914
Views
31
CrossRef citations to date
0
Altmetric
Research Articles

An overview of fungal biopolymers: bioemulsifiers and biosurfactants compounds production

, , , ORCID Icon &
Pages 1059-1080 | Received 12 Dec 2019, Accepted 19 Jul 2020, Published online: 12 Aug 2020

References

  • Kora AJ, Sashidhar RB, Arunachalam J. Aqueous extract of gum olibanum (Boswellia serrata): a reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles. Process Biochem. 2012;47(10):1516–1520.
  • Ranganathan S, Balagangadharan K, Selvamurugan N. Chitosan and gelatin-based electrospun fibers for bone tissue engineering. Int J Biol Macromol. 2019;133:354–364.
  • Quintana-Quirino M, Morales-Osorio C, Vigueras Ramírez G, et al. Bacterial cellulose grows with a honeycomb geometry in a solid-state culture of Gluconacetobacter xylinus using polyurethane foam support. Process Biochem. 2019;82:1–9.
  • Joye IJ. Cereal biopolymers for nano- and microtechnology: a myriad of opportunities for novel (functional) food applications. Trends Food Sci Technol. 2019;83:1–11.
  • Chanchal A, Vohra R, Elesela S, et al. Gelatin biopolymer: a journey from micro to nano. J Pharm Res. 2014;8:1387–1397.
  • Brito GF, Agrawal P, Araújo EM, et al. Biopolímeros, polímeros biodegradáveis e polímeros verdes. Rev Eletron Mat Proc. 2011;2:127–139.
  • Bilal M, Iqbal MN. Naturally-derived biopolymers: potential platforms for enzyme immobilization. Int J Biol Macromol. 2019;130:462–482.
  • Vijayendra SVN, Shamala TR. Film forming microbial biopolymers for commercial applications — a review. Crit Rev Biotechnol. 2013;8551:1–20.
  • Donot F, Fontana A, Baccou JC, et al. Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym. 2012;87(2):951–962.
  • Castillo NA, Valdez AL, Fariña JI. Microbial production of scleroglucan and downstream processing. Front Microbiol. 2015;6:1106–1119.
  • Sugumaran KR, Ponnusami V. Review on production, downstream processing and characterization of microbial pullulan. Carbohydr Polym. 2017;173:573–591.
  • Zou X, Cheng C, Feng J, et al. Biosynthesis of polymalic acid in fermentation: advances and prospects for industrial application. Crit Rev Biotechnol. 2019;39:1–14.
  • Zhang B, Guan Y, Hu P, et al. Production of bioactive metabolites by submerged fermentation of the medicinal mushroom Antrodia cinnamomea: recent advances and future development. Crit Rev Biotechnol. 2019;39:1–14.
  • Kourmentza C, Araujo D, Sevrin C, et al. Occurrence of non-toxic bioemulsifiers during polyhydroxyalkanoate production by Pseudomonas strains valorizing crude glycerol by-product. Bioresour Technol. 2019;281:31–40.
  • Kopsahelis A, Kourmentza C, Zafiri C, et al. Gate-to-gate life cycle assessment of biosurfactants and bioplasticizers production via biotechnological exploitation of fats and waste oils. J Chem Technol Biotechnol. 2018;93(10):2833–2841.
  • Uzoigwe C, Burgess JG, Ennis CJ, et al. Bioemulsifiers are not biosurfactants and require different screening approaches. Front Microbiol. 2015;6:1–6.
  • Banat IM, Franzetti A, Gandolfi I, et al. Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol. 2010;87(2):427–444.
  • Cárdenas-Reyna T, Angulo C, Guluarte C, et al. In vitro immunostimulatory potential of fungal β-glucans in pacific red snapper (Lutjanus peru) cells. Dev Comp Immunol. 2017;77:350–358.
  • Freitas F, Torres CAV, Reis MAM. Engineering aspects of microbial exopolysaccharide production. Bioresour Technol. 2017;245(Pt B):1674–1683.
  • Alvarez VM, Jurelevicius D, Serrato RV, et al. Chemical characterization and potential application of exopolysaccharides produced by Ensifer adhaerens JHT2 as a bioemulsifier of edible oils. Int J Biol Macromol. 2018;114:18–25.
  • Pessôa MG, Vespermann KAC, Paulino BN, et al. Newly isolated microorganisms with potential application in biotechnology. Biotechnol Adv. 2019;37(2):319–339.
  • Cirigliano MC, Carman GM. Purification and characterization of Liposan, a bioemulsifier from Candida lipolytica. Appl Environ Microbiol. 1985;50(4):846–850.
  • Yildiz H, Karatas N. Microbial exopolysaccharides: resources and bioactive properties. Process Biochem. 2018;72:41–46.
  • Kumar CG, Mongolla P, Pombala S. Lasiosan, a new exopolysaccharide from Lasiodiplodia sp. strain B2 (MTCC 6000): structural characterization and biological evaluation. Process Biochem. 2018;72:162–169.
  • Barreto MCS, Figueiredo MVB, Burity HA, et al. Produção e comportamento reológico de biopolímeros produzidos por rizóbios e caracterização genética. Rev Bras Agrociência. 2011;17:221–227.
  • Zhao H, Li J, Zhang J, et al. Purification, in vitro antioxidant and in vivo anti-aging activities of exopolysaccharides by Agrocybe cylindracea. Int J Biol Macromol. 2017;102:351–357.
