923
Views
29
CrossRef citations to date
0
Altmetric
Research Articles

Solid-phase denitrification for water remediation: processes, limitations, and new aspects

, , , , , ORCID Icon & show all
Pages 1113-1130 | Received 12 Oct 2019, Accepted 19 Jul 2020, Published online: 13 Aug 2020

References

  • Schipper LA, Gold AJ, Davidson EA. Managing denitrification in human-dominated landscapes. Ecol Eng. 2010;36(11):1503–1506.
  • Adav SS, Lee DJ, Lai JY. Enhanced biological denitrification of high concentration of nitrite with supplementary carbon source. Appl Microbiol Biotechnol. 2010;85(3):773–778.
  • Rocca CD, Belgiorno V, Meriç S. Heterotrophic/autotrophic denitrification (HAD) of drinking water: prospective use for permeable reactive barrier. Desalination. 2007;210(1–3):194–204.
  • Rocca CD, Belgiorno V, Meriç S. Overview of in-situ applicable nitrate removal processes. Desalination. 2007;204(1–3):46–62.
  • Park S, Kim HK, Kim M, et al. Monitoring nitrate natural attenuation and analysis of indigenous micro-organism community in groundwater. Desalin Water Treat. 2016;57(1):1–13.
  • Puig R, Soler A, Widory D, et al. Characterizing sources and natural attenuation of nitrate contamination in the Baix Ter aquifer system (NE Spain) using a multi-isotope approach. Sci Total Environ. 2017;580:518–532.
  • Sahinkaya E, Kilic A. Heterotrophic and elemental-sulfur-based autotrophic denitrification processes for simultaneous nitrate and Cr(VI) reduction. Water Res. 2014;50(1):278–286.
  • Rabah FK, Dahab MF. Nitrate removal characteristics of high performance fluidized-bed biofilm reactors. Water Res. 2004;38(17):3719–3728.
  • Louzeiro NR, Mavinic DS, Oldham WK, et al. Methanol-induced biological nutrient removal kinetics in a full-scale sequencing batch reactor. Water Res. 2002;36(11):2721–2732.
  • Mohseni-Bandpi A, Elliott DJ, Momeny-Mazdeh A. Denitrification of groundwater using acetic acid as a carbon source. Water Sci Technol. 1999;40(2):53–59.
  • Wang H, Fang MA, Junfeng SU. Influence of carbon source and C/N ratio on nitrogen removal of aerobic denitrifier. Acta Sci Circumst. 2007;27:968–972 (in Chinese).
  • Moussavi G, Jafari SJ, Yaghmaeian K. Enhanced biological denitrification in the cyclic rotating bed reactor with catechol as carbon source. Bioresour Technol. 2015;189:266–272.
  • Pan Y, Ye L, Ni B-J, et al. Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers. Water Res. 2012;46(15):4832–4840.
  • Xu Z, Dai X, Chai X. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes. Sci Total Environ. 2018;634:195–204.
  • Lynn TJ, Yeh DH, Ergas SJ. Performance of denitrifying stormwater biofilters under intermittent conditions. Environ Eng Sci. 2015;32(9):796–805.
  • Boley A, Müller W-R, Haider G. Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems. Aquacult Eng. 2000;22(1–2):75–85.
  • Wu W, Yang L, Wang J. Denitrification performance and microbial diversity in a packed-bed bioreactor using PCL as carbon source and biofilm carrier. Appl Microbiol Biotechnol. 2013;97(6):2725–2733.
  • Zhang J, Feng C, Hong S, et al. Behavior of solid carbon sources for biological denitrification in groundwater remediation. Water Sci Technol. 2012;65(9):1696–1704.
  • Lu H, Chandran K, Stensel D. Microbial ecology of denitrification in biological wastewater treatment. Water Res. 2014;64:237–254.
  • Itokawa H, Hanaki K, Matsuo T. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition. Water Res. 2001;35(3):657–664.
  • Gu AZ, Onnis-Hayden A. Protocol to evaluate alternative external carbon sources for denitrification at full-scale wastewater treatment plants. Alexandria (VA): Water Environment Research Foundation; 2010.
  • Huno SK, Rene ER, van Hullebusch ED, et al. Nitrate removal from groundwater: a review of natural and engineered processes. J Water Supply Res Technol. 2018;67(8):885–902.
