680
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Bacteriophages to control Shiga toxin-producing E. coli – safety and regulatory challenges

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1081-1097 | Received 14 Aug 2019, Accepted 19 Jul 2020, Published online: 18 Aug 2020

References

  • Conway T, Cohen PS. Commensal and pathogenic Escherichia coli metabolism in the gut. Microbiol Spectr. 2015;3:343–362.
  • Chaudhuri RR, Henderson IR. The evolution of the Escherichia coli phylogeny. Infect Genet Evol. 2012;12(2):214–226.
  • Clements A, Young JC, Constantinou N, et al. Infection strategies of enteric pathogenic Escherichia coli. Gut Microbes. 2012;3(2):71–87.
  • Tenaillon O, Skurnik D, Picard B, et al. The population genetics of commensal Escherichia coli. Nat Rev Microbiol. 2010;8(3):207–217.
  • Almeida C, Sousa JM, Rocha R, et al. Detection of Escherichia coli O157 by peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) and comparison to a standard culture method. Appl Environ Microbiol. 2013;79(20):6293–6300.
  • Robinson AL, Mckillip JL. Biology of Escherichia coli O157:H7 in human health and food safety with emphasis on sublethal injury and detection. Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol. 2010;2:1096–1105.
  • Asea A, Kaur P, Chakraborti A. Enteroaggregative Escherichia coli: an emerging enteric food borne pathogen. Interdiscip Perspect Infect Dis. 2010;2010:254159.
  • Croxen MA, Law RJ, Scholz R, et al. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev. 2013;26(4):822–880.
  • Robins-Browne RM, Holt KE, Ingle DJ, et al. Are Escherichia coli pathotypes still relevant in the era of whole-genome sequencing? Front Cell Infect Microbiol. 2016;6:141–149.
  • Werber D, Krause G, Frank C, et al. Outbreaks of virulent diarrheagenic Escherichia coli - are we in control? BMC Med. 2012;10(1):11.
  • Ranjbar R, Masoudimanesh M, Dehkordi FS, et al. Shiga (Vero)-toxin producing Escherichia coli isolated from the hospital foods virulence factors, o-serogroups and antimicrobial resistance properties. Antimicrob Resist Infect Control. 2017;6:1–11.
  • Kerangart S, Douëllou T, Delannoy S, et al. Variable tellurite resistance profiles of clinically-relevant Shiga toxin-producing Escherichia coli (STEC) influence their recovery from foodstuffs. Food Microbiol. 2016;59:32–42.
  • Newell DG, La Ragione RM. Enterohaemorrhagic and other Shiga toxin-producing Escherichia coli (STEC): where are we now regarding diagnostics and control strategies? Transbound Emerg Dis. 2018;65(1):49–71.
  • European Food Safety Authority, European Centre for Disease Prevention and Control (ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2015. EFSA J. 2015;13(12):4329.
  • Karmali MA, Gannon V, Sargeant JM. Verocytotoxin-producing Escherichia coli (VTEC). Vet Microbiol. 2010;140(3–4):360–370.
  • Steyert SR, Sahl JW, Fraser CM, et al. Comparative genomics and stx phage characterization of LEE-negative Shiga toxin-producing Escherichia coli. Cell Infect Microbiol. 2012;2:1–18.
  • Krüger A, Lucchesi PMA. Shiga toxins and stx phages: highly diverse entities. Microbiology. 2015;161(3):451–462.
  • Ercoli L, Farneti S, Zicavo A, et al. Prevalence and characteristics of verotoxigenic Escherichia coli strains isolated from pigs and pork products in Umbria and Marche regions of Italy. Int J Food Microbiol. 2016;232:7–14.
  • Jacewicz M, Clausen H, Nudelman E, et al. Pathogenesis of shigella diarrhea. XI. Isolation of a shigella toxin-binding glycolipid from rabbit jejunum and HeLa cells and its identification as globotriaosylceramide. J Exp Med. 1986;163(6):1391–1404.
  • Lee M-S, Tesh V. Roles of Shiga toxins in immunopathology. Toxins. 2019;11:212.
  • Robinson CM, Sinclair JF, Smith MJ, et al. Shiga toxin of enterohemorrhagic Escherichia coli type O157:H7 promotes intestinal colonization. Proc Natl Acad Sci USA. 2006;103(25):9667–9672.
  • Allué-Guardia A, Martínez-Castillo A, Muniesa M. Persistence of infectious shiga toxin-encoding bacteriophages after disinfection treatments. Appl Environ Microbiol. 2014;80(7):2142–2149.
