of genomic selection. BMC Genet. 2018;19:4.
  • Elbasyoni IS, Lorenz AJ, Guttieri M, et al. A comparison between genotyping-by-sequencing and array-based scoring of SNPs for genomic prediction accuracy in winter wheat. Plant Sci. 2018;270:123–130.
  • Song J, Yang X, Resende M, et al. Natural allelic variations in highly polyploidy Saccharum complex. Front Plant Sci. 2016;7:804.
  • Grativol C, Regulski M, Bertalan M, et al. Sugarcane genome sequencing by methylation filtration provides tools for genomic research in the genus Saccharum. Plant J. 2014;79:162–172.
  • Vilela M de M, Del Bem LE, Van Sluys MA, et al. Analysis of three sugarcane homo/homeologous regions suggests independent polyploidization events of Saccharum officinarum and Saccharum spontaneum. Genome Biol Evol. 2017;9:266–278.
  • Yang X, Sood S, Glynn N, et al. Constructing high-density genetic maps for polyploid sugarcane (Saccharum spp.) and identifying quantitative trait loci controlling brown rust resistance. Mol Breed. 2017;37:116.
  • Zhang J, Zhang Q, Li L, et al. Recent polyploidization events in three Saccharum founding species. Plant Biotechnol J. 2019;17:264–274.
  • Yang X, Song J, Todd J, et al. Target enrichment sequencing of 307 germplasm accessions identified ancestry of ancient and modern hybrids and signatures of adaptation and selection in sugarcane (Saccharum spp.), a ‘sweet’ crop with ‘bitter’ genomes. Plant Biotechnol J. 2019;17:488–498.
  • Devarumath RM, Kalwade SB, Bundock P, et al. Independent target region amplification polymorphism and single-nucleotide polymorphism marker utility in genetic evaluation of sugarcane genotypes. Plant Breed. 2013;132:736–747.
  • Nair NV. Sugarcane varietal development programmes in India: an overview. Sugar Tech. 2011;13:275–280.
  • Torkamaneh D, Laroche J, Bastien M, et al. Fast-GBS: a new pipeline for the efficient and highly accurate calling of SNPs from genotyping-by-sequencing data. BMC Bioinformatics. 2017;18:5.
  • Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157:1819–1829.
  • Jannink JL, Lorenz AJ, Iwata H. Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics. 2010;9:166–177.
  • Faville MJ, Ganesh S, Cao M, Jahufer MZZ, et al. Predictive ability of genomic selection models in a multi-population perennial ryegrass training set using genotyping-by-sequencing. Theor Appl Genet. 2018;131:703–720.
  • McNeil MD, Piperidis G, Bhuiyan S, et al. Development of a high-throughput, low-cost SNP genotyping panel for sugarcane breeding. Proceedings of the 2017 Conference of the Australian Society of Sugar Cane Technologists; 2017 3–5 May; Cairns, Queensland, Australia. Mackay: Australian Society of Sugar Cane Technologists; 2017. p. 304–311.
  • Gutierrez AF, Hoy JW, Kimbeng CA, et al. Identification of genomic regions controlling leaf scald resistance in sugarcane using a bi-parental mapping population and selective genotyping by sequencing. Front Plant Sci. 2018;9:877.
  • Fickett N, Gutierrez A, Verma M, et al. Genome-wide association mapping identifies markers associated with cane yield components and sucrose traits in the Louisiana sugarcane core collection. Genomics. 2019;111:1794–1801.
  • Vettore AL, da Silva FR, Kemper EL, et al. Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res. 2003;13:2725–2735.
  • Azambuja C. Determination of purity and quantification of varietal components through AgriSeq targeted GBS. Proceedings of the Plant and Animal Genome conference; San Diego, CA, USA; 2018.
  • Woodward J. Bi-allelic SNP genotyping using the TaqMan® assay. Methods Mol Biol. 2014;1145:67–74.
  • Ayalew H, Tsang PW, Chu C, et al. Comparison of TaqMan, KASP and rhAmp SNP genotyping platforms in hexaploid wheat. PLoS One. 2019;14:e0217222.
  • Broccanello C, Chiodi C, Funk A, et al. Comparison of three PCR-based assays for SNP genotyping in plants. Plant Methods. 2018;14:28.
  • Stevanato P, Biscarini F. Digital PCR as new approach to SNP genotyping in sugar beet. Sugar Tech. 2016;18:429–432.
  • Grewal S, Hubbart-Edwards S, Yang C, et al. Rapid identification of homozygosity and site of wild relative introgressions in wheat through chromosome-specific KASP genotyping assays. Plant Biotechnol J. 2020;18:743–755.