  • Rivett MO, Buss SR, Morgan P, et al. Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res. 2008;42(16):4215–4232.
  • Wang J, Chu L. Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnol Adv. 2016;34(6):1103–1112.
  • Dan C, Kai Y, Li W, et al. Microbial community and metabolism activity in a bioelectrochemical denitrification system under long-term presence of p-nitrophenol. Bioresour Technol. 2016;218:189.
  • Chon K, Chang JS, Lee E, et al. Abundance of denitrifying genes coding for nitrate, nitrite, and nitrous oxide reductases in estuarine versus wastewater effluent-fed constructed wetlands. Ecol Eng. 2011;37(1):64–69.
  • Braker G, Fesefeldt A, Witzel KP. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol. 1998;64(10):3769–3775.
  • Yan T, Fields MW, Wu L, et al. Molecular diversity and characterization of nitrite reductase gene fragments (nirK and nirS) from nitrate- and uranium-contaminated groundwater. Environ Microbiol. 2003;5(1):13–24.
  • Throbäck IN, Enwall K, Jarvis Å, et al. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol. 2004;49(3):401–417.
  • Kool DM, Dolfing J, Wrage N, et al. Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biol Biochem. 2011;43(1):174–178.
  • Liu S, Han P, Hink L, et al. Abiotic conversion of extracellular NH2OH contributes to N2O emission during ammonia oxidation. Environ Sci Technol. 2017;51(22):13122–13132.
  • Korom SF. Natural denitrification in the saturated zone: a review. Water Resour Res. 1992;28(6):1657–1668.
  • Marchant HK, Lavik G, Holtappels M, et al. The fate of nitrate in intertidal permeable sediments. PLoS One. 2014;9(8):e104517.
  • Beate K, Marc S, Tegetmeyer HE. Microbial nitrate respiration-genes, enzymes and environmental distribution. J Biotechnol. 2011;155(1):104–117.
  • Stolz JF, Basu P. Evolution of nitrate reductase: molecular and structural variations on a common function. Biochem. 2002;3(2–3):198–206.
  • He Q, Feng C, Peng T, et al. Denitrification of synthetic nitrate-contaminated groundwater combined with rice washing drainage treatment. Ecol Eng. 2016;95:152–159.
  • Mohan SB, Schmid M, Jetten M, et al. Detection and widespread distribution of the nrfA gene encoding nitrite reduction to ammonia, a short circuit in the biological nitrogen cycle that competes with denitrification. FEMS Microbiol Ecol. 2004;49(3):433–443.
  • Kuenen JG, Gijs K. Anammox bacteria: from discovery to application. Nat Rev Microbiol. 2008;6(4):320–326.
  • Warneke S, Schipper LA, Bruesewitz DA, et al. Rates, controls and potential adverse effects of nitrate removal in a denitrification bed. Ecol Eng. 2011;37(3):511–522.
  • Ovez B, Ozgen S, Yuksel SO. Biological denitrification in drinking water using Glycyrrhiza glabra and Arunda donax as the carbon source. Process Biochem. 2006;41(7):1539–1544.
  • Xu ZX, Shao L, Yin HL, et al. Biological denitrification using corncobs as a carbon source and biofilm carrier. Water Environ Res. 2009;81(3):242–247.
  • Greenan CM, Moorman TB, Kaspar TC, et al. Comparing carbon substrates for denitrification of subsurface drainage water. J Environ Qual. 2006;35(3):824–829.
  • Aloni A, Brenner A. Use of cotton as a carbon source for denitrification in biofilters for groundwater remediation. Water. 2017;9(9):714.
  • Della Rocca C, Belgiorno V, Meriç S. An heterotrophic/autotrophic denitrification (HAD) approach for nitrate removal from drinking water. Process Biochem. 2006;41(5):1022–1028.
  • Soares MIM, Abeliovich A. Wheat straw as substrate for water denitrification. Water Res. 1998;32(12):3790–3794.
  • Aslan Ş, Türkman A. Combined biological removal of nitrate and pesticides using wheat straw as substrates. Process Biochem. 2005;40(2):935–943.
  • Robertson W, Blowes D, Ptacek C, et al. Long-term performance of in situ reactive barriers for nitrate remediation. Groundwater. 2000;38(5):689–695.
