1,730
Views
63
CrossRef citations to date
0
Altmetric
Review Articles

Diatoms as cell factories for high-value products: chrysolaminarin, eicosapentaenoic acid, and fucoxanthin

, &
Pages 993-1009 | Received 03 Sep 2019, Accepted 08 Jul 2020, Published online: 10 Aug 2020

References

  • Falkowski PG, Barber RT, Smetacek VV. Biogeochemical controls and feedbacks on ocean primary production. Science. 1998;281(5374):200–207.
  • Scala S, Bowler C. Molecular insights into the novel aspects of diatom biology. Cell Mol Life Sci. 2001;58(11):1666–1673.
  • Choi HG, Joo HM, Jung W, et al. Morphology and phylogenetic relationships of some psychrophilic polar diatoms (Bacillariophyta). Nova Hedwigia. 2008;133:7–30.
  • Tesson B, Hildebrand M. Characterization and localization of insoluble organic matrices associated with diatom cell walls: insight into their roles during cell wall formation. PLoS One. 2013;8(4):e61675.
  • Rea I, Terracciano M, Chandrasekaran S, et al. Bioengineered silicon diatoms: adding photonic features to a nanostructured semiconductive material for biomolecular sensing. Nanoscale Res Lett. 2016;11(1):405.
  • Uthappa UT, Brahmkhatri V, Sriram G, et al. Nature engineered diatom biosilica as drug delivery systems. J Control Release. 2018;281:70–83.
  • Maeda H, Matsumoto M, Maeda Y, et al. Utilization of diatom frustules for thermal management applications. J Appl Phycol. 2017;29(4):1907–1911.
  • Van Eynde E, Tytgat T, Smits M, et al. Biotemplated diatom silica-titania materials for air purification. Photochem Photobiol Sci. 2013;12(4):690–695.
  • McFadden GI. Primary and secondary endosymbiosis and the origin of plastids. J Phycol. 2001;37(6):951–959.
  • Bhattacharya D, Medlin L. Algal phylogeny and the origin of land plants. Plant Physiol. 1998;116(1):9–15.
  • Shi C, Dong SL, Li JW, et al. The concentrating method of benthic diatom affects the growth of juvenile sea cucumber (Apostichopus japonicus) and water quality. Aquacult Res. 2017;48(8):4503–4511.
  • Ribeiro AR, Goncalves A, Barbeiro M, et al. Phaeodactylum tricornutum in finishing diets for gilthead seabream: effects on skin pigmentation, sensory properties and nutritional value. J Appl Phycol. 2017;29(4):1945–1956.
  • Yang YF, Li DW, Chen TT, et al. Overproduction of bioactive algal chrysolaminarin by the critical carbon flux regulator phosphoglucomutase. Biotechnol J. 2019;14(3):1800220.
  • Carballo C, Chronopoulou EG, Letsiou S, et al. Antioxidant capacity and immunomodulatory effects of a chrysolaminarin-enriched extract in Senegalese sole. Fish Shellfish Immunol. 2018;82:1–8.
  • Kusaikin MI, Ermakova SP, Shevchenko NM, et al. Structural characteristics and antitumor activity of a new chrysolaminaran from the diatom alga Synedra acus. Chem Nat Compd. 2010;46(1):1–4.
  • Xia S, Gao BY, Li AF, et al. Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita. Mar Drugs. 2014;12(9):4883–4897.
  • Hildebrand M, Manandhar-Shrestha K, Abbriano R. Effects of chrysolaminarin synthase knockdown in the diatom Thalassiosira pseudonana: implications of reduced carbohydrate storage relative to green algae. Algal Res Biomass Biofuels Bioprod. 2017;23:66–77.
  • Wang H, Zhang Y, Chen L, et al. Combined production of fucoxanthin and EPA from two diatom strains Phaeodactylum tricornutum and Cylindrotheca fusiformis cultures. Bioprocess Biosyst Eng. 2018;41(7):1061–1071.
  • Romari K, François G, Pierre C, inventor, Fermentalg, assignee. Production of docosahexaenoic acid and/or eicosapentaenoic acid and/or carotenoids in mixotrophic mode by Nitzschia. United States patent US 20170130190A1. 2017 May 11.