  • Martí-Nez-Castillo A, Muniesa M. Implications of free Shiga toxin-converting bacteriophages occurring outside bacteria for the evolution and the detection of Shiga toxin-producing Escherichia coli. Front Cell Infect Microbiol. 2014;4:46–48.
  • Rooks DJ, Yan Y, McDonald JE, et al. Development and validation of a qPCR-based method for quantifying Shiga toxin-encoding and other lambdoid bacteriophages. Environ Microbiol. 2010;12(5):1194–1204.
  • Bonanno L, Petit MA, Loukiadis E, et al. Heterogeneity in induction level, infection ability, and morphology of Shiga toxin-encoding phages (Stx phages) from dairy and human Shiga toxin-producing Escherichia coli O26:H11 isolates. Appl Environ Microbiol. 2016;82(7):2177–2186.
  • Kohler B, Karch H, Schmidt H. Antibacterials that are used as growth promoters in animal husbandty can affect the bacteriophages and Shiga toxins 2 from Escherichia coli strains. Microbiology. 2000;146(5):1085–1090.
  • Zhang X, McDaniel AD, Wolf LE, et al. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J Infect Dis. 2000;181(2):664–670.
  • Feiner R, Argov T, Rabinovich L, et al. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat Rev Microbiol. 2015;13(10):641–650.
  • Iversen H, L’Abée-Lund TM, Aspholm M, et al. Commensal E. coli Stx2 lysogens produce high levels of phages after spontaneous prophage induction. Front Cell Infect Microbiol. 2015;5:5–10.
  • Mitsunaka S, Sudo N, Sekine Y. Lysogenisation of Shiga toxin-encoding bacteriophage represses cell motility. J Gen Appl Microbiol. 2018;64(1):34–41.
  • Bonanno L, Loukiadis E, Mariani-Kurkdjian P, et al. Diversity of Shiga toxin-producing Escherichia coli (STEC) O26:H11 strains examined via stx subtypes and insertion sites of Stx and EspK bacteriophages. Appl Environ Microbiol. 2015;81(11):3712–3721.
  • Jores J, Rumer L, Wieler LH. Impact of the locus of enterocyte effacement pathogenicity island on the evolution of pathogenic Escherichia coli. Int J Med Microbiol. 2004;294(2–3):103–113.
  • Farfan MJ, Torres AG. Molecular mechanisms that mediate colonization of shiga toxin-producing Escherichia coli strains. Infect Immun. 2012;80(3):903–913.
  • Bielaszewska M, Sinha B, Kuczius T, et al. Cytolethal distending toxin from Shiga toxin-producing Escherichia coli O157 causes irreversible G2/M arrest, inhibition of proliferation, and death of human endothelial cells. Infect Immun. 2005;73(1):552–562.
  • Bielaszewska M, Aldick T, Bauwens A, et al. Hemolysin of enterohemorrhagic Escherichia coli: structure, transport, biological activity and putative role in virulence. Int J Med Microbiol. 2014;304(5–6):521–529.
  • European Centre for Disease Prevention and Control. Shigatoxin/verocytotoxin-producing Escherichia coli (STEC/VTEC) infection. Solna (Sweden): ECDC; 2020. (Annual Epidemiological Report for 2018).
  • Colello R, Etcheverría AI, Di Conza JA, et al. Antibiotic resistance and integrons in Shiga toxin-producing Escherichia coli (STEC). Braz J Microbiol. 2015;46(1):1–5.
  • Amézquita-López BA, Quiñones B, Soto-Beltrán M, et al. Antimicrobial resistance profiles of Shiga toxin-producing Escherichia coli O157 and Non-O157 recovered from domestic farm animals in rural communities in Northwestern Mexico. Antimicrob Resist Infect Control. 2016;5:1–6.
  • Van Boeckel TP, Brower C, Gilbert M, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA. 2015;112(18):5649–5654.
  • Gutiérrez D, Rodríguez-Rubio L, Martínez B, et al. Bacteriophages as weapons against bacterial biofilms in the food industry. Front Microbiol. 2016;7:815–825.
  • Melo LDR, Oliveira H, Santos SB, et al. Phages against infectious diseases. In: Paterson R, Lima N, editors. Bioprospecting. Braga (Portugal): Springer International Publishing; 2017. p. 269–294.
  • Fernández L, Rodríguez A, García P. Phage or foe: an insight into the impact of viral predation on microbial communities. ISME J. 2018;12(5):1171–1179.