  • Capodici M, Morici C, Viviani G. Batch test evaluation of four organic substrates suitable for biological groundwater denitrification. Chem Eng Transact. 2014;38:43–48.
  • Capodici M, Avona A, Laudicina VA, et al. Biological groundwater denitrification systems: lab-scale trials aimed at nitrous oxide production and emission assessment. Sci Total Environ. 2018;630:462–468.
  • Gibert O, Pomierny S, Rowe I, et al. Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB). Bioresour Technol. 2008;99(16):7587–7596.
  • Peterson IJ, Igielski S, Davis AP. Enhanced denitrification in bioretention using woodchips as an organic carbon source. J Sustainable Water Built Environ. 2015;1(4):04015004.
  • Robertson W, Merkley L. In-stream bioreactor for agricultural nitrate treatment. J Environ Qual. 2009;38(1):230–237.
  • Schipper LA, Barkle GF, Vojvodic-Vukovic M. Maximum rates of nitrate removal in a denitrification wall. J Environ Qual. 2005;34(4):1270–1276.
  • Van Driel P, Robertson W, Merkley L. Denitrification of agricultural drainage using wood-based reactors. TASABE. 2006;49(2):565–573.
  • Ergas SJ, Sengupta S, Siegel R, et al. Performance of nitrogen-removing bioretention systems for control of agricultural runoff. J Environ Eng. 2010;136(10):1105–1112.
  • Fowdar HS, Hatt BE, Breen P, et al. Evaluation of sustainable electron donors for nitrate removal in different water media. Water Res. 2015;85:487–496.
  • Robinson-Lora MA, Brennan RA. The use of crab-shell chitin for biological denitrification: batch and column tests. Bioresour Technol. 2009;100(2):534–541.
  • Quan ZX, Jin YS, Yin CR, et al. Hydrolyzed molasses as an external carbon source in biological nitrogen removal. Bioresour Technol. 2005;96(15):1690–1695.
  • Carrey R, Rodríguez-Escales P, Soler A, et al. Tracing the role of endogenous carbon in denitrification using wine industry by-product as an external electron donor: coupling isotopic tools with mathematical modeling. J Environ Manage. 2018;207:105–115.
  • Sun H, Wu Q, Yu P, et al. Denitrification using excess activated sludge as carbon source: performance and the microbial community dynamics. Bioresour Technol. 2017;238:624–632.
  • Hunter WJ. Use of vegetable oil in a pilot-scale denitrifying barrier. J Contam Hydrol. 2001;53(1–2):119–131.
  • Shen ZQ, Hu J, Wang JL, et al. Comparison of polycaprolactone and starch/polycaprolactone blends as carbon source for biological denitrification. Int J Environ Sci Technol. 2015;12(4):1235–1242.
  • Shen Z, Zhou Y, Hu J, et al. Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support. J Hazard Mater. 2013;250–251(8):431–438.
  • Shen Z, Zhou Y, Wang J. Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal. Bioresour Technol. 2013;131(3):33–39.
  • Mergaert J, Boley A, Cnockaert MC, et al. Identity and potential functions of heterotrophic bacterial isolates from a continuous-upflow fixed-bed reactor for denitrification of drinking water with bacterial polyester as source of carbon and electron donor. Syst Appl Microbiol. 2001;24(2):303–310.
  • Shen Z, Yin Y, Wang J. Biological denitrification using poly(butanediol succinate) as electron donor. Appl Microbiol Biotechnol. 2016;100(13):6047–6053.
  • Wang XM, Wang JL. Denitrification of nitrate-contaminated groundwater using biodegradable snack ware as carbon source under low-temperature condition. Int J Environ Sci Technol. 2012;9(1):113–118.
  • Ruan YJ, Deng YL, Guo XS, et al. Simultaneous ammonia and nitrate removal in an airlift reactor using poly(butylene succinate) as carbon source and biofilm carrier. Bioresour Technol. 2016;216:1004–1013.
  • Sun S, Sun S, Cao X, et al. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol. 2016;199:49–58.
  • Pettersen RC. The chemical composition of wood. In: Rowell R, editor. The chemistry of solid wood. Washington (DC): ACS Publications; 1984. p. 57–126.
