1,204
Views
16
CrossRef citations to date
0
Altmetric
Review Articles

The use of site-specific recombination and cassette exchange technologies for monoclonal antibody production in Chinese Hamster ovary cells: retrospective analysis and future directions

, & ORCID Icon
Pages 833-851 | Received 06 Oct 2019, Accepted 23 Apr 2020, Published online: 26 May 2020

References

  • Walsh G. Biopharmaceutical benchmarks 2014. Nat Biotechnol. 2014;32(10):992–1000.
  • Peters RC. Solving pharma’s post-Brexit puzzle. Pharm Technol. 2017;41(1).
  • Osborne R. Fresh from the biotech pipeline—2012. Nat Biotechnol. 2013;31(2):100–103.
  • Walsh G. Biopharmaceutical benchmarks 2018. Nat Biotechnol. 2018;36(12):1136–1145.
  • Kozlowski S, Woodcock J, Midthun K, et al. Developing the nation's biosimilars program. N Engl J Med. 2011;365(5):385–388.
  • Moorkens E, Meuwissen N, Huys I, et al. The market of biopharmaceutical medicines: a snapshot of a diverse industrial landscape. Front Pharmacol. 2017;8:314.
  • Galbraith D. Biosimilars awaken CROs. BioProcess Int. 2014;12(Suppl 6):s24–s27.
  • Zhu J. Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv. 2012;30(5):1158–1170.
  • Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol. 2004;22(11):1393–1398.
  • Li F, Vijayasankaran N, Shen A, et al. Cell culture processes for monoclonal antibody production. MAbs. 2010;2(5):466–479.
  • Lalonde ME, Durocher Y. Therapeutic glycoprotein production in mammalian cells. J Biotechnol. 2017;251:128–140.
  • Brown AJ, James DC. Precision control of recombinant gene transcription for CHO cell synthetic biology. Biotechnol Adv. 2016;34(5):492–503.
  • Fischer S, Handrick R, Otte K. The art of CHO cell engineering: a comprehensive retrospect and future perspectives. Biotechnol Adv. 2015;33(8):1878–1896.
  • Hansen HG, Pristovšek N, Kildegaard HF, et al. Improving the secretory capacity of Chinese hamster ovary cells by ectopic expression of effector genes: Lessons learned and future directions. Biotechnol Adv. 2017;35(1):64–76.
  • Wurm FM, Hildinger M, De Jesus M, et al. Fast generation of high expression stable cell lines expressing recombinant proteins under minimal and short-term selective pressure. Patent US20100311116A1. 2010.
  • Pilbrough W, Munro TP, Gray P. Intraclonal protein expression heterogeneity in recombinant CHO cells. PLOS One. 2009;4(12):e8432.
  • Vcelar S, Melcher M, Auer N, et al. Changes in chromosome counts and patterns in CHO cell lines upon generation of recombinant cell lines and subcloning. Biotechnol J. 2018;13(3):1700495.
  • Kwaks TH, Otte AP. Employing epigenetics to augment the expression of therapeutic proteins in mammalian cells. Trends Biotechnol. 2006;24(3):137–142.
  • Bailey LA, Hatton D, Field R, et al. Determination of Chinese hamster ovary cell line stability and recombinant antibody expression during long-term culture. Biotechnol Bioeng. 2012;109(8):2093–2103.
  • Thyagarajan B, Olivares EC, Hollis RP, et al. Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol. 2001;21(12):3926–3934.
  • Gorman C, Bullock C. Site-specific gene targeting for gene expression in eukaryotes. Curr Opin Biotechnol. 2000;11(5):455–460.
  • Baer A, Bode J. Coping with kinetic and thermodynamic barriers: RMCE, an efficient strategy for the targeted integration of transgenes. Curr Opin Biotechnol. 2001;12(5):473–480.
  • Turan S, Galla M, Ernst E, et al. Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol. 2011;407(2):193–221.
  • Garrick D, Fiering S, Martin DI, et al. Repeat-induced gene silencing in mammals. Nat Genet. 1998;18(1):56–59.
  • Brown M, Renner G, Field R, et al. Process development for the production of recombinant antibodies using the glutamine synthetase (GS) system. Cytotechnology. 1992;9(1–3):231–236.
  • Fan L, Kadura I, Krebs LE, et al. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells. Biotechnol Bioeng. 2012;109(4):1007–1015.
  • Chusainow J, Yang YS, Yeo JH, et al. A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer? Biotechnol Bioeng. 2009;102(4):1182–1196.