  • Li H, Gao T, Wang J, et al. Structural identification and antitumor activity of the extracellular polysaccharide from Aspergillus terreus. Process Biochem. 2016;51(10):1714–1720.
  • Wang C, Mao W, Chen Z, et al. Purification, structural characterization and antioxidant property of an extracellular polysaccharide from Aspergillus terreus. Process Biochem. 2013;48(9):1395–1401.
  • Orlandelli RC, Corradi da Silva ML, Vasconcelos AFD, et al. Pamphile, β-(1→3,1→6)-d-glucans produced by Diaporthe sp. endophytes: purification, chemical characterization and antiproliferative activity against MCF-7 and HepG2-C3A cells. Int J Biol Macromol. 2017;94(Pt A):431–437.
  • Prathyusha AMVN, Mohana Sheela G, Bramhachari PV. Chemical characterization and antioxidant properties of exopolysaccharides from mangrove filamentous fungi Fusarium equiseti ANP2. Biotechnol Rep (Amst). 2018;19:e00277.
  • He Y, Ye M, Du Z, et al. Purification, characterization and promoting effect on wound healing of an exopolysaccharide from Lachnum YM405. Carbohydr Polym. 2014;105:169–176.
  • Wang Y, Hou G, Li J, et al. Structure characterization, modification through carboxymethylation and sulfation, and in vitro antioxidant and hypoglycemic activities of a polysaccharide from Lachnum sp. Process Biochem. 2018;72:177–187.
  • Tian Y, Zhao Y, Zeng H, et al. Structural characterization of a novel neutral polysaccharide from Lentinus giganteus and its antitumor activity through inducing apoptosis. Carbohydr Polym. 2016;154:231–240.
  • Sun K, Chen Y, Niu Q, et al. An exopolysaccharide isolated from a coral-associated fungus and its sulfated derivative activates macrophages. Int J Biol Macromol. 2016;82:387–394.
  • Song X, Liu Z, Zhang J, et al. Antioxidative and hepatoprotective effects of enzymatic and acidic-hydrolysis of Pleurotus geesteranus mycelium polysaccharides on alcoholic liver diseases. Carbohydr Polym. 2018;201:75–86.
  • Wang KF, Sui KY, Guo C, et al. Quorum sensing molecule-farnesol increased the production and biological activities of extracellular polysaccharide from Trametes versicolor. Int J Biol Macromol. 2017;104(Pt A):377–383.
  • Hao L, Sheng Z, Lu J, et al. Characterization and antioxidant activities of extracellular and intracellular polysaccharides from Fomitopsis pinicola. Carbohydr Polym. 2016;141:54–59.
  • Li K, Yu M, Hu Y, et al. Three kinds of Ganoderma lucidum polysaccharides attenuate DDC-induced chronic pancreatitis in mice. Chem Biol Interact. 2016;247:30–38.
  • Zhang C, Li S, Zhang J, et al. Antioxidant and hepatoprotective activities of intracellular polysaccharide from Pleurotus eryngii SI-04. Int J Biol Macromol. 2016;91:568–577.
  • Zhao H, Li S, Zhang J, et al. The antihyperlipidemic activities of enzymatic and acidic intracellular polysaccharides by Termitomyces albuminosus. Carbohydr Polym. 2016;151:1227–1234.
  • Wang KF, Yan Sui K, Guo C, et al. Improved production and antitumor activity of intracellular protein-polysaccharide from Trametes versicolor by the quorum sensing molecule-tyrosol. J Funct Foods. 2017;37:90–96.
  • Cao Y, Liu W, Zhao Q, et al. Comparative study on the monosaccharide compositions, antioxidant and hypoglycemic activities in vitro of intracellular and extracellular polysaccharides of liquid fermented Coprinus comatus. Int J Biol Macromol. 2019;139:1–7.
  • Zhang G, Yin Q, Han T, et al. Purification and antioxidant effect of novel fungal polysaccharides from the stroma of Cordyceps kyushuensis. Ind Crops Prod. 2015;69:485–491.
  • Akila RM. Fermentative production of fungal chitosan, a versatile biopolymer (perspectives and its applications). Adv Appl Sci Res. 2014;5:157–170.
  • Banerjee MM, Banerjee D. Fungal exopolysaccharide: production, composition and applications. Microbiol Insights. 2013;6:1–16.
  • Lee CM, Cho EM, Yang SI, et al. Raman spectroscopy and density functional theory calculations of β-glucans and chitins in fungal cell walls. Bull Korean Chem Soc. 2013;34(3):943–945.
  • Ismail B, Nampoothiri KM. Exopolysaccharide production and prevention of syneresis in starch using encapsulated probiotic Lactobacillus plantarum. Food Technol Biotechnol. 2010;48:484–489.
  • Osińska-Jaroszuk M, Jarosz-Wilkołazka A, Jaroszuk-Ściseł J, et al. Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties. World J Microbiol Biotechnol. 2015;31(12):1823–1844.
  • Li R, Jiang X, Guan H. Optimization of mycelium biomass and exopolysaccharides production by Hirsutella sp. in submerged fermentation and evaluation of exopolysaccharides antibacterial activity. Afr J Biotechnol. 2010;9:195–202.
  • Bin Zhou L, Chen B. Bioactivities of water-soluble polysaccharides from Jisongrong mushroom: anti-breast carcinoma cell and antioxidant potential. Int J Biol Macromol. 2011;48(1):1–4.