  • Clokie MRJ, Millard AD, Letarov AV, et al. Phages in nature. Bacteriophage. 2011;1(1):31–45.
  • d’Herelle F. Sur un microbe invisible antagonistedes bacilles dysenteriques. Les Comptes Rendus Del’Académie Des Sci. 1917;165:373–375.
  • Grose JH, Casjens SR. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology. 2014;468–470:421–443.
  • Ackermann H. Phage classification and characterization. Methods Mol Bio. 2009;501:127–140.
  • Barylski J, Enault F, Dutilh BE, et al. Analysis of spounaviruses as a case study for the overdue reclassification of tailed phages. Syst Biol. 2020;69(1):110–123.
  • O’Sullivan L, Bolton D, McAuliffe O, et al. Bacteriophages in food applications: from foe to friend. Annu Rev Food Sci Technol. 2019;10:151–172.
  • Wernicki A, Nowaczek A, Urban-Chmiel R. Bacteriophage therapy to combat bacterial infections in poultry. Virol J. 2017;14:1–13.
  • Węgrzyn G, Kropinski AM, Łoś M, et al. Lysogenic conversion in bacteria of importance to the food industry. In: Sabour PM., Griffiths MW, editors. Bacteriophages control food-and waterborne pathog. Washington (DC): American Society of Microbiology; 2010. p. 157–198.
  • Erez Z, Steinberger-Levy I, Shamir M, et al. Communication between viruses guides lysis-lysogeny decisions. Nature. 2017;541(7638):488–493.
  • Knowles B, Silveira CB, Bailey BA, et al. Lytic to temperate switching of viral communities. Nature. 2016;531(7595):466–470.
  • Nanda AM, Thormann K, Frunzke J. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J Bacteriol. 2015;197(3):410–419.
  • Dydecka A, Bloch S, Rizvi A, et al. Bad phages in good bacteria: role of the mysterious orf63 of λ and Shiga toxin-converting Φ24B bacteriophages. Front Microbiol. 2017;8:1618.
  • Mauro SA, Koudelka GB. Shiga toxin: expression, distribution, and its role in the environment. Toxins. 2011;3(6):608–625.
  • Rehman S, Ali Z, Khan M, et al. The dawn of phage therapy. Rev Med Virol. 2019;29:1–16.
  • Połaska M, Sokołowska B. Bacteriophages-a new hope or a huge problem in the food industry. AIMS Microbiol. 2019;5(4):324–347.
  • Tomat D, Migliore L, Aquili V, et al. Phage biocontrol of enteropathogenic and shiga toxin-producing Escherichia coli in meat products. Front Cell Infect Microbiol. 2013;3:10–20.
  • Tomat D, Mercanti D, Balagué C, et al. Phage biocontrol of enteropathogenic and shiga toxin-producing Escherichia coli during milk fermentation. Lett Appl Microbiol. 2013;57(1):3–10.
  • Le TS, Southgate PC, O’Connor W, et al. Bacteriophages as biological control agents of enteric bacteria contaminating edible oysters. Curr Microbiol. 2018;75(5):611–619.
  • Ferguson S, Roberts C, Handy E, et al. Lytic bacteriophages reduce Escherichia coli O157:H7 on fresh cut lettuce introduced through cross-contamination. Bacteriophage. 2013;3(1):e24323.
  • Liu H, Niu YD, Meng R, et al. Control of Escherichia coli O157 on beef at 37, 22 and 4 °C by T5-, T1-, T4-and O1-like bacteriophages. Food Microbiol. 2015;51:69–73.
  • Carter CD, Parks A, Abuladze T, et al. Bacteriophage cocktail significantly reduces Escherichia coli O157. Bacteriophage. 2012;2(3):178–185.
  • Sulakvelidze A, Li M, Senecal A, et al. Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. AEM. 2008;74(20):6230–6238.
  • Boyacioglu O, Sharma M, Sulakvelidze A, et al. Biocontrol of Escherichia coli O157:H7 on fresh-cut leafy greens. Bacteriophage. 2013;3(1):e24620.
  • Dalmasso M, Strain R, Neve H, et al. Three new Escherichia coli phages from the human gut show promising potential for phage therapy. PLoS One. 2016;11(6):e0156773.
  • Cui H, Bai M, Yuan L, et al. Sequential effect of phages and cold nitrogen plasma against Escherichia coli O157:H7 biofilms on different vegetables. Int J Food Microbiol. 2018;268:1–9.
  • Sadekuzzaman M, Yang S, Mizan MFR, et al. Reduction of Escherichia coli O157:H7 in biofilms using bacteriophage BPECO 19. J Food Sci. 2017;82(6):1433–1442.
