1,616
Views
62
CrossRef citations to date
0
Altmetric
Research Articles

Plants endophytes: unveiling hidden agenda for bioprospecting toward sustainable agriculture

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1210-1231 | Received 15 Apr 2020, Accepted 30 Jul 2020, Published online: 30 Aug 2020

References

  • Dubey A, Kumar A, Abd_Allah EF, et al. Growing more with less: breeding and developing drought resilient soybean to improve food security. Ecol Indic. 2019;105:425–437.
  • Kumar A, Dubey A. Rhizosphere microbiome: engineering bacterial competitiveness for enhancing crop production. J Adv Res. 2020;24:337–352.
  • Sprent JI. 60Ma of legume nodulation. What's new? What's changing? J Exp Bot. 2008;59(5):1081–1084.
  • Ali S, Duan J, Charles TC, et al. A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp. J Theor Biol. 2014;343:193–198.
  • Dubey A, Malla MA, Khan F, et al. Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv. 2019;28(8–9):2405–2429.
  • Lugtenberg BJJ, Caradus JR, Johnson LJ. Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol. 2016;92(12):fiw194.
  • Lata R, Chowdhury S, Gond SK, et al. Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol. 2018;66(4):268–276.
  • Khare E, Mishra J, Arora NK. Multifaceted interactions between endophytes and plant: developments and prospects. Front Microbiol. 2018;9:2732.
  • Malla MA, Dubey A, Yadav S, et al. Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Front Microbiol. 2018;9:1132.
  • Malla MA, Dubey A, Kumar A, et al. Exploring the human microbiome: the potential future role of next-generation sequencing in disease diagnosis and treatment. Front Immunol. 2018;9:2868.
  • Arnao MB, Hernández-Ruiz J. Melatonin and its relationship to plant hormones. Ann Bot. 2018;121(2):195–207.
  • Wani SH, Kumar V, Shriram V, et al. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016;4(3):162–176.
  • Hashem A, Abd_Allah EF, Alqarawi AA, et al. Plant defense approach of Bacillus subtilis (BERA 71) against Macrophomina phaseolina (Tassi) Goid in mung bean. J Plant Interact 2017;12:390–401.
  • Kumar A, Vyas P, Kumar D, et al. Screening and characterization of Achromobacter xylosoxidans isolated from rhizosphere of Jatropha curcas L. (energy crop) for plant-growth-promoting traits. J Adv Res Biotechnol. 2018;3(1):1–8.
  • Kumar A, Sharma S, Mishra S, et al. Arbuscular mycorrhizal inoculation improves growth and antioxidative response of Jatropha curcas (L.) under Na2SO4 salt stress. Plant Biosyst. 2015;149(2):260–269.
  • Patil A, Dubey A, Malla MA, et al. Complete genome sequence of Lactobacillus plantarum strain JDARSH, isolated from sheep milk. Microbiol Resour Announc. 2020;9:e01199-19.
  • Hameed A, Dilfuza E, Abd_Allah EF, et al. Salinity stress and arbuscular mycorrhizal symbiosis in plants. In: Miransari M. editor. Use of microbes for the alleviation of soil stresses, Vol. 1. New York (NY): Spinger;2014. p. 139–159.
  • Edwards J, Johnson C, Santos-Medellín C, et al. Structure, variation, and assembly of the root-associated microbiomes of structure, variation, and assembly rice. Proc Natl Acad Sci USA. 2015;112:E911–E920.
  • Akinsanya MA, Goh JK, Lim SP, et al. Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology. Genom Data. 2015;6:159–163.
  • Munir S, Li Y, He P, et al. Core endophyte communities of different citrus varieties from citrus growing regions in China. Sci Rep. 2020;10(1):3648.
  • Kuźniar A, Włodarczyk K, Grządziel J, et al. Culture-independent analysis of an endophytic core microbiome in two species of wheat: Triticum aestivum L. (cv. 'Hondia') and the first report of microbiota in Triticum spelta L. (cv. 'Rokosz'). Syst Appl Microbiol. 2020;43(1):126025.
  • Bulgarelli D, Rott M, Schlaeppi K, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012;488(7409):91–95.