  • Khan AA, Gani A, Khanday FA, et al. Biological and pharmaceutical activities of mushroom β-glucan discussed as a potential functional food ingredient. Bioact Carbohydr Diet Fibre. 2018;16:1–13.
  • Ruiz-Herrera J, Ortiz-Castellanos L. Cell wall glucans of fungi. A review. Cell Surf. 2019;5:100022.
  • Fesel PH, Zuccaro A. β-glucan: crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet Biol. 2016;90:53–60.
  • Synytsya A, Novák M. Structural diversity of fungal glucans. Carbohydr Polym. 2013;92(1):792–809.
  • Dikit P, Methacanon P, Visessanguan W, et al. Characterization of an unexpected bioemulsifier from spent yeast obtained from Thai traditional liquor distillation. Int J Biol Macromol. 2010;47(4):465–470.
  • Kittisuban P, Ritthiruangdej P, Suphantharika M. Optimization of hydroxypropylmethylcellulose, yeast β-glucan, and whey protein levels based on physical properties of gluten-free rice bread using response surface methodology. LWT Food Sci Technol. 2014;57(2):738–748.
  • Brennan MA, Derbyshire E, Tiwari BK, et al. Integration of β-glucan fibre rich fractions from barley and mushrooms to form healthy extruded snacks. Plant Foods Hum Nutr. 2013;68(1):78–82.
  • Kim J, Lee M, Bae Y, et al. (1-3)(1-6)-β-glucan-enriched materials from Lentinus edodes mushroom as a high-fibre and low-calorie flour substitute for baked foods. J Sci Food Agric. 2011;91(10):1915–1919.
  • Viñarta SC, Molina OE, Figueroa LIC, et al. A further insight into the practical applications of exopolysaccharides from Sclerotium rolfsii. Food Hydrocoll. 2006;20(5):619–629.
  • Falch BH, Espevik T, Ryan L, et al. The cytokine stimulating activity of (1->3)-beta-d-glucans is dependent on the triple helix conformation. Carbohydr Res. 2000;329(3):587–596.
  • Wu S, Chen J. Preparation of maltotriose from fermentation broth by hydrolysis of pullulan using pullulanase. Carbohydr Polym. 2014;107:94–97.
  • Morris VJ. Bacterial polysaccharides. In: Stephen AM, editor. Food polysaccharides and their application. New York: Marcel Dekker; 1995. p. 341–375.
  • Wolf BW, Garleb KA, Choe YS, et al. Pullulan is a slowly digested carbohydrate in humans. Human Nutr Metab. 2003;133(4):1051–1055.
  • Samuelsen ABC, Schrezenmeir J, Knutsen SH. Effects of orally administered yeast-derived beta-glucans: a review. Mol Nutr Food Res. 2014;58(1):183–193.
  • Mirza Z, Soto ER, Dikengil F. Beta-glucan particles as vaccine adjuvant carriers. In: Kalkum M, Semis M, editors. Vaccines for invasive fungal infections: methods and protocols, methods in molecular biology. Vol. 11. New York (NY): Humana Press 2017. p. 143–157.
  • Kofuji K, Huang Y, Tsubaki K, et al. Preparation and evaluation of a novel wound dressing sheet comprised of β-glucan-chitosan complex. React Funct Polym. 2010;70(10):784–789.
  • Giavasis I. Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Curr Opin Biotechnol. 2014;26:162–173.
  • Mastromarino P, Petruzziello R, Macchia S, et al. Antiviral activity of natural and semisynthetic polysaccharides on the early steps of rubella virus infection. J Antimicrob Chemother. 1997;39(3):339–345.
  • Li H, Bian S, Huang Y, et al. High drug loading pH-sensitive pullulan-DOX conjugate nanoparticles for hepatic targeting. J Biomed Mater Res. 2014;102(1):150–159.
  • Zhang HZ, Gao FP, Liu LR, et al. Pullulan acetate nanoparticles prepared by solvent diffusion method for epirubicin chemotherapy. Colloids Surf B Biointerfaces. 2009;71(1):19–26.
  • Du B, Bian Z, Xu B. Skin health promotion effects of natural beta-glucan derived from cereals and microorganisms: a review. Phytother Res. 2014;28(2):159–166.
  • Kagimura FY, da Cunha MAA, Barbosa AM, et al. Biological activities of derivatized d-glucans: a review. Int J Biol Macromol. 2015;72:588–598.
  • Leathers TD. Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol. 2003;62(5–6):468–473.
  • Rekha MR, Sharma CP. Pullulan as a promising biomaterial for biomedical applications: a perspective. Trends Biomater Artif Organs. 2007;20:111–116.
  • Singh RS, Saini GK, Kennedy JF. Pullulan: microbial sources, production and applications. Carbohydr Polym. 2008;73(4):515–531.
  • Mohan K, Ravichandran S, Muralisankar T, et al. Potential uses of fungal polysaccharides as immunostimulants in fish and shrimp aquaculture: a review. Aquaculture. 2019;500(2019):250–263.
  • Sveistrup M, van Mastrigt F, Norrman J, et al. Viability of biopolymers for enhanced oil recovery. J Dispers Sci Technol. 2016;37(8):1160–1169.