  • Porter AJ, Racher AJ, Preziosi R, et al. Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: improving the efficiency of cell line generation. Biotechnol Prog. 2010;26(5):1455–1464.
  • Jayapal KP, Wlaschin KF, Hu W, et al. Recombinant protein therapeutics from CHO cells-20 years and counting. Chem Eng Prog. 2007;103(10):40.
  • Hou JJC, Hughes BS, Smede M, et al. High-throughput ClonePix FL analysis of mAb-expressing clones using the UCOE expression system. N Biotechnol. 2014;31(3):214–220.
  • Lee JS, Grav LM, Lewis NE, et al. CRISPR/Cas9-mediated genome engineering of CHO cell factories: application and perspectives. Biotechnol J. 2015;10(7):979–994.
  • Stolfa G, Smonskey MT, Boniface R, et al. CHO‐omics review: the impact of current and emerging technologies on Chinese hamster ovary based bioproduction. Biotechnol J. 2018;13(3):1700227.
  • Nash HA. Site-specific recombination: integration, excision, resolution, and inversion of defined DNA segments. Escherichia coli and Salmonella: cellular and Molecular Biology. 1996;2:2363–2376.
  • Stark WM, Boocock MR, Sherratt DJ. Catalysis by site-specific recombinases. Trends Genet. 1992;8(12):432–439.
  • Hershey AD. The bacteriophage lambda. 792S., 130 Abb., 139 Tab., 12 Taf. Cold Spring Harbor 1971: Cold Spring Harbor Laboratory.
  • Akopian A, Stark WM. Site-specific DNA recombinases as instruments for genomic surgery. Adv Genet. 2005;55:1–23.
  • Nunes-Düby SE, Kwon HJ, Tirumalai RS, et al. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res. 1998;26(2):391–406.
  • Sadowski P. Site-specific recombinases: changing partners and doing the twist. J Bacteriol. 1986;165(2):341–347.
  • Kolb AF. Genome engineering using site-specific recombinases. Cloning Stem Cells. 2002;4(1):65–80.
  • Sauer B. Site-specific recombination: developments and applications. Curr Opin Biotechnol. 1994;5(5):521–527.
  • Craig NL. The mechanism of conservative site-specific recombination. Annu Rev Genet. 1988;22(1):77–105.
  • Olorunniji FJ, Rosser SJ, Stark WM. Site-specific recombinases: molecular machines for the genetic revolution. Biochem J. 2016;473(6):673–684.
  • Ain QU, Chung JY, Kim YH. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J Control Release. 2015;205:120–127.
  • Cheng JK, Alper HS. The genome editing toolbox: a spectrum of approaches for targeted modification. Curr Opin Biotechnol. 2014;30:87–94.
  • Sun N, Abil Z, Zhao H. Recent advances in targeted genome engineering in mammalian systems. Biotechnol J. 2012;7(9):1074–1087.
  • Smith MC, Brown WR, McEwan AR, et al. Site-specific recombination by φC31 integrase and other large serine recombinases. Biochem Soc Trans. 2010;38:388–394.
  • Van Duyne GD. A structural view of tyrosine recombinase site-specific recombination. In: Craig, NL, Craigie R, Gellert M, Lambowitz, AM. editors. Mobile DNA II; p. 93–117.
  • Qiao J, Oumard A, Wegloehner W, et al. Novel tag-and-exchange (RMCE) strategies generate master cell clones with predictable and stable transgene expression properties. J Mol Biol. 2009;390(4):579–594.
  • Turan S, Zehe C, Kuehle J, et al. Recombinase-mediated cassette exchange (RMCE) – a rapidly-expanding toolbox for targeted genomic modifications. Gene. 2013;515(1):1–27.
  • Smith M, Thorpe HM. Diversity in the serine recombinases. Mol Microbiol. 2002;44(2):299–307.
  • Smith AJ, De Sousa MA, Kwabi-Addo B, et al. A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nat Genet. 1995;9(4):376–385.
  • Utomo AR, Nikitin AY, Lee W-H. Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice. Nat Biotechnol. 1999;17(11):1091–1096.
  • Seibler J, Schübeler D, Fiering S, et al. DNA cassette exchange in ES cells mediated by Flp recombinase: an efficient strategy for repeated modification of tagged loci by marker-free constructs. Biochemistry. 1998;37(18):6229–6234.