  • Ahmad F, Mcguire TM, Lee RS, et al. Considerations for the design of organic mulch permeable reactive barriers. Remediation. 2007;18(1):59–72.
  • Forrest AK, Hernandez J, Holtzapple MT. Effects of temperature and pretreatment conditions on mixed-acid fermentation of water hyacinths using a mixed culture of thermophilic microorganisms. Bioresour Technol. 2010;101(19):7510–7515.
  • Liu CZ, Cheng XY. Improved hydrogen production via thermophilic fermentation of corn stover by microwave-assisted acid pretreatment. Int J Hydrogen Energ. 2010;35(17):8945–8952.
  • Zhu S, Wu Y, Yu Z, et al. Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochem. 2005;40(9):3082–3086.
  • Beauchamp EG, Trevors JT, Paul JW. Carbon sources for bacterial denitrification. Adv Soil Sci. 1989;10:113–142.
  • Xu X, Xu N, Cheng X, et al. Transport and aggregation of rutile titanium dioxide nanoparticles in saturated porous media in the presence of ammonium. Chemosphere. 2017;169:9–17.
  • Feng L, Yang G, Yang Q, et al. Enhanced simultaneous nitrification and denitrification via addition of biodegradable carrier Phragmites communis in biofilm pretreatment reactor treating polluted source water. Ecol Eng. 2015;84:346–353.
  • Gao L, Zhang L, Hou J, et al. Decomposition of macroalgal blooms influences phosphorus release from the sediments and implications for coastal restoration in Swan Lake, Shandong, China. Ecol Eng. 2013;60(6):19–28.
  • Monlau F, Sambusiti C, Barakat A, et al. Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Environ Sci Technol. 2012;46(21):12217–12225.
  • Moorman TB, Parkin TB, Kaspar TC, et al. Denitrification activity, wood loss, and N2O emissions over 9 years from a wood chip bioreactor. Ecol Eng. 2010;36(11):1567–1574.
  • Schipper LA, Vojvodić-Vuković M. Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust. Ecol Eng. 2000;14(3):269–278.
  • Ge S, Peng Y, Wang S, et al. Nitrite accumulation under constant temperature in anoxic denitrification process: the effects of carbon sources and COD/NO(3)-N . Bioresour Technol. 2012;114(3):137–143.
  • Almeida JS, Reis MAM, Carrondo MJT. Competition between nitrate and nitrite reduction in denitrification by Pseudomonas fluorescens. Biotechnol Bioeng. 1995;46(5):476–484.
  • Groh TA, Gentry LE, David MB. Nitrogen removal and greenhouse gas emissions from constructed wetlands receiving tile drainage water. J Environ Qual. 2015;44(3):1001–1010.
  • Hoover NL, Bhandari A, Soupir ML, et al. Woodchip denitrification bioreactors: impact of temperature and hydraulic retention time on nitrate removal. J Environ Qual. 2016;45(3):803–812.
  • Blackmer AM, Bremner JM. Stimulatory effect of nitrate on reduction of N2O to N2 by soil microorganisms. Soil Biol Biochem. 1979;11(3):313–315.
  • Lynn TJ, Yeh DH, Ergas SJ. Performance and longevity of denitrifying wood-chip biofilters for stormwater treatment: a microcosm study. Environ Eng Sci. 2015;32(4):321–330.
  • Healy MG, Ibrahim TG, Lanigan GJ, et al. Nitrate removal rate, efficiency and pollution swapping potential of different organic carbon media in laboratory denitrification bioreactors. Ecol Eng. 2012;40:198–209.
  • Li R, Feng C, Hu W, et al. Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation. Water Res. 2016;89:171–179.
  • Elgood Z, Robertson W, Schiff S, et al. Nitrate removal and greenhouse gas production in a stream-bed denitrifying bioreactor. Ecol Eng. 2010;36(11):1575–1580.
  • Robertson WD, Ptacek CJ, Brown SJ. Rates of nitrate and perchlorate removal in a 5-year-old wood particle reactor treating agricultural drainage. Ground Water Monit Remed. 2009;29(2):87–94.
  • Healy MG, Rodgers M, Mulqueen J. Denitrification of a nitrate-rich synthetic wastewater using various wood-based media materials. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2006;41(5):779–788.