  • Zhu F, Du B, Xu B. A critical review on production and industrial applications of beta-glucans. Food Hydrocoll. 2016;52:275–288.
  • Bai J, Ren Y, Li Y, et al. Physiological functionalities and mechanisms of β-glucans. Trends Food Sci Technol. 2019;88:57–66.
  • Schmid J, Meyer V, Sieber V. Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid. Appl Microbiol Biotechnol. 2011;91(4):937–947.
  • Gientka L, Bzducha-Wróbel A, Stasiak-Różańska L, et al. The exopolysaccharides biosynthesis by Candida yeast depends on carbon sources. Electron J Biotechnol. 2016;22:31–37.
  • Rodrigues ML, Franzen AJ, Nimrichter L, et al. Vesicular mechanisms of traffic of fungal molecules to the extracellular space. Curr Opin Microbiol. 2013;16(4):414–420.
  • Rodrigues ML, Nosanchuk JD, Schrank A, et al. Vesicular transport systems in fungi. Future Microbiol. 2011;6(11):1371–1381.
  • Hu X, Pang X, Wang PG, et al. Isolation and characterization of an antioxidant exopolysaccharide produced by Bacillus sp. S-1 from Sichuan pickles. Carbohydr Polym. 2019;204:9–16.
  • Kheni K, Vyas TK. Characterization of exopolysaccharide produced by Ganoderma sp TV1 and its potential as antioxidant and anticancer agent. J Biol Act Prod Nat. 2017;7(2):72–80.
  • Paynich ML, Jones-Burrage SE, Knight KL. Exopolysaccharide from Bacillus subtilis induces anti-inflammatory M2 macrophages that prevent T cell-mediated disease. J Immunol. 2017;198:2689–2698.
  • Liu C, Lu J, Lu L, et al. Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8-37-0-1. Bioresour Technol. 2010;101(14):5528–5533.
  • Ates O. Systems biology of microbial exopolysaccharides production. Front Bioeng Biotechnol. 2015;3:200–216.
  • Chang I, Kharis A, Im J, et al. Geoderma soil treatment using microbial biopolymers for anti-desertification purposes. Geoderma. 2015;253–254:39–47.
  • Todero I, Confortin TC, Luft L, et al. Concentration of exopolysaccharides produced by Fusarium fujikuroi and application of bioproduct as an effective bioherbicide. Environ Technol. 2019;1–8. DOI:https://doi.org/10.1080/09593330.2019.1580775
  • Luft L, Confortin TC, Todero I, et al. Different techniques for concentration of extracellular biopolymers with herbicidal activity produced by Phoma sp different techniques for concentration of extracellular biopolymers with herbicidal activity produced by Phoma sp. Environ Technol. 2019;1–10. DOI:https://doi.org/10.1080/09593330.2019.1669720
  • Lei S, Feng Edmund T. Polysaccharides, microbial. In: Roitberg BD, editor. Reference module in life sciences; Elsevier Inc. 2017. p. 482–494.
  • Zheng H, Hao M, Liu W, et al. Foam fractionation for the concentration of exopolysaccharides produced by repeated batch fermentation of Cordyceps militaris. Sep Purif Technol. 2019;210:682–689.
  • Roca C, Chagas B, Farinha I, et al. Production of yeast chitin-glucan complex from biodiesel industry byproduct. Process Biochem. 2012;47(11):1670–1675.
  • New N, Furuike T, Tamura H. Production, properties and applications of fungal cell wall polysaccharides: chitosan and glucan. Adv Polym Sci. 2011;244:187–207.
  • Cota-Arriola O, Onofre Cortez-Rocha M, Burgos-Hernández A, et al. Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: development of new strategies for microbial control in agriculture. J Sci Food Agric. 2013;93(7):1525–1536.
  • Abdel-Gawad KM, Hifney AF, Fawzy MA, et al. Technology optimization of chitosan production from Aspergillus niger biomass and its functional activities. Food Hydrocoll. 2017;63:593–601.
  • Wu J, Niu Y, Jiao Y, et al. Fungal chitosan from Agaricus bisporus (Lange) Sing. Chaidam increased the stability and antioxidant activity of liposomes modified with biosurfactants and loading betulinic acid. Int J Biol Macromol. 2019;123:291–299.
  • Rungsardthong V, Wongvuttanakul N, Kongpien N, et al. Application of fungal chitosan for clarification of apple juice. Process Biochem. 2006;41(3):589–593.
  • Tayel AA, Ibrahim SIA, Al-Saman MA, et al. Production of fungal chitosan from date wastes and its application as a biopreservative for minced meat. Int J Biol Macromol. 2014;69:471–475.
  • Alsaggaf MS, Moussa SH, Tayel AA. Application of fungal chitosan incorporated with pomegranate peel extract as edible coating for microbiological, chemical and sensorial quality enhancement of Nile tilapia fillets. Int J Biol Macromol. 2017;99:499–505.
  • Pereira RB, Lúcio M, De Resende V, et al. Ativação de defesa em cacaueiro contra a murcha-de-verticílio por extratos naturais e acibenzolar-S-metil. Pesq Agropec Bras. 2008;43(2):171–178.
  • Alsharari SF, Tayel AA, Moussa SH. Soil emendation with nano-fungal chitosan for heavy metals biosorption. Int J Biol Macromol. 2018;118(Pt B):2265–2268.