  • Barnett MJ, Toman CJ, Fisher RF, et al. A dual-genome symbiosis chip for coordinate study of signal exchange and development in a prokaryote–host interaction. Proc Natl Acad Sci USA. 2004;101(47):16636–16641.
  • Güldener U, Seong KY, Boddu J, et al. Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta. Fungal Genet Biol. 2006;43(5):316–325.
  • Rädecker N, Raina JB, Pernice M, et al. Using Aiptasia as a model to study metabolic interactions in Cnidarian-Symbiodinium symbioses. Front Physiol. 2018;9:214.
  • Heinig U, Scholz S, Jennewein S. Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers. 2013;60(1):161–170.
  • Li J, Zhao GZ, Varma A, et al. An endophytic Pseudonocardia species induces the production of artemisinin in Artemisia annua. PLoS One. 2012;7(12):e51410.
  • Kumar S, Aharwal RP, Shukla H, et al. Endophytic fungi: as a source of antimicrobials bioactive compounds. World J Pharm Pharm Sci. 2014;3(2):1179–1197.
  • Zhang Y, Han T, Ming Q, et al. Alkaloids produced by endophytic fungi: a review. Nat Prod Commun. 2012;7(7):963–968.
  • Nair DN, Padmavathy S. Impact of endophytic microorganisms on plants, environment and humans. Sci World J. 2014;2014:250693.
  • Kusari S, Verma VC, Lamshoeft M, et al. An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol. 2012;28(3):1287–1294.
  • Robinson RJ, Fraaije BA, Clark IM, et al. Wheat seed embryo excision enables the creation of axenic seedlings and Koch's postulates testing of putative bacterial endophytes. Sci Rep. 2016;6:25581.
  • Gough C, Cullimore J. Lipo-chitooligosaccharide signaling in endosymbiotic plant–microbe interactions. Mol Plant Microbe Interact. 2011;24(8):867–878.
  • Arora NK, Mishra J. Prospecting the roles of metabolites and additives in future bioformulations for sustainable agriculture. Appl Soil Ecol. 2016;107:405–407.
  • López-Ráez JA, Shirasu K, Foo E. Strigolactones in plant interactions with beneficial and detrimental organisms: the Yin and Yang. Trends Plant Sci. 2017;22(6):527–537.
  • Rozpądek P, Domka AM, Nosek M, et al. The role of strigolactone in the cross-talk between Arabidopsis thaliana and the endophytic fungus Mucor sp. Front Microbiol. 2018;9:441.
  • Nguema-Ona E, Vicré-Gibouin M, Cannesan MA, et al. Arabinogalactan proteins in root–microbe interactions. Trends Plant Sci. 2013;18(8):440–449.
  • Chagas MB, de O, Prazeres dos Santos I, Nascimento da Silva LC, et al. Antimicrobial activity of cultivable endophytic fungi associated with Hancornia speciosa gomes bark. Open Microbiol J. 2017;11(1):179–188.
  • Fouad MO, Essahibi A, Benhiba L, et al. Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought. Span J Agric Res. 2014;12(3):763–771.
  • Kusajima M, Shima S, Fujita M, et al. Involvement of ethylene signaling in Azospirillum sp. B510-induced disease resistance in rice. Biosci Biotechnol Biochem. 2018;82(9):1522–1526.
  • Kumar A, Sharma S, Mishra S. Evaluating effect of arbuscular mycorrhizal fungal consortia and Azotobacter chroococcum in improving biomass yield of Jatropha curcas. Plant Biosyst. 2016;150(5):1056–1064.
  • Pieterse CMJ, Zamioudis C, Berendsen RL, et al. Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol. 2014;52(1):347–375.
  • Vandenkoornhuyse P, Quaiser A, Duhamel M, et al. The importance of the microbiome of the plant holobiont. New Phytol. 2015;206(4):1196–1206.
  • Cord-Landwehr S, Melcher RLJ, Kolkenbrock S, et al. A chitin deacetylase from the endophytic fungus Pestalotiopsis sp. efficiently inactivates the elicitor activity of chitin oligomers in rice cells. Sci Rep. 2016;6:38018.
  • Cui JL, Wang YN, Jiao J, et al. Fungal endophyte-induced salidroside and tyrosol biosynthesis combined with signal cross-talk and the mechanism of enzyme gene expression in Rhodiola crenulata. Sci Rep. 2017;7(1):12540.