  • Wu SC, Huang AY, Zhang BY, et al. Enzyme activity highlights the importance of the oxidative pentose phosphate pathway in lipid accumulation and growth of Phaeodactylum tricornutum under CO2 concentration. Biotechnol Biofuels. 2015;8(1):78.
  • Xia S, Gao BY, Fu JQ, et al. Production of fucoxanthin, chrysolaminarin, and eicosapentaenoic acid by Odontella aurita under different nitrogen supply regimes. J Biosci Bioeng. 2018;126(6):723–729.
  • Cook O, Hildebrand M. Enhancing LC-PUFA production in Thalassiosira pseudonana by overexpressing the endogenous fatty acid elongase genes. J Appl Phycol. 2016;28(2):897–905.
  • Lin Q, Zhuo WH, Wang XW, et al. Effects of fundamental nutrient stresses on the lipid accumulation profiles in two diatom species Thalassiosira weissflogii and Chaetoceros muelleri. Bioprocess Biosyst Eng. 2018;41(8):1213–1224.
  • Wang S, Verma SK, Said IH, et al. Changes in the fucoxanthin production and protein profiles in Cylindrotheca closterium in response to blue light-emitting diode light. Microb Cell Fact. 2018;17(1):110.
  • Wei DY, inventor. South China University of Technology, assignee. Culture of improved fucoxanthin yield of diatom involves culturing diatom with activated heterotroph, logarithmically growing, adding with inoculum containing culture medium I in heterotrophic culture container, and culturing. China patent CN103396979B. 2013 Nov 5.
  • Lu X, Sun H, Zhao WY, et al. A hetero-photoautotrophic two-stage cultivation process for production of fucoxanthin by the marine diatom Nitzschia laevis. Mar Drugs. 2018;16(7):219.
  • McClure DD, Luiz A, Gerber B, et al. An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Res Biomass Biofuels Bioprod. 2018;29:41–48.
  • Swanson D, Block R, Mousa SA. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr. 2012;3(1):1–7.
  • Calder PC. Functional roles of fatty acids and their effects on human health. JPEN J Parenter Enteral Nutr. 2015;39(1 Suppl.):18S–32S.
  • Remmers IM, Martens DE, Wijffels RH, et al. Dynamics of triacylglycerol and EPA production in Phaeodactylum tricornutum under nitrogen starvation at different light intensities. PLoS One. 2017;12(4):e0175630.
  • Vilchez C, Forjan E, Cuaresma M, et al. Marine carotenoids: biological functions and commercial applications. Mar Drugs. 2011;9(3):319–333.
  • Xiang S, Liu F, Lin J, et al. Fucoxanthin inhibits β-amyloid assembly and attenuates β-amyloid oligomer-induced cognitive impairments. J Agric Food Chem. 2017;65(20):4092–4102.
  • Rajauria G, Foley B, Abu-Ghannam N. Characterization of dietary fucoxanthin from Himanthalia elongata brown seaweed. Food Res Int. 2017;99(3):995–1001.
  • Ambati RR, Gogisetty D, Aswathanarayana RG, et al. Industrial potential of carotenoid pigments from microalgae: current trends and future prospects. Crit Rev Food Sci Nutr. 2018;59:1–22.
  • Borowitzka MA. High-value products from microalgae-their development and commercialisation. J Appl Phycol. 2013;25(3):743–756.
  • Armbrust EV, Berges JA, Bowler C, et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science. 2004;306(5693):79–86.
  • Bowler C, Allen AE, Badger JH, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature. 2008;456(7219):239–244.
  • Lommer M, Specht M, Roy AS, et al. Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation. Genome Biol. 2012;13(7):R66.
  • Sabatino V, Russo MT, Patil S, et al. Establishment of genetic transformation in the sexually reproducing diatoms Pseudo-nitzschia multistriata and Pseudo-nitzschia arenysensis and inheritance of the transgene. Mar Biotechnol. 2015;17(4):452–462.
  • Dourou M, Aggeli D, Papanikolaou S, et al. Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Appl Microbiol Biotechnol. 2018;102(6):2509–2523.
  • Bertrand M. Carotenoid biosynthesis in diatoms. Photosynth Res. 2010;106(1–2):89–102.