  • Alshubaily FA. Enhanced antimycotic activity of nanoconjugates from fungal chitosan and Saussurea costus extract against resistant pathogenic Candida strains. Int J Biol Macromol. 2019;141:499–503.
  • Nge KL, Nwe N, Chandrkrachang S, et al. Chitosan as a growth stimulator in orchid tissue culture. Plant Sci. 2006;170(6):1185–1190.
  • Mohd Nasir N, Mohd Yunos FH, Wan Jusoh HH, et al. Subtopic: advances in water and wastewater treatment harvesting of Chlorella sp. microalgae using Aspergillus niger as bio-flocculant for aquaculture wastewater treatment. J Environ Manage. 2019;249:109373.
  • Almutairi FM, El Rabey HA, Tayel AA, et al. Augmented anticancer activity of curcumin loaded fungal chitosan nanoparticles. Int J Biol Macromol. 2019;155:861–867.
  • Zhu L, Li J, Mai J, et al. Ultrasound-assisted synthesis of chitosan from fungal precursors for biomedical applications. Chem Eng J. 2019;357:498–507.
  • Anbazhagan S, Thangavelu KP. Application of tetracycline hydrochloride loaded-fungal chitosan and Aloe vera extract based composite sponges for wound dressing. J Adv Res. 2018;14:63–71.
  • Tianwei T, Binwu W, Xinyuan S. Separation of chitosan from Penicillium chrysogenum mycelium and its applications. J Bioact Compat Polym. 2002;17(3):173–182.
  • Tajdini F, Ali M, Nafissi-Varcheh N, et al. Production, physiochemical and antimicrobial properties of fungal chitosan from Rhizomucor miehei and Mucor racemosus. Int J Biol Macromol. 2010;47(2):180–183.
  • Nwe N, Furuike T, Tamura H. The mechanical and biological properties of chitosan scaffolds for tissue regeneration templates are significantly enhanced by chitosan from Gongronella butleri. Materials (Basel). 2009;2(2):374–398.
  • Farias JM, Stamford TCM, Resende AHM, et al. Mouthwash containing a biosurfactant and chitosan: an eco-sustainable option for the control of cariogenic microorganisms. Int J Biol Macromol. 2019;129:853–860.
  • Kučera J. Fungal mycelium – the source of chitosan for chromatography. J Chromatogr B Anal Technol Biomed Life Sci. 2004;808(1):69–73.
  • Biniarz P, Łukaszewicz M, Janek T. Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides: a review. Crit Rev Biotechnol. 2017;37(3):393–410.
  • Gudiña EJ, Rangarajan V, Sen R, et al. Potential therapeutic applications of biosurfactants. Trends Pharmacol Sci. 2013;34(12):667–675.
  • Ishaq U, Akram MS, Iqbal Z, et al. Production and characterization of novel self-assembling biosurfactants from Aspergillus flavus. J Appl Microbiol. 2015;119(4):1035–1045.
  • Kiran GS, Hema TA, Gandhimathi R, et al. Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Colloids Surf B Biointerfaces. 2009;73(2):250–256.
  • dos Reis CBL, Morandini LMB, Bevilacqua CB, et al. First report of the production of a potent biosurfactant with α,β-trehalose by Fusarium fujikuroi under optimized conditions of submerged fermentation. Brazilian J Microbiol. 2018;49:1–8.
  • Qazi MA, Subhan M, Fatima N, et al. Role of biosurfactant produced by Fusarium sp. BS-8 in enhanced oil recovery (EOR) through sand pack column. Int J Biosci Biochem Bioinform. 2013;30:1065–1075.
  • Qazi MA, Kanwal T, Jadoon M, et al. Isolation and characterization of a biosurfactant-producing Fusarium sp. BS-8 from oil contaminated soil. Biotechnol Prog. 2014;30(5):1065–1075.
  • Morita T, Ishibashi Y, Hirose N, et al. Production and characterization of a glycolipid biosurfactant, mannosylerythritol lipid B, from sugarcane juice by Ustilago scitaminea NBRC 32730. Biosci Biotechnol Biochem. 2011;75(7):1371–1376.
  • Spoeckner S, Wray V, Nimtz M, et al. Glycolipids of the smut fungus Ustilago maydis from cultivation on renewable resources. Appl Microbiol Biotechnol. 1999;51(1):33–39.
  • Gautam G, Mishra V, Verma P, et al. A cost effective strategy for production of bio-surfactant from locally isolated Penicillium chrysogenum SNP5 and its applications. J Bioprocess Biotechn. 2014;4(6):1.
  • Lourenço LA, Alberton Magina MD, Tavares LBB, et al. Biosurfactant production by Trametes versicolor grown on two-phase olive mill waste in solid-state fermentation. Environ Technol (UK). 2017;3330:1–11.
  • Velioglu Z, Ozturk Urek R. Optimization of cultural conditions for biosurfactant production by Pleurotus djamor in solid state fermentation. J Biosci Bioeng. 2015;120(5):526–531.
  • Konishi M, Fukuoka T, Morita T, et al. Production of new types of sophorolipids by Candida batistae. J Oleo Sci. 2008;57(6):359–369.
  • Santos DKF, Rufino RD, Luna JM, et al. Synthesis and evaluation of biosurfactant produced by Candida lipolytica using animal fat and corn steep liquor. J Pet Sci Eng. 2013;105:43–50.