  • Luo G, Li L, Qian L, et al. Effect of dissolved oxygen on heterotrophic denitrification using polybutylene succinate as the carbon source and biofilm carrier. Bioresour Technol. 2014;171(10):152–158.
  • Saliling WJB, Westerman PW, Losordo TM. Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture and other wastewaters with high nitrate concentrations. Aquacult Eng. 2007;37(3):222–233.
  • Jafari SJ, Moussavi G, Yaghmaeian K. High-rate biological denitrification in the cyclic rotating-bed biological reactor: effect of COD/NO3−, nitrate concentration and salinity and the phylogenetic analysis of denitrifiers. Bioresour Technol. 2015;197:482–488.
  • Idi A, Ibrahim Z, Mohamad SE, et al. Biokinetics of nitrogen removal at high concentrations by Rhodobacter sphaeroides ADZ101. Int Biodeter Biodegr. 2015;105:245–251.
  • Volokita M, Belkin S, Abeliovich A, et al. Biological denitrification of drinking water using newspaper. Water Res. 1996;30(4):965–971.
  • Baeseman JL, Smith RL, Silverstein J. Denitrification potential in stream sediments impacted by acid mine drainage: effects of pH, various electron donors, and iron. Microb Ecol. 2006;51(2):232–241.
  • Feng L, Chen K, Han D, et al. Comparison of nitrogen removal and microbial properties in solid-phase denitrification systems for water purification with various pretreated lignocellulosic carriers. Bioresour Technol. 2017;224:236–245.
  • Maxwell BM, Birgand F, Schipper LA, et al. Drying-rewetting cycles affect nitrate removal rates in woodchip bioreactors. J Environ Qual. 2019;48(1):93–101.
  • Lynn TJ, Ergas SJ, Nachabe MH. Effect of hydrodynamic dispersion in denitrifying wood-chip stormwater biofilters. J Sustainable Water Built Environ. 2016;2(4):04016004.
  • Zhao W, Wang Y, Liu S, et al. Denitrification activities and N2O production under salt stress with varying COD/N ratios and terminal electron acceptors. Chem Eng J. 2013;215–216:252–260.
  • Gutierrez-Wing MT, Malone RF, Rusch KA. Evaluation of polyhydroxybutyrate as a carbon source for recirculating aquaculture water denitrification. Aquacult Eng. 2012;51(3):36–43.
  • Wang XM, Wang JL. Nitrate removal from groundwater using solid-phase denitrification process without inoculating with external microorganisms. Int J Environ Sci Technol. 2013;10(5):955–960.
  • Pina-Ochoa E, Álvarez-Cobelas M. Denitrification in aquatic environments: a cross-system analysis. Biogeochemistry. 2006;81(1):111–130.
  • Inwood SE, Tank JL, Bernot MJ. Factors controlling sediment denitrification in midwestern streams of varying land use. Microb Ecol. 2007;53(2):247–258.
  • Taylor PG, Townsend AR. Stoichiometric control of organic carbon-nitrate relationships from soils to the sea. Nature. 2010;464(7292):1178–1181.
  • Tan XZ, Shao DG, Gu WQ. Effects of temperature and soil moisture on gross nitrification and denitrification rates of a Chinese lowland paddy field soil. Paddy Water Environ. 2018;16(4):687–698.
  • Saad OALO, Conrad R. Temperature dependence of nitrification, denitrification, and turnover of nitric oxide in different soils. Biol Fertil Soils. 1993;15(1):21–27.
  • Tang Y, Zhou C, Ziv-El M, et al. A pH-control model for heterotrophic and hydrogen-based autotrophic denitrification. Water Res. 2011;45(1):232–240.
  • Mulligan CN, Yong RN. Natural attenuation of contaminated soils. Environ Int. 2004;30(4):587–601.
  • Nägele W, Conrad R. Influence of pH on the release of NO and N2O from fertilized and unfertilized soil. Biol Fert Soils. 1990;10(2):139–144.
  • Clar ML, Barfield BJ, O’Connor TP. Stormwater best management practice design guide. Vegetative biofilters. Washington (DC): U.S. Environmental Protection Agency; 2004.
  • Huang G, Fallowfield H, Guan H, et al. Remediation of nitrate-nitrogen contaminated groundwater by a heterotrophic-autotrophic denitrification approach in an aerobic environment. Water Air Soil Pollut. 2012;223(7):4029–4038.