  • Barkia I, Zadjali F, Saari N, et al. Isolation and identification of indigenous marine diatoms (Bacillariophyta) for biomass production in open raceway ponds. Aquacult Res. 2018;49(2):928–938.
  • Matsumoto M, Nojima D, Nonoyama T, et al. Outdoor cultivation of marine diatoms for year-round production of biofuels. Mar Drugs. 2017;15(4):94.
  • Zulu NN, Zienkiewicz K, Vollheyde K, et al. Current trends to comprehend lipid metabolism in diatoms. Prog Lipid Res. 2018;70:1–16.
  • Huang JJH, Lin SL, Xu WW, et al. Occurrence and biosynthesis of carotenoids in phytoplankton. Biotechnol Adv. 2017;35(5):597–618.
  • Heydarizadeh P, Veidl B, Huang B, et al. Carbon orientation in the diatom Phaeodactylum tricornutum: the effects of carbon limitation and photon flux density. Front Plant Sci. 2019;10:471.
  • Zhang WY, Wang FF, Gao BY, et al. An integrated biorefinery process: stepwise extraction of fucoxanthin, eicosapentaenoic acid and chrysolaminarin from the same Phaeodactylum tricornutum biomass. Algal Res Biomass Biofuels Bioprod. 2018;32:193–200.
  • Lin M, Oliver DJ. The role of acetyl-coenzyme a synthetase in Arabidopsis. Plant Physiol. 2008;147(4):1822–1829.
  • Post-Beittenmiller D, Roughan G, Ohlrogge JB. Regulation of plant fatty acid biosynthesis: analysis of acyl-coenzyme a and acyl-acyl carrier protein substrate pools in spinach and pea chloroplasts. Plant Physiol. 1992;100(2):923–930.
  • Huerlimann R, Heimann K. Comprehensive guide to acetyl-carboxylases in algae. Crit Rev Biotechnol. 2013;33(1):49–65.
  • Ryall K, Harper JT, Keeling PJ. Plastid-derived type II fatty acid biosynthetic enzymes in chromists. Gene. 2003;313:139–148.
  • Masse G, Belt ST, Rowland SJ, et al. Isoprenoid biosynthesis in the diatoms Rhizosolenia setigera (Brightwell) and Haslea ostrearia (Simonsen). Proc Natl Acad Sci U S A. 2004;101(13):4413–4418.
  • Cazzonelli CI, Pogson BJ. Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci. 2010;15(5):266–274.
  • Coesel S, Obornik M, Varela J, et al. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms. PLoS One. 2008;3(8):e2896.
  • Lohr M, Wilhelm C. Xanthophyll synthesis in diatoms: quantification of putative intermediates and comparison of pigment conversion kinetics with rate constants derived from a model. Planta. 2001;212(3):382–391.
  • Dambek M, Eilers U, Breitenbach J, et al. Biosynthesis of fucoxanthin and diadinoxanthin and function of initial pathway genes in Phaeodactylum tricornutum. J Exp Bot. 2012;63(15):5607–5612.
  • Durnford DG, Deane JA, Tan S, et al. A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J Mol Evol. 1999;48(1):59–68.
  • Wang WD, Yu LJ, Xu CZ, et al. Structural basis for blue-green light harvesting and energy dissipation in diatoms. Science. 2019;363(6427):eaav0365.
  • Botte P, d’Ippolito G, Gallo C, et al. Combined exploitation of CO2 and nutrient replenishment for increasing biomass and lipid productivity of the marine diatoms Thalassiosira weissflogii and Cyclotella cryptica. J Appl Phycol. 2018;30(1):243–251.
  • Xia S, Wang K, Wan LL, et al. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Mar Drugs. 2013;11(7):2667–2681.
  • Gao BY, Chen AL, Zhang WY, et al. Co-production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Phaeodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions. J Ocean Univ China. 2017;16(5):916–924.
  • Sirisuk P, Ra CH, Jeong GT, et al. Effects of wavelength mixing ratio and photoperiod on microalgal biomass and lipid production in a two-phase culture system using LED illumination. Bioresour Technol. 2018;253:175–181.
  • Chu JL, Li Y, Cui YL, et al. The influences of phytohormones on triacylglycerol accumulation in an oleaginous marine diatom Phaeodactylum tricornutum. J Appl Phycol. 2019;31(2):1009–1019.