  • Kito M, Itami S, Fukano Y, et al. Construction of engineered CHO strains for high-level production of recombinant proteins. Appl Microbiol Biotechnol. 2002;60(4):442–448.
  • Kim MS, Kim WH, Lee GM. Characterization of site-specific recombination mediated by Cre recombinase during the development of erythropoietin producing CHO cell lines [journal article. Biotechnol Bioproc E. 2008;13(4):418–423.
  • Holliday R, Ho T. Evidence for gene silencing by endogenous DNA methylation. Proc Natl Acad Sci USA. 1998;95(15):8727–8732.
  • Gupta RS, Siminovitch L. Mutants of CHO cells resistant to the protein synthesis inhibitors, cryptopleurine and tylocrebrine: genetic and biochemical evidence for common site of action of emetine, cryptopleurine, tylocrebine, and tubulosine. Biochemistry. 1977; 16(14):3209–3214.
  • Bech-Hansen NT, Till JE, Ling V. Pleiotropic phenotype of colchicine-resistant CHO cells: cross-resistance and collateral sensitivity. J Cell Physiol. 1976;88(1):23–31.
  • Mayrhofer P, Kratzer B, Sommeregger W, et al. Accurate comparison of antibody expression levels by reproducible transgene targeting in engineered recombination-competent CHO cells. Appl Microbiol Biotechnol. 2014;98(23):9723–9733.
  • Yujiro K, Yoshinori K, Akira I, et al. An accumulative site‐specific gene integration system using cre recombinase‐mediated cassette exchange. Biotechnol Bioeng. 2010;105(6):1114.
  • Hampel S, Chung P, McKellar CE, et al. Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns [Article. Nat Methods. 2011;8(3):253–259.
  • Hoess RH, Wierzbicki A, Abremski K. The role of the loxP spacer region in P1 site-specific recombination. Nucleic Acids Res. 1986;14(5):2287–2300.
  • Lee G, Saito I. Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene. 1998;216(1):55–65.
  • Oberdoerffer P, Otipoby KL, Maruyama M, et al. Unidirectional Cre-mediated genetic inversion in mice using the mutant loxP pair lox66/lox71. Nucleic Acids Res. 2003;31(22):e140.
  • Kawabe Y, Makitsubo H, Kameyama Y, et al. Repeated integration of antibody genes into a pre-selected chromosomal locus of CHO cells using an accumulative site-specific gene integration system. Cytotechnology. 2012;64(3):267–279.
  • Yoshinori K, Takuya S, Shuohao H, et al. Targeted transgene insertion into the CHO cell genome using Cre recombinase‐incorporating integrase‐defective retroviral vectors. Biotechnol Bioeng. 2016;113(7):1600–1610.
  • Nern A, Pfeiffer BD, Svoboda K, et al. Multiple new site-specific recombinases for use in manipulating animal genomes. Proc Natl Acad Sci USA. 2011;108(34):14198–14203.
  • Crawford Y, Zhou M, Hu Z, et al. Fast identification of reliable hosts for targeted cell line development from a limited-genome screening using combined φC31 integrase and CRE-Lox technologies. Biotechnol Prog. 2013;29(5):1307–1315.
  • Ou HL, Huang Y, Qu LJ, et al. A phiC31 integrase-mediated integration hotspot in favor of transgene expression exists in the bovine genome . Febs J. 2009;276(1):155–163.
  • Keravala A, Chavez CL, Hu G, et al. Long-term phenotypic correction in factor IX knockout mice by using ΦC31 integrase-mediated gene therapy. Gene Ther. 2011;18(8):842–848.
  • Haas AK, von Schwerin C, Matscheko D, et al. Fluorescent Citrine-IgG fusion proteins produced in mammalian cells. MAbs. 2010;2(6):648–661.
  • Brezinsky S, Chiang G, Szilvasi A, et al. A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J Immunol Methods. 2003;277(1–2):141–155.
  • Patterson GH, Lippincott-Schwartz J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science. 2002;297(5588):1873–1877.
  • Craggs TD. Green fluorescent protein: structure, folding and chromophore maturation. Chem Soc Rev. 2009;38(10):2865–2875.
  • Baumann M, Gludovacz E, Sealover N, et al. Preselection of recombinant gene integration sites enabling high transcription rates in CHO cells using alternate start codons and recombinase mediated cassette exchange. Biotechnol Bioeng. 2017;114(11):2616–2627.
  • Inniss MC, Bandara K, Jusiak B, et al. A novel Bxb1 integrase RMCE system for high fidelity site-specific integration of mAb expression cassette in CHO cells. Biotechnol Bioeng. 2017;114(8):1837–1846.