  • Tan CT, Yu H, Yang Y, et al. Development and validation of KASP markers for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 in wheat. Theor Appl Genet. 2017;130:1867–1884.
  • Wu J, Liu S, Wang Q, et al. Rapid identification of an adult plant stripe rust resistance gene in hexaploid wheat by high-throughput SNP array genotyping of pooled extremes. Theor Appl Genet. 2018;131:43–58.
  • Wu J, Wang Q, Kang Z, et al. Development and validation of KASP-SNP markers for QTL underlying resistance to stripe rust in common wheat cultivar P10057. Plant Dis. 2017;101:2079–2087.
  • Yu GT, Williams CE, Harris MO, et al. Development and validation of molecular markers closely linked to H32 for resistance to hessian fly in wheat. Crop Sci. 2010;50:1325–1332.
  • Yu LX, Chao S, Singh RP, et al. Identification and validation of single nucleotide polymorphic markers linked to Ug99 stem rust resistance in spring wheat. PLoS One. 2017;12:e0171963.
  • Rasheed A, Wen W, Gao F, et al. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet. 2016;129:1843–1860.
  • Zhao S, Li A, Li C, et al. Development and application of KASP marker for high throughput detection of AhFAD2 mutation in peanut. Electron J Biotechnol. 2017;25:9–12.
  • Pariasca-Tanaka J, Lorieux M, He C, et al. Development of a SNP genotyping panel for detecting polymorphisms in Oryza glaberrima/O. sativa interspecific crosses. Euphytica. 2015;201:67–78.
  • Steele KA, Quinton-Tulloch MJ, Amgai RB, et al. Accelerating public sector rice breeding with high-density KASP markers derived from whole genome sequencing of indica rice. Mol Breed. 2018;38:38.
  • Han Y, Khu DM, Monteros MJ. High-resolution melting analysis for SNP genotyping and mapping in tetraploid alfalfa (Medicago sativa L.). Mol Breed. 2012;29:489–501.
  • Hong Y, Pandey MK, Liu Y, et al. Identification and evaluation of single-nucleotide polymorphisms in allotetraploid peanut (Arachis hypogaea L.) based on amplicon sequencing combined with high resolution melting (HRM) analysis. Front Plant Sci. 2015;6:1068.
  • Li YD, Chu ZZ, Liu XG, et al. A cost-effective high-resolution melting approach using the EvaGreen Dye for DNA polymorphism detection and genotyping in plants. J Integr Plant Biol. 2010;52:1036–1042.
  • Yamagata Y, Yoshimura A, Anai T, et al. Selection criteria for SNP loci to maximize robustness of high-resolution melting analysis for plant breeding. Breed Sci. 2018;68:488–498.
  • Raizada A, Souframanien J. Transcriptome sequencing, de novo assembly, characterisation of wild accession of blackgram (Vigna mungo var. silvestris) as a rich resource for development of molecular markers and validation of SNPs by high resolution melting (HRM) analysis. BMC Plant Biol. 2019;19:358.
  • Esteves LM, Bulhões SM, Brilhante MJ, et al. Three multiplex snapshot assays for SNP genotyping in candidate innate immune genes. BMC Res Notes. 2013;6:54.
  • Rahman M, Sun Z, McVetty PBE, et al. High throughput genome-specific and gene-specific molecular markers for erucic acid genes in Brassica napus (L.) for marker-assisted selection in plant breeding. Theor Appl Genet. 2008;117:895–904.
  • Adler AJ, Wiley GB, Gaffney PM. Infinium assay for large-scale SNP genotyping applications. J Vis Exp. 2013: 50683.
  • Bachlava E, Taylor CA, Tang S, et al. Snp discovery and development of a high-density genotyping array for sunflower. PLoS One. 2012;7:e29814.
  • Song Q, Hyten DL, Jia G, et al. Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One. 2013;8:e54985.
  • Olivier M. The Invader® assay for SNP genotyping. Mutat Res. 2005;573:103–110.
  • Zec HC, Zheng T, Liu L, et al. Programmable microfluidic genotyping of plant DNA samples for marker-assisted selection. Microsystems Nanoeng. 2018;4:17097.
  • Tobler AR, Short S, Andersen MR, et al. The SNPlex genotyping system: a flexible and scalable platform for SNP genotyping. J Biomol Tech. 2005;16:398–406.
  • Bérard A, Le Paslier MC, Dardevet M, et al. High-throughput single nucleotide polymorphism genotyping in wheat (Triticum spp.). Plant Biotechnol J. 2009;7:364–374.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.