  • Wang x, Zhang W, Wang H, et al. Effects of 2,4-epibrassinolide on Phaeodactylum tricornutum growth and organics accumulation. Plant Physiol J. 2015;51(9):1482–1488.
  • Wen ZY, Chen F. Production potential of eicosapentaenoic acid by the diatom Nitzschia laevis. Biotechnol Lett. 2000;22(9):727–733.
  • Pahl SL, Lewis DM, Chen F, et al. Heterotrophic growth and nutritional aspects of the diatom Cyclotella cryptica (Bacillariophyceae): effect of some environmental factors. J Biosci Bioeng. 2010;109(3):235–239.
  • Wen ZY, Chen F. Optimization of nitrogen sources for heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis. Enzyme Microb Technol. 2001;29(6–7):341–347.
  • Patel A, Matsakas L, Hrůzová K, et al. Biosynthesis of nutraceutical fatty acids by the oleaginous marine microalgae Phaeodactylum tricornutum utilizing hydrolysates from organosolv-pretreated birch and spruce biomass. Mar Drugs. 2019;17(2):119.
  • Ceron Garcia MC, Camacho FG, Miron AS, et al. Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J Microbiol Biotechnol. 2006;16(5):689–694.
  • Garcia MCC, Miron AS, Sevilla JMF, et al. Mixotrophic growth of the microalga Phaeodactylum tricornutum – influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochem. 2005;40(1):297–305.
  • Ceron-Garcia MC, Fernandez-Sevilla JM, Sanchez-Miron A, et al. Mixotrophic growth of Phaeodactylum tricornutum on fructose and glycerol in fed-batch and semi-continuous modes. Bioresour Technol. 2013;147:569–576.
  • Hopkinson BM, Dupont CL, Allen AE, et al. Efficiency of the CO2-concentrating mechanism of diatoms. Proc Natl Acad Sci U S A. 2011;108(10):3830–3837.
  • Singh SP, Singh P. Effect of CO2 concentration on algal growth: a review. Renew Sustain Energy Rev. 2014;38:172–179.
  • Jensen EL, Yanguez K, Carriere F, et al. Storage compound accumulation in diatoms as response to elevated CO2 concentration. Biology (Basel). 2019;9(1):5.
  • Sabia A, Clavero E, Pancaldi S, et al. Effect of different CO2 concentrations on biomass, pigment content, and lipid production of the marine diatom Thalassiosira pseudonana. Appl Microbiol Biotechnol. 2018;102(4):1945–1954.
  • Clement R, Jensen E, Prioretti L, et al. Diversity of CO2-concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms. J Exp Bot. 2017;68(14):3925–3935.
  • McCarthy A, Rogers SP, Duffy SJ, et al. Elevated carbon dioxide differentially alters the photophysiology of Thalassiosira pseudonana (Bacillariophyceae) and Emiliania huxleyi (Haptophyta). J Phycol. 2012;48(3):635–646.
  • Yodsuwan N, Sawayama S, Sirisansaneeyakul S. Effect of nitrogen concentration on growth, lipid production and fatty acid profiles of the marine diatom Phaeodactylum tricornutum. Agric Nat Resour. 2017;51(3):190–197.
  • Cao X, Li S, Wang C, et al. Effects of nutritional factors on the growth and heterotrophic eicosapentaenoic acid production of diatom Nitzschia laevis. J Ocean Univ China. 2008;7(3):333–338.
  • Yang ZK, Zheng JW, Niu YF, et al. Systems-level analysis of the metabolic responses of the diatom Phaeodactylum tricornutum to phosphorus stress. Environ Microbiol. 2014;16(6):1793–1807.
  • Abida H, Dolch LJ, Mei C, et al. Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. Plant Physiol. 2015;167(1):118–136.
  • Matthijs M, Fabris M, Obata T, et al. The transcription factor bZIP14 regulates the TCA cycle in the diatom Phaeodactylum tricornutum. EMBO J. 2017;36(11):1559–1576.
  • Alipanah L, Rohloff J, Winge P, et al. Whole-cell response to nitrogen deprivation in the diatom Phaeodactylum tricornutum. J Exp Bot. 2015;66(20):6281–6296.