  • Patel J, Sharma M, Millner P, et al. Inactivation of Escherichia coli O157:H7 attached to spinach harvester blade using bacteriophage. Foodborne Pathog Dis. 2011;8(4):541–546.
  • Lee YD, Park JH. Characterization and application of phages isolated from sewage for reduction of Escherichia coli O157:H7 IN biofilm. LWT - Food Sci Technol. 2015;60(1):571–577.
  • Tomat D, Quiberoni A, Mercanti D, et al. Hard surfaces decontamination of enteropathogenic and Shiga toxin-producing Escherichia coli using bacteriophages. Food Res Int. 2014;57:123–129.
  • Snyder AB, Perry JJ, Yousef AE. Developing and optimizing bacteriophage treatment to control enterohemorrhagic Escherichia coli on fresh produce. Int J Food Microbiol. 2016;236:90–97.
  • Weis M. Impact of the gut microbiome in cardiovascular and autoimmune diseases. Clin Sci. 2018;132(22):2387–2389.
  • Hedin CR, van der Gast CJ, Stagg AJ, et al. The gut microbiota of siblings offers insights into microbial pathogenesis of inflammatory bowel disease. Gut Microbes. 2017;8(4):357–359.
  • Guinane CM, Cotter PD. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therap Adv Gastroenterol. 2013;6(4):295–308.
  • Sarker SA, Berger B, Deng Y, et al. Oral application of Escherichia coli bacteriophage: safety tests in healthy and diarrheal children from Bangladesh. Environ Microbiol. 2017;19(1):237–250.
  • Raya RR, Oot RA, Moore-Maley B, et al. Naturally resident and exogenously applied T4-like and T5-like bacteriophages can reduce Escherichia coli O157:H7 levels in sheep guts. Bacteriophage. 2011;1(1):15–24.
  • Cieplak T, Soffer N, Sulakvelidze A, et al. A bacteriophage cocktail targeting Escherichia coli reduces E. coli in simulated gut conditions, while preserving a non-targeted representative commensal normal microbiota. Gut Microbes. 2018;9(5):391–399.
  • De Sordi L, Khanna V, Debarbieux L. The gut microbiota facilitates drifts in the genetic diversity and infectivity of bacterial viruses. Cell Host Microbe. 2017;22(6):801.e3–808.e3.
  • Cookson AL, Woodward MJ. The role of intimin in the adherence of enterohaemorrhagic Escherichia coli (EHEC) O157:H7 to HEp-2 tissue culture cells and to bovine gut explant tissues. Int J Med Microbiol. 2003;292(7–8):547–553.
  • Górski A, Międzybrodzki R, Łobocka M, et al. Phage therapy: what have we learned? Viruses. 2018;10(6):228–288.
  • Brüssow H. Hurdles for phage therapy to become a reality—an editorial comment. Viruses. 2019;11(6):557.
  • Bureau of Chemical Safety of Canada, Food Directorate, Health Products and Food Branch. Antimicrobial food processing aid uses on red meat and poultry meat for which Health Canada has expressed no objection. 2019.
  • Office of Parliamentary Counsel. Food Standards Australia New Zealand Act 1991, Compilation nº 28 2018.
  • Andreoletti O, Baggesen DL, Bolton D, et al. Scientific opinion on the evaluation of the safety and efficacy of Listex TM P100 for the removal of listeria monocytogenes surface contamination of raw fish. EFSA J. 2012;10:2615.
  • Panel E, Hazards B. Evaluation of the safety and efficacy of ListexTM P100 for reduction of pathogens on different ready‐to‐eat (RTE) food products. EFSA J. 2016;14(8):e04565.
  • General Secretariat of the Council. Comments on the council’s rules of procedure European council’s and council’s rules of procedure. Luxembourg (Luxembourg): Publications Office of the European Union; 2016.
  • The Council of the European Union. Council Decision 1999/468/EC laying down the procedures for the exercise of implementing powers (28 June 1999) — Consolidated version 2006. Off J Eur Communities. 1999;2:1998–2001.
  • Andreoletti O, Budka H, Buncic S, et al. The use and mode of action of bacteriophages in food production. Eur Food Saf Auth. 2009;1076:1–26.
  • Andreoletti O, Baggesen DL, Bolton D, et al. Scientific opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update). EFSA J. 2013;11(11):3449.
  • Fauconnier A. Phage therapy regulation: from night to dawn. Viruses. 2019;11(4):352.