  • Zhang L, Inniss MC, Han S, et al. Recombinase-mediated cassette exchange (RMCE) for monoclonal antibody expression in the commercially relevant CHOK1SV cell line. Biotechnol Prog. 2015;31(6):1645–1656.
  • Scarcelli JJ, Shang TQ, Iskra T, et al. Strategic deployment of CHO expression platforms to deliver Pfizer’s monoclonal antibody portfolio. Biotechnol Progress. 2017;33(6):1463–1467.
  • de la C, Edmonds MC, Tellers M, Chan C, et al. Development of transfection and high-producer screening protocols for the CHOK1SV cell system. Mol. Biotechnol. 2006;34(2):179–190.
  • Barnes LM, Bentley CM, Dickson AJ. Advances in animal cell recombinant protein production: GS-NS0 expression system. Cytotechnology. 2000;32(2):109–123.
  • Jusiak B, Jagtap K, Gaidukov L, et al. Comparison of integrases identifies Bxb1-GA mutant as the most efficient site-specific integrase system in mammalian cells. ACS Synth Biol. 2019;8(1):16–24.
  • Gaidukov L, Wroblewska L, Teague B, et al. A multi-landing pad DNA integration platform for mammalian cell engineering. Nucleic Acids Res. 2018;46(8):4072–4086.
  • Stuible M, van Lier F, Croughan MS, et al. Beyond preclinical research: production of CHO-derived biotherapeutics for toxicology and early-phase trials by transient gene expression or stable pools. Curr Opin Chem Eng. 2018;22:145–151.
  • Ringrose L, Lounnas V, Ehrlich L, et al. Comparative kinetic analysis of FLP and cre recombinases: mathematical models for DNA binding and recombination. J Mol Biol. 1998;284(2):363–384.
  • Gilbertson L. Cre-lox recombination: creative tools for plant biotechnology. Trends Biotechnol. 2003;21(12):550–555.
  • Wirth D, Gama-Norton L, Riemer P, et al. Road to precision: recombinase-based targeting technologies for genome engineering. Curr Opin Biotechnol. 2007;18(5):411–419.
  • Voziyanova E, Malchin N, Anderson RP, et al. Efficient Flp-Int HK022 dual RMCE in mammalian cells. Nucleic Acids Res. 2013;41(12):e125.
  • Anderson RP, Voziyanova E, Voziyanov Y. Flp and Cre expressed from Flp-2A-Cre and Flp-IRES-Cre transcription units mediate the highest level of dual recombinase-mediated cassette exchange. Nucleic Acids Res. 2012;40(8):e62.
  • Thyagarajan B, Guimaraes M, Groth A, et al. Mammalian genomes contain active recombinase recognition sites. Gene. 2000;244(1–2):47–54.
  • Schmidt-Supprian M, Rajewsky K. Vagaries of conditional gene targeting. Nat Immunol. 2007;8(7):665–668.
  • Coppoolse ER, de Vroomen MJ, Roelofs D, et al. Cre recombinase expression can result in phenotypic aberrations in plants. Plant Mol Biol. 2003;51(2):263–279.
  • Pfeifer A, Brandon EP, Kootstra N, et al. Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo. Proc Natl Acad Sci USA. 2001;98(20):11450–11455.
  • Liu H, Zeng F, Zhang M, et al. Emerging landscape of cell penetrating peptide in reprogramming and gene editing. J Control Release. 2016;226:124–137.
  • Kaitsuka T, Tomizawa K. Cell-penetrating peptide as a means of directing the differentiation of induced-pluripotent stem cells. Int J Mol Sci. 2015;16(11):26667–26676.
  • Grdisa M. The delivery of biologically active (therapeutic) peptides and proteins into cells. Curr Med Chem. 2011;18(9):1373–1379.
  • Patsch C, Kesseler D, Edenhofer F. Genetic engineering of mammalian cells by direct delivery of FLP recombinase protein. Methods. 2011;53(4):386–393.
  • Hamaker NK, Lee KH. Site-specific integration ushers in a new era of precise CHO cell line engineering. Curr Opin Chem Eng. 2018;22:152–160.
  • Rose T, Knabe A, Berthold R, et al. A robust RMCE system based on a CHO-DG44 platform enables efficient evaluation of complex biological drug candidates. BMC Proc. 2013;7(Suppl 6). DOI:10.1186/1753-6561-7-S6-P66

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.