  • Cavalero DA, Cooper DG. The effect of medium composition on the structure and physical state of sophorolipids produced by Candida bombicola ATCC 22214. J Biotechnol. 2003;103(1):31–41.
  • Thanomsub B, Watcharachaipong T, Chotelersak K, et al. Monoacylglycerols: glycolipid biosurfactants produced by a thermotolerant yeast, Candida ishiwadae. J Appl Microbiol. 2004;96(3):588–592.
  • Garg M, Priyanka Chatterjee, M. Isolation, characterization and antibacterial effect of biosurfactant from Candida parapsilosis. Biotechnol Rep. 2018;18:e00251.
  • Senthil Balan S, Ganesh Kumar C, Jayalakshmi S. Physicochemical, structural and biological evaluation of Cybersan (trigalactomargarate), a new glycolipid biosurfactant produced by a marine yeast, Cyberlindnera saturnus strain SBPN-27. Process Biochem. 2019;80:171–180.
  • Alt K, Sireesha NG, Akg A, et al. Production optimization of rhamnolipid biosurfactant by Streptomyces coelicoflavus (NBRC 15399 T) using Plackett–Burman design. Eur J Biotechnol Biosci. 2014;1:7–13.
  • Coronel-León J, de Grau G, Grau-Campistany A, et al. Biosurfactant production by AL 1.1, a Bacillus licheniformis strain isolated from Antarctica: production, chemical characterization and properties. Ann Microbiol. 2015;65(4):2065–2078.
  • Ma Z, Hu J. Production and characterization of iturinic lipopeptides as antifungal agents and biosurfactants produced by a marine Pinctada martensii-derived Bacillus mojavensis B0621A. Appl Biochem Biotechnol. 2014;173(3):705–715.
  • Varadavenkatesan T, Murty VR. Production of a lipopeptide biosurfactant by a novel Bacillus sp. and its applicability to enhanced oil recovery. ISRN Microbiol. 2013;2013:621519.
  • Gogoi D, Bhagowati P, Gogoi P, et al. Structural and physico-chemical characterization of a dirhamnolipid biosurfactant purified from: Pseudomonas aeruginosa: application of crude biosurfactant in enhanced oil recovery. RSC Adv. 2016;6(74):70669–70681.
  • Jadhav M, Kagalkar A, Jadhav S, et al. Isolation, characterization, and antifungal application of a biosurfactant produced by Enterobacter sp. MS16. Eur J Lipid Sci Technol. 2011;113(11):1347–1356.
  • Bages-Estopa S, White DA, Winterburn JB, et al. Production and separation of a trehalolipid biosurfactant. Biochem Eng J. 2018;139:85–94.
  • Bhardwaj G. Biosurfactants from fungi: a review. J Pet Environ Biotechnol. 2013;4:1–6.
  • Hazra C, Kundu D, Chaudhari A. Lipopeptide biosurfactant from Bacillus clausii BS02 using sunflower oil soapstock: evaluation of high throughput screening methods, production, purification, characterization and its insecticidal activity. RSC Adv. 2015;5(4):2974–2982.
  • Geys R, Soetaert W, Van Bogaert I. Biotechnological opportunities in biosurfactant production. Curr Opin Biotechnol. 2014;30:66–72.
  • Mnif I, Ghribi D. Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. J Sci Food Agric. 2016;96(13):4310–4320.
  • Desai JD, Banat IM. Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev. 1997;61(1):47–64.
  • Abdel-Mawgoud AM, Stephanopoulos G. Simple glycolipids of microbes: chemistry, biological activity and metabolic engineering. Synth Syst Biotechnol. 2018;3(1):3–19.
  • Batrakov SG, Konova IV, Sheichenko VI, et al. Glycolipids of the filamentous fungus Absidia corymbifera. Chem Phys Lipids. 2003;123(2):157–164.
  • Liu Y, Koh CMJ, Ji L. Bioconversion of crude glycerol to glycolipids in Ustilago maydis. Bioresour Technol. 2011;102(4):3927–3933.
  • Teichmann B, Linne U, Hewald S, et al. A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Mol Microbiol. 2007;66(2):525–533.
  • Mnif I, Ghribi D. Lipopeptide surfactants: production, recovery and pore forming capacity. Peptides. 2015;71:100–112.
  • Jain RM, Mody K, Joshi N, et al. Production and structural characterization of biosurfactant produced by an alkaliphilic bacterium, Klebsiella sp.: evaluation of different carbon sources. Colloids Surf B Biointerfaces. 2013;108:199–204.
  • Singh SP, Bharali P, Konwar BK. Optimization of nutrient requirements and culture conditions for the production of rhamnolipid from Pseudomonas aeruginosa (MTCC 7815) using Mesua ferrea seed oil. Indian J Microbiol. 2013;53(4):467–476.
  • Luna-Velasco MA, Esparza-García F, Cañízares-Villanueva RO, et al. Production and properties of a bioemulsifier synthesized by phenanthrene-degrading Penicillium sp. Process Biochem. 2007;42(3):310–314.
  • Rebello S, Asok AK, Mundayoor S, et al. Surfactants: toxicity, remediation and green surfactants. Environ Chem Lett. 2014;12(2):275–287.
  • Araújo TR, Lúcia C, Petkowicz DO, et al. Biopolymer production using fungus Mucor racemosus Fresenius and glycerol as substrate. Polímeros. 2016;26(2):144–151.