  • Chen C, Ho KL, Liu FC, et al. Autotrophic and heterotrophic denitrification by a newly isolated strain Pseudomonas sp. C27. Bioresour Technol. 2013;145(10):351–356.
  • Tong S, Zhang B, Feng C, et al. Characteristics of heterotrophic/biofilm-electrode autotrophic denitrification for nitrate removal from groundwater. Bioresour Technol. 2013;148(11):121–127.
  • Mousavi S, Ibrahim S, Aroua MK, et al. Development of nitrate elimination by autohydrogenotrophic bacteria in bio-electrochemical reactors – a review. Biochem Eng J. 2012;67(34):251–264.
  • Park JH, Kim SH, Delaune RD, et al. Enhancement of nitrate removal in constructed wetlands utilizing a combined autotrophic and heterotrophic denitrification technology for treating hydroponic wastewater containing high nitrate and low organic carbon concentrations. Agr Water Manage. 2015;162:1–14.
  • Zhao Y, Zhang B, Feng C, et al. Behavior of autotrophic denitrification and heterotrophic denitrification in an intensified biofilm-electrode reactor for nitrate-contaminated drinking water treatment. Bioresour Technol. 2012;107(4):159–165.
  • Zhao Y, Feng C, Wang Q, et al. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor. J Hazard Mater. 2011;192(3):1033–1039.
  • Liu SJ, Zhao ZY, Li J, et al. An anaerobic two-layer permeable reactive biobarrier for the remediation of nitrate-contaminated groundwater. Water Res. 2013;47(16):5977–5985.
  • Rajab Beiki M, Yazdian F, Rasekh B, et al. Effect of metal nanoparticles on biological denitrification process: a review. J Appl Biotechnol Res. 2016;3(1):353–358.
  • Taguchi Y, Yokoyama H, Kado H, et al. Preparation of PCM microcapsules by using oil absorbable polymer particles. Colloid Surface A. 2007;301(1–3):41–47.
  • Khan A, Ray B, Dolui S. Preparation of core-shell emulsion polymer and optimization of shell composition with respect to opacity of paint film. Prog Org Coat. 2008;62(1):65–70.
  • An Y, Li T, Jin Z, et al. Effect of bimetallic and polymer-coated Fe nanoparticles on biological denitrification. Bioresour Technol. 2010;101(24):9825–9828.
  • Oh S, Yoo Y, Young J, et al. Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions. J Biotechnol. 2001;92(1):1–8.
  • Sahinkaya E, Dursun N. Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: elimination of excess sulfate production and alkalinity requirement. Chemosphere. 2012;89(2):144–149.
  • Sengupta S, Ergas SJ, Lopez-Luna E. Investigation of solid-phase buffers for sulfur-oxidizing autotrophic denitrification. Proc Water Environ Fed. 2007;2007(2):1139–1159.
  • Sierra-Alvarez R, Guerrero F, Rowlette P, et al. Comparison of chemo-, hetero- and mixotrophic denitrification in laboratory-scale UASBs. Water Sci Technol. 2005;52(1–2):337–342.
  • Huang G, Huang Y, Hu H, et al. Remediation of nitrate-nitrogen contaminated groundwater using a pilot-scale two-layer heterotrophic-autotrophic denitrification permeable reactive barrier with spongy iron/pine bark. Chemosphere. 2015;130:8–16.
  • Liu H, Jiang W, Wan D, et al. Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water. J Hazard Mater. 2009;169(1–3):23–28.
  • Howard MB, Ekborg NA, Weiner RM, et al. Detection and characterization of chitinases and other chitin-modifying enzymes. J Ind Microbiol Biotechnol. 2003;30(11):627–635.
  • Krayzelova L, Lynn TJ, Banihani Q, et al. A tire-sulfur hybrid adsorption denitrification (T-SHAD) process for decentralized wastewater treatment. Water Res. 2014;61:191–199.
  • Lisi R, Park J, Stier J. Mitigating nutrient leaching with a sub-surface drainage layer of granulated tires. Waste Manag. 2004;24(8):831–839.
  • Brettar I, Sanchez-Perez JM, Trémolières M. Nitrate elimination by denitrification in hardwood forest soils of the Upper Rhine floodplain – correlation with redox potential and organic matter. Hydrobiologia. 2002;469(1–3):11–21.