  • Feng TY, Yang ZK, Zheng JW, et al. Examination of metabolic responses to phosphorus limitation via proteomic analyses in the marine diatom Phaeodactylum tricornutum. Sci Rep. 2015;5:10373.
  • Martin-Jezequel V, Lopez PJ. Silicon – a central metabolite for diatom growth and morphogenesis. Prog Mol Subcell Biol. 2003;33:99–124.
  • Sabu S, Singh ISB, Joseph V. Improved lipid production in oleaginous brackish diatom Navicula phyllepta MACC8 using two-stage cultivation approach. 3 Biotech. 2019;9(12):15.
  • Zhao PP, Gu WH, Wu SC, et al. Silicon enhances the growth of Phaeodactylum tricornutum Bohlin under green light and low temperature. Sci Rep. 2014;4:3958.
  • Stefels J, van Leeuwe MA. Effects of iron and light stress on the biochemical composition of Antarctic phaeocystis sp. (Prymnesiophyceae). I. Intracellular DMSP concentrations. J Phycol. 1998;34(3):486–495.
  • Morrissey J, Bowler C. Iron utilization in marine cyanobacteria and eukaryotic algae. Front Microbiol. 2012;3:43.
  • Kustka AB, Allen AE, Morel FMM. Sequence analysis and transcriptional regulation of iron acquisition genes in two marine diatoms. J Phycol. 2007;43(4):715–729.
  • Allen AE, LaRoche J, Maheswari U, et al. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc Natl Acad Sci U S A. 2008;105(30):10438–10443.
  • Conceicao D, Lopes RG, Derner RB, et al. The effect of light intensity on the production and accumulation of pigments and fatty acids in Phaeodactylum tricornutum. J Appl Phycol. 2020;32(2):1017–1025.
  • Cointet E, Wielgosz-Collin G, Bougaran G, et al. Effects of light and nitrogen availability on photosynthetic efficiency and fatty acid content of three original benthic diatom strains. PLoS One. 2019;14(11):e0224701.
  • Nymark M, Valle KC, Brembu T, et al. An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum. PLoS One. 2009;4(11):e7743.
  • Jungandreas A, Costa B, Jakob T, et al. The acclimation of Phaeodactylum tricornutum to blue and red light does not influence the photosynthetic light reaction but strongly disturbs the carbon allocation pattern. PLoS One. 2014;9(8):e99727.
  • Su YY. The effect of different light regimes on pigments in Coscinodiscus granii. Photosynth Res. 2019;140(3):301–310.
  • Marella TK, Tiwari A. Marine diatom Thalassiosira weissflogii based biorefinery for co-production of eicosapentaenoic acid and fucoxanthin. Bioresour Technol. 2020;307:123245.
  • Valle KC, Nymark M, Aamot I, et al. System responses to equal doses of photosynthetically usable radiation of blue, green, and red light in the marine diatom Phaeodactylum tricornutum. PLoS One. 2014;9(12):e114211.
  • Costa BS, Jungandreas A, Jakob T, et al. Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum. J Exp Bot. 2013;64(2):483–493.
  • Jung JH, Sirisuk P, Ra CH, et al. Effects of green LED light and three stresses on biomass and lipid accumulation with two-phase culture of microalgae. Process Biochem. 2019;77:93–99.
  • Villanova V, Fortunato AE, Singh D, et al. Investigating mixotrophic metabolism in the model diatom Phaeodactylum tricornutum. Philos Trans R Soc B Biol Sci. 2017;1728:372.
  • Huang AY, Liu LX, Yang C, et al. Phaeodactylum tricornutum photorespiration takes part in glycerol metabolism and is important for nitrogen-limited response. Biotechnol Biofuels. 2015;8(1):73.
  • Liu XJ, Duan SS, Li AF, et al. Effects of glycerol on the fluorescence spectra and chloroplast ultrastructure of Phaeodactylum tricornutum (Bacillariophyta). J Integr Plant Biol. 2009;51(3):272–278.
  • Zheng YT, Quinn AH, Sriram G. Experimental evidence and isotopomer analysis of mixotrophic glucose metabolism in the marine diatom Phaeodactylum tricornutum. Microb Cell Fact. 2013;12:109.