  • Vecino X, Cruz JM, Moldes AB, et al. Critical reviews in biotechnology biosurfactants in cosmetic formulations: trends and challenges. Crit Rev Biotechnol. 2017;37(7):911–913.
  • Research and Markets. Biosurfactants – global market outlook (2017–2026); 2018; [cited 2020 Apr 28]. Available from: https://www.researchandmarkets.com/reports/4541406/biosurfactants-global-market-outlook-2017-2026#pos-0
  • Grand View Research Inc. Biosurfactants market by product (market research report code: GVR20); 2014; [cited 2020 Apr 28]. Available from: http://www.grandviewresearch.com/industry-analysis/biosurfactants-industry
  • Dhanarajan G, Sen R. Cost analysis of biosurfactant production from a scientist’s perspective. In: Naim Kosaric, Fazilet Vardar Sukan, editors. Biosurfactants. Production and utilization-processes, technologies, and economics. Vol. 10. Boca Raton (FL): CRC Press; 2014. p. 153–161.
  • Makkar RS, Cameotra SS, Banat IM. Advances in utilization of renewable substrates for biosurfactant production. AMB Express. 2011;1(1):5.
  • Soares SRCF, de Almeida DG, Brasileiro PPF, et al. Production, formulation and cost estimation of a commercial biosurfactant. Biodegradation. 2019;30(4):191–201.
  • Singh P, Patil Y, Rale V. Biosurfactant production: emerging trends and promising strategies. J Appl Microbiol. 2019;126(1):2–13.
  • Daverey A, Pakshirajan K. Production, characterization, and properties of sophorolipids from the yeast Candida bombicola using a low-cost fermentative medium. Appl Biochem Biotechnol. 2009;158(3):663–674.
  • Haddad NIA, Liu X, Yang S, et al. Surfactin isoforms from Bacillus subtilis HSO121: separation and characterization. Protein Pept Lett. 2008;15(3):265–269.
  • Chen HL, Chen YS, Juang RS. Separation of surfactin from fermentation broths by acid precipitation and two-stage dead-end ultrafiltration processes. J Membr Sci. 2007;299(1–2):114–121.
  • Freitas F, Alves VD, Reis MAM. Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol. 2011;29(8):388–398.
  • Saharan BS, Sahu RK, Sharma D. A review on biosurfactants: fermentation, current developments and perspectives. Genet Eng Biotechnol J. 2012;2011:1–14.
  • Park JP, Kim SW, Hwang HJ, et al. Stimulatory effect of plant oils and fatty acids on the exo-biopolymer production in Cordyceps militaris. Enzyme Microb Technol. 2002;31(3):250–255.
  • Fontes GC, Amaral PFFE, Coelho MAZ. Biosurfactants production by yeasts. Quím Nova. 2008;31(8):2091–2323.
  • Santos DKF, Rufino RD, Luna JM, et al. Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci. 2016;17(3):401–431.
  • Nurfarahin AH, Mohamed MS, Phang LY. Culture medium development for microbial-derived surfactants production—an overview. Molecules. 2018;23(5):1049.
  • Fang QH, Zhong JJ. Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochem. 2002;37(7):769–774.
  • Van Bogaert INA, Zhang J, Soetaert W. Microbial synthesis of sophorolipids. Process Biochem. 2011;46(4):821–833.
  • Coutte F, Lecouturier D, Dimitrov K, et al. Microbial lipopeptide production and purification bioprocesses, current progress and future challenges. Biotechnol J. 2017;12(7):1600566.
  • Satpute SK, Banpurka AG, Dhakephalkar PK, et al. Methods for investigating biosurfactants and bioemulsifiers: a review. Crit Rev Biotechnol. 2010;30(2):127–144.
  • Li SC, Yang XM, Le Ma H, et al. Purification, characterization and antitumor activity of polysaccharides extracted from Phellinus igniarius mycelia. Carbohydr Polym. 2015;133:24–30.
  • Tang YJ, Zhong JJ. Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid. Enzyme Microb Technol. 2002;31(1–2):20–28.
  • Zhang H, Ma H, Liu W, et al. Ultrasound enhanced production and antioxidant activity of polysaccharides from mycelial fermentation of Phellinus igniarius. Carbohydr Polym. 2014;113:380–387.
  • Sourki AH, Koocheki A, Elahi M. Ultrasound-assisted extraction of β-d-glucan from hull-less barley: assessment of physicochemical and functional properties. Int J Biol Macromol. 2017;95:462–475.
  • Formenti LR, Nørregaard A, Bolic A, et al. Challenges in industrial fermentation technology research. Biotechnol J. 2014;9(6):727–738.
  • Posch AE, Herwig C, Spadiut O. Science-based bioprocess design for filamentous fungi. Trends Biotechnol. 2013;31(1):37–44.
  • Ezeji T, Qureshi N, Blaschek HP. Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng. 2007;97(6):1460–1469.
  • Tajsoleiman T, Mears L, Krühne U, et al. An industrial perspective on scale-down challenges using miniaturized bioreactors. Trends Biotechnol. 2019;37(7):697–706.
  • Seviour RJ, McNeil B, Fazenda ML, et al. Operating bioreactors for microbial exopolysaccharide production. Crit Rev Biotechnol. 2011;31(2):170–185.
  • Ray SG, Ghangrekar MM. Process for treatment of environmentally hazardous grain based distillery waste water, involves using Aspergillus awamori fungus to convert waste water into fungal biomass and fungal pre-treated effluent. Patent IN201400822-I2. 2014.