  • Sundh I, Bolton D, Vlak J, et al. Update of the list of QPS‐recommended biological agents intentionally added to food or feed as notified to EFSA 8: suitability of taxonomic units notified to EFSA until March 2018. EFSA J. 2018;16(7):e05315.
  • Lee H, Ku HJ, Lee DH, et al. Characterization and genomic study of the novel bacteriophage HY01 infecting both Escherichia coli O157:H7 and Shigella flexneri: potential as a biocontrol agent in food. PLoS One. 2016;11(12):e0168985.
  • Moye Z, Woolston J, Sulakvelidze A. Bacteriophage applications for food production and processing. Viruses. 2018;10(4):205.
  • Imamovic L, Ballesté E, Martínez-Castillo A, et al. Heterogeneity in phage induction enables the survival of the lysogenic population. Environ Microbiol. 2016;18(3):957–969.
  • Bonanno L, Delubac B, Michel V, et al. Influence of stress factors related to cheese-making process and to STEC detection procedure on the induction of Stx phages from STEC O26:H11. Front Microbiol. 2017;8:296–297.
  • Fang Y, Mercer RG, McMullen LM, et al. Induction of Shiga toxinencoding prophage by abiotic environmental stress in food. Appl Environ Microbiol. 2017;83:1–13.
  • Matsushiro A, Sato K, Miyamoto H, et al. Induction of prophages of enterohemorrhagic Escherichia coli O157:H7 with norfloxacin. J Bacteriol. 1999;181(7):2257–2260.
  • Liao Y, Quintela IA, Nguyen K, et al. Investigation of prevalence of free Shiga toxin- producing Escherichia coli (STEC) -specific bacteriophages and its correlation with STEC bacterial hosts in a produce-growing area in Saline, California.. Plos One. 2018;13:1–12.
  • García-Aljaro C, Muniesa M, Blanco JE, et al. Characterization of Shiga toxin-producing Escherichia coli isolated from aquatic environments. FEMS Microbiol Lett. 2005;246(1):55–65.
  • DebRoy C, Fratamico PM, Yan X, et al. Comparison of O-antigen gene clusters of all O-serogroups of Escherichia coli and proposal for adopting a new nomenclature for O-typing. PLoS One. 2016;11:1–13.
  • Looft T, Allen HK, Cantarel BL, et al. Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations. ISME J. 2014;8(8):1566–1576.
  • Jovel J, Patterson J, Wang W, et al. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol. 2016;7:1–17.
  • Chu DM, Antony KM, Ma J, et al. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 2016;8(1):77.
  • Seekatz AM, Aas J, Gessert CE, et al. Recovery of the gut microbiome following fecal microbiota transplantation. MBio. 2014;5(3):e00893.
  • Gasparrini AJ, Crofts TS, Gibson MK, et al. Antibiotic perturbation of the preterm infant gut microbiome and resistome. Gut Microbes. 2016;7(5):443–449.
  • Doss J, Culbertson K, Hahn D, et al. A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses. 2017;9(3):50.
  • Endersen L, O’Mahony J, Hill C, et al. Phage therapy in the food industry. Annu Rev Food Sci Technol. 2014;5:327–349.
  • Sabouri S, Sepehrizadeh Z, Amirpour-Rostami S, et al. A minireview on the in vitro and in vivo experiments with anti-Escherichia coli O157:H7 phages as potential biocontrol and phage therapy agents. Int J Food Microbiol. 2017;243:52–57.
  • Bruttin A, Brüssow H. Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother. 2005;49(7):2874–2878.
  • Dudek-Wicher RK, Junka A, Bartoszewicz M. The influence of antibiotics and dietary components on gut microbiota. Prz Gastroenterol. 2018;13(2):85–92.
  • Sarker SA, Sultana S, Reuteler G, et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine. 2016;4:124–137.
  • Gindin M, Febvre HP, Rao S, et al. Bacteriophage for Gastrointestinal Health (PHAGE) Study: evaluating the safety and tolerability of supplemental bacteriophage consumption. J Am Coll Nutr. 2018:38(1):68–75.
  • Maura D, Debarbieux L. On the interactions between virulent bacteriophages and bacteria in the gut. Bacteriophage. 2012;2(4):e23557.
  • Maura D, Morello E, Du Merle L, et al. Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice. Environ Microbiol. 2012;14(8):1844–1854.
  • Sarhan W. a, Azzazy HME. Phage approved in food, why not as a therapeutic? Expert Rev anti Infect Ther. 2015;13(1):91–101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.