  • Ukeles R, Rose WE. Observations on organic carbon utilization by photosynthetic marine microalgae. Mar Biol. 1976;37(1):11–28.
  • Shishlyannikov SM, Klimenkov IV, Bedoshvili YD, et al. Effect of mixotrophic growth on the ultrastructure and fatty acid composition of the diatom Synedra acus from Lake Baikal. J Biol Res (Thessaloniki). 2014;21(1):15.
  • Guo BB, Liu B, Yang B, et al. Screening of diatom strains and characterization of Cyclotella cryptica as a potential fucoxanthin producer. Mar Drugs. 2016;14(7):125.
  • Liu H, Hang Y, Zhu S, et al. Effects of glucose on the growth of Phaeodactylum tricornutum, fucoxanthin content and related gene expression. Chin Pharm J. 2016;14:1230–1234.
  • Nur MMA, Muizelaar W, Boelen P, et al. Environmental and nutrient conditions influence fucoxanthin productivity of the marine diatom Phaeodactylum tricornutum grown on palm oil mill effluent. J Appl Phycol. 2019;31(1):111–122.
  • Zhao YT, Wang HP, Han BY, et al. Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products by microalgae: a review. Bioresour Technol. 2019;274:549–556.
  • Wang X, Luo SW, Luo WHY, et al. Adaptive evolution of microalgal strains empowered by fulvic acid for enhanced polyunsaturated fatty acid production. Bioresour Technol. 2019;277:204–210.
  • Mekhalfi M, Avilan L, Lebrun R, et al. Consequences of the presence of 24-epibrassinolide, on cultures of a diatom, Asterionella formosa. Biochimie. 2012;94(5):1213–1220.
  • Guan Y, Gong Y, Zhu S, et al. Cloning and expression analysis of carotenoid isomerase gene from Phaeodactylum tricornutum. J Nucl Agric Sci. 2018;32(11):2098–2106.
  • Yu K, Gong Y, Zhu S, et al. Effects of different exogenous elicitors on lcyb gene transcription and fucoxanthin content in Phaeodactylum tricornutum. J Agric Biotechnol. 2017;25(12):2009–2017.
  • Chen J, Gong Y, Zhu S, et al. Induced expression and bioinformatic analysis about phytoene desaturase gene (pds) from Phaeodactylum tricornutum. J Nucl Agric Sci. 2017;31(12):2306–2313.
  • Zhang Y, Gong Y, Jing D, et al. Effects of elicitors on fucoxanthin production and ZDS gene expression in Phaeodactylum tricornutum. Chin Pharm J. 2017;52(12):1061–1068.
  • Yi ZQ, Xu MN, Magnusdottir M, et al. Photo-oxidative stress-driven mutagenesis and adaptive evolution on the marine diatom Phaeodactylum tricornutum for enhanced carotenoid accumulation. Mar Drugs. 2015;13(10):6138–6151.
  • Feng J, Cheng J, Cheng RL, et al. Screening the diatom Nitzschia sp re-mutated by Cs-137-gamma irradiation and optimizing growth conditions to increase lipid productivity. J Appl Phycol. 2015;27(2):661–672.
  • Cadet J, Douki T, Ravanat JL. Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem Photobiol. 2015;91(1):140–155.
  • Arakaki A, Matsumoto T, Tateishi T, et al. UV-C irradiation accelerates neutral lipid synthesis in the marine oleaginous diatom Fistulifera solaris. Bioresour Technol. 2017;245(Pt B):1520–1526.
  • Amin SA, Parker MS, Armbrust EV. Interactions between diatoms and bacteria. Microbiol Mol Biol Rev. 2012;76(3):667–684.
  • Foster RA, Kuypers MMM, Vagner T, et al. Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. ISME J. 2011;5(9):1484–1493.
  • Amin SH, van Tol HM, Durham BP, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522(7554):98–101.
  • Fatin MN, Bossier P, Sorgeloos P, et al. Significance of microalgal–bacterial interactions for aquaculture. Rev Aquacult. 2014;6(1):48–61.
  • Durham BP, Sharma S, Luo HW, et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad Sci U S A. 2015;112(2):453–457.