  • Lou W, Zeng Y, Zong M, et al. Preparing highly immunologically active endophytic fungus polysaccharide of Dendrobium candidum involves inoculating the activated Dendrobium candidum endophytic fungal seed solution in a sterilized solid medium. Patent CN109234332-A. 2019.
  • Mukhopadhyay SK, Chatterjee S, Mishra A, et al. Producing bioactive exopolysaccharides (EPS) used to obtain oligosaccharide used e.g. as anti-cancer agent, comprises e.g. inoculating basal salt medium with Thelebolus species and incubating to get EPS, filtering medium and adding alcohol. Patent IN201300999-I2. 2013.
  • Kaplan-Bie JH, Bonesteel IT, Greetham L, et al. Growing biopolymer material involves providing multiple of containers, each container defining cavity containing growth media includes nutritive substrate and fungus, placing multiple of containers in closed incubation chamber. Patent WO2019099474-A1. 2019.
  • Dai Z, Ai X, Yang Z. Biopolymer fertilizer used as cotton special fertilizer, comprises e.g. urea, calcium-magnesium-phosphate fertilizer, nitrophosphate, ammonium chloride, ammonium sulfate, monoammonium phosphate, potassium sulfate and potassium chloride. Patent CN109293452-A. 2019.
  • Rollie S, Kaeppler T, Schalb C, et al. Preparing aqueous solution comprising beta-glucan used e.g. in polymer flooding, comprises fermenting fungal strain secreting beta-glucan into aqueous culture medium to form fermentation broth, adding acid to broth, and filtering the broth. Patent WO2016087521-A1. 2016.
  • Kaplan-Bie JH, Kaplan-Bei JH. Processed mycological biopolymer material comprises fungal mycelium free of any stipe, cap or spores and in having elasticity, which is prepared by treating tissue with organic solvent solution for time sufficient to permit permeability. Patent US2018282529-A1. 2018.
  • Briechle S, Hollmann R, Kaeppler T, et al. Fermenting fungal strains secreting glucan with beta-1,3-glycosidically linked main chain and side groups bonded in cascade of tank, involves fermenting strains in first aqueous medium and transferring first mixture to second tank. Patent WO2016091892-A1. 2016.
  • Pontarolo R, Picheth GF, Camarozano AC, et al. Micro-vesicle used in biomedical imaging, comprises gaseous core and composite layer of phospholipids 1,2-distearoyl-sn-glycero-3-phosphocholine and bio-polymers comprising polysaccharides, hyaluronic acid, heparin and alginate. Patent BR102014028264-A2. 2014.
  • Assis LTMA, Gonçalves O. Producing proteinaceous biopolymer for use in biomedical field, preferably advanced medical biotechnology bone transplant, involves preparing microbial mixture containing mangrove contaminated with oil, crude glycerin, and castor cake. Patent BR201105932-A2. 2011.
  • Dierickx W, De Cuyper D, Gunde-Cimerman N, et al. Polymer product, useful as polymer film and for the production of plastic and textile materials, comprises polymer in form of granules, multidimensional structure containing amphiphilic molecules e.g. lipids, surfactants or polymers. Patent WO2012145803-A2. 2012.
  • Vanangamudi SS, Srinivasan M, Chulliel NN, et al. Cream, useful to treat inflammation, comprises fusidic acid, mometasone furoate, clotrimazole, and a biopolymer, preferably chitosan, in a cream base containing an emulsifier, a preservative, a waxy material, a cosolvent, an acid and water. Patent WO2012049542-A1. 2012.
  • Peij VNNM, Hans M, Beishuizen M, et al. Producing a compound of interest by microbial fermentation, comprises providing microbial host cell, culturing cell under conditions conducive to expression, and isolating compound of interest from culture medium. Patent WO2012001169-A1. 2012.
  • Paik J, Haley H. Microbial stable emulsion comprises dispersion media having lower water activity, at least one dispersant having higher water binding capacity, and a lipophilic dispersed phase. Patent WO2011011077-A2. 2011.
  • Yuan T. Complex useful for medical devices, biomedicine, beauty make-up and food care comprises beta-glucan and glucomannan. Patent CN108938455-A. 2019.
  • Thevenieau F, Bourdillon A, Durand A, et al. Use of filamentous fungal strain for fermentative preparation of fermented solid edible food product for animal or human consumption for prevention or treatment of e.g. allergy from by-product of plant. Patent WO2015101650-A2. 2015.
  • Yin S, Xie P, Qu H. Compound bioemulsifier used in oil sludge treatment, comprises concentrated mixed fermentation waste liquid and sophorolipid. Patent CN109876731-A. 2019.
  • Sarubbo LA, Diniz Rufino R, Moura J, et al. Producing biosurfactant used as bioemulsifier for vegetable oils and petrochemicals industry, involves culturing Candida guilliermondii in culture medium, which comprises waste vegetable oil, sugar and corn refining residues. Patent BR102012023115-A2. 2012.
  • Farmer S, Alibek K, Mazumder S, et al. Mass-producing fungal strain and/or fungal growth by-product, comprising e.g. inoculating liquid growth medium with fungal strain, and suspending particulate anchoring carrier in liquid growth medium as site for nucleating fungal growth. Patent WO2019140093-A1. 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.