  • Wang XM, Wang JL. Removal of nitrate from groundwater by heterotrophic denitrification using the solid carbon source. Sci China Ser B-Chem. 2009;52(2):236–240.
  • Hiraishi A, Khan ST. Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment. Appl Microbiol Biotechnol. 2003;61(2):103–109.
  • Shen Z, Zhou Y, Jia L, et al. Enhanced removal of nitrate using starch/PCL blends as solid carbon source in a constructed wetland. Bioresour Technol. 2015;175:239–244.
  • Sahinkaya E, Yurtsever A, Ucar D. A novel elemental sulfur-based mixotrophic denitrifying membrane bioreactor for simultaneous Cr(VI) and nitrate reduction. J Hazard Mater. 2017;324(A):15–21.
  • Sosa-Hernández D, Vigueras-Cortés J, Garzón-Zúñiga M. Mesquite wood chips (Prosopis) as filter media in a biofilter system for municipal wastewater treatment. Water Sci Technol. 2016;73(6):1454–1462.
  • Liang L, Ju L, Hu J, et al. Transport of sodium dodecylbenzene sulfonate (SDBS)-dispersed carbon nanotubes and enhanced mobility of tetrabromobisphenol A (TBBPA) in saturated porous media. Colloid Surface A. 2016;497:205–213.
  • Wang A, Xuming W, Xing H, et al. Simultaneous removal of nitrate and pentachlorophenol from simulated groundwater using a biodenitrification reactor packed with corncob. Environ Sci Pollut Res Int. 2013;20(4):2236–2243.
  • Aslan S, Türkman A. Simultaneous biological removal of endosulfan (α + β) and nitrates from drinking waters using wheat straw as substrate. Environ Int. 2004;30(4):449–455.
  • Cao W. Nitrogenous compounds removal from recalcitrant wastewaters using biofilms on filamentous bamboo. Desalin Water Treat. 2016;57(30):13995–14003.
  • Chu LB, Wang JL. Comparison of polyurethane foam and biodegradable polymer as carriers in moving bed biofilm reactor for treating wastewater with a low C/N ratio. Chemosphere. 2011;83(1):63–68.
  • Chu L, Wang J. Nitrogen removal using biodegradable polymers as carbon source and biofilm carriers in a moving bed biofilm reactor. Chem Eng J. 2011;170(1):220–225.
  • Tengerdy RP, Johnson JE, Holló J, et al. Denitrification and removal of heavy metals from waste water by immobilized microorganisms. Appl Biochem Biotechnol. 1981;6(1):3–13.
  • Boley A, Mergaert J, Muller C, et al. Denitrification and pesticide elimination in drinking water treatment with the biodegradable polymer poly(ϵ-caprolactone) (PCL). Acta Hydrochim Hydrobiol. 2003;31(3):195–203.
  • Li J, Jin R, Liu G, et al. Simultaneous removal of chromate and nitrate in a packed-bed bioreactor using biodegradable meal box as carbon source and biofilm carriers. Bioresour Technol. 2016;207:308–314.
  • Long M, Zhou C, Xia S, et al. Concomitant Cr(VI) reduction and Cr(III) precipitation with nitrate in a methane/oxygen-based membrane biofilm reactor. Chem Eng J. 2017;315:58–66.
  • Zhai S, Zhao Y, Ji M, et al. Simultaneous removal of nitrate and chromate in groundwater by a spiral fiber based biofilm reactor. Bioresour Technol. 2017;232:278–284.
  • Yoshida N, Yoshida Y, Handa Y, et al. Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil. Sci Total Environ. 2007;381(1–3):233–242.
  • Chen C, Ouyang W, Huang S, et al. Microbial community composition in a simultaneous nitrification and denitrification bioreactor for domestic wastewater treatment. IOP Conf Ser: Earth Environ Sci. 2018;112(1):012007.
  • Xu N, Cheng X, Zhou K, et al. Facilitated transport of titanium dioxide nanoparticles via hydrochars in the presence of ammonium in saturated sands: effects of pH, ionic strength, and ionic composition. Sci Total Environ. 2018;612:1348–1357.
  • Shuai Y, Yang F, Fu Z, et al. Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal. Bioresour Technol. 2009;100(8):2369–2374.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.