  • Zecher K, Jagmann N, Seemann P, et al. An efficient screening method for the isolation of heterotrophic bacteria influencing growth of diatoms under photoautotrophic conditions. J Microbiol Methods. 2015;119:154–162.
  • Cheng J, Feng J, Sun J, et al. Enhancing the lipid content of the diatom Nitzschia sp. by Co-60-gamma irradiation mutation and high-salinity domestication. Energy. 2014;78:9–15.
  • Zhang X, Zhang XF, Li HP, et al. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Appl Microbiol Biotechnol. 2014;98(12):5387–5396.
  • Cao S, Zhou X, Jin WB, et al. Improving of lipid productivity of the oleaginous microalgae Chlorella pyrenoidosa via atmospheric and room temperature plasma (ARTP). Bioresour Technol. 2017;244(Pt 2):1400–1406.
  • An J, Gao FL, Ma QY, et al. Screening for enhanced astaxanthin accumulation among Spirulina platensis mutants generated by atmospheric and room temperature plasmas. Algal Res Biomass Biofuels Bioprod. 2017;25:464–472.
  • Hamilton ML, Haslam RP, Napier JA, et al. Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab Eng. 2014;22:3–9.
  • Hamilton ML, Powers S, Napier JA, et al. Heterotrophic production of omega-3 long-chain polyunsaturated fatty acids by trophically converted marine diatom Phaeodactylum tricornutum. Mar Drugs. 2016;14(3):53.
  • Balamurugan S, Wang X, Wang HL, et al. Occurrence of plastidial triacylglycerol synthesis and the potential regulatory role of AGPAT in the model diatom Phaeodactylum tricornutum. Biotechnol Biofuels. 2017;10(1):97.
  • Niu YF, Zhang MH, Li DW, et al. Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs. 2013;11(11):4558–4569.
  • Trentacoste EM, Shrestha RP, Smith SR, et al. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci U S A. 2013;110(49):19748–19753.
  • Barka F, Angstenberger M, Ahrendt T, et al. Identification of a triacylglycerol lipase in the diatom Phaeodactylum tricornutum. Biochim Biophys Acta. 2016;1861(3):239–248.
  • Eilers U, Bikoulis A, Breitenbach J, et al. Limitations in the biosynthesis of fucoxanthin as targets for genetic engineering in Phaeodactylum tricornutum. J Appl Phycol. 2016;28(1):123–129.
  • Kadono T, Kira N, Suzuki K, et al. Effect of an introduced phytoene synthase gene expression on carotenoid biosynthesis in the marine diatom Phaeodactylum tricornutum. Mar Drugs. 2015;13(8):5334–5357.
  • Benavides AMS, Torzillo G, Kopecky J, et al. Productivity and biochemical composition of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown outdoors in tubular photobioreactors and open ponds. Biomass Bioenergy. 2013;54:115–122.
  • Guler BA, Deniz I, Demirel Z, et al. Comparison of different photobioreactor configurations and empirical computational fluid dynamics simulation for fucoxanthin production. Algal Res Biomass Biofuels Bioprod. 2019;37:195–204.
  • Han T, Lu HF, Ma SS, et al. Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: a review. Int J Agric Biol Eng. 2017;10(1):1–29.
  • Gupta PL, Lee SM, Choi HJ. A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol. 2015;31(9):1409–1417.
  • Xu L, Weathers PJ, Xiong XR, et al. Microalgal bioreactors: challenges and opportunities. Eng Life Sci. 2009;9(3):178–189.
  • Delbrut A, Albina P, Lapierre T, et al. Fucoxanthin and polyunsaturated fatty acids co-extraction by a green process. Molecules. 2018;23(4):874.
  • Su YY, Lundholm N, Ellegaard M. The effect of different light regimes on diatom frustule silicon concentration. Algal Res Biomass Biofuels Bioprod. 2018;29:36–40.
  • Derwenskus F, Metz F, Gille A, et al. Pressurized extraction of unsaturated fatty acids and carotenoids from wet Chlorella vulgaris and Phaeodactylum tricornutum biomass using subcritical liquids. Glob Change Biol Bioenergy. 2019;11(1):335–344.
  • Koyande AK, Show P-L, Guo R, et al. Bio-processing of algal bio-refinery: a review on current advances and future perspectives. Bioengineered. 2019;10(1):574–592.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.