  • Jia M, Chen L, Xin HL, et al. A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol. 2016;7:906.
  • Salam N, Khieu TN, Liu MJ, et al. Endophytic Actinobacteria associated with Dracaena cochinchinensis Lour.: isolation, diversity, and their cytotoxic activities. Biomed Res Int. 2017;2017:1308563.
  • Xu Y, Liu F, Zhu S, et al. The maize NBS-LRR gene ZmNBS25 enhances disease resistance in rice and Arabidopsis. Front Plant Sci. 2018;9:1033.
  • Waqas M, Khan AL, Hamayun M, et al. Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact. 2015;10(1):280–287. p. 275–290.
  • Chowdhary K, Sharma S. Potential of fungal endophytes in plant growth and disease management. In: Singh D, Singh H, Prabha R, editors. Plant–microbe interactions in agro-ecological perspectives. Singapore: Springer; 2017. p. 275–290.
  • Gao FU, Dai CC, Liu XZ. Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res. 2010;4(13):1346–1351.
  • Jiao R, Munir S, He P, et al. Biocontrol potential of the endophytic Bacillus amyloliquefaciens YN201732 against tobacco powdery mildew and its growth promotion. Biol Control. 2020;143:104160.
  • Halecker S, Wennrich JP, Rodrigo S, et al. Fungal endophytes for biocontrol of ash dieback: the antagonistic potential of Hypoxylon rubiginosum. Fungal Ecol. 2020;45:100918.
  • Liu B, Huang L, Buchenauer H, et al. Isolation and partial characterization of an antifungal protein from the endophytic Bacillus subtilis strain EDR4. Pestic Biochem Physiol. 2010;98(2):305–311.
  • Etesami H, Alikhani HA. Evaluation of Gram-positive rhizosphere and endophytic bacteria for biological control of fungal rice (Oryzia sativa L.) pathogens. Eur J Plant Pathol. 2017;147(1):7–14.
  • Sheoran N, Valiya Nadakkakath A, Munjal V, et al. Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds. Microbiol Res. 2015;173:66–78.
  • Gond SK, Bergen MS, Torres MS, et al. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res. 2015;172:79–87.
  • Etminani F, Harighi B. Isolation and identification of endophytic bacteria with plant growth promoting activity and biocontrol potential from wild pistachio trees. Plant Pathol J. 2018;34(3):208–217.
  • Singh M, Kumar A, Singh R, et al. Endophytic bacteria: a new source of bioactive compounds. 3 Biotech. 2017;7(5):315.
  • Qin J, Li MJ, Wang P, et al. ChIP-Array: combinatory analysis of ChIP-seq/chip and microarray gene expression data to discover direct/indirect targets of a transcription factor. Nucleic Acids Res. 2011;39:430–436.
  • Abd-Allah EF, Alqarawi AA, Hashem A, et al. Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. J Plant Interact. 2018;13(1):37–44.
  • Vu HNT, Nguyen DT, Nguyen HQ, et al. Antimicrobial and cytotoxic properties of bioactive metabolites produced by Streptomyces cavourensis YBQ59 isolated from Cinnamomum cassia Prels in Yen Bai Province of Vietnam. Curr Microbiol. 2018;75(10):1247–1255.
  • Cavaglieri L, Orlando J, Rodríguez MI, et al. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Res Microbiol. 2005;156(5–6):748–754.
  • Chung EJ, Hossain MT, Khan A, et al. Bacillus oryzicola sp. Nov., an endophytic bacterium isolated from the roots of rice with antimicrobial, plant growth promoting, and systemic resistance inducing activities in rice. Plant Pathol J. 2015;31(2):152–164.
  • Etesami H, Alikhani HA. Bacillus species as the most promising bacterial biocontrol agents in rhizosphere and endorhiza of plants grown in rotation with each other. Eur J Plant Pathol. 2018;150(2):497–506.
  • Islam R, Jeong YT, Lee YS, et al. Isolation and identification of antifungal compounds from Bacillus subtilis C9 Inhibiting the growth of plant pathogenic fungi. Mycobiology. 2012;40(1):59–66.
  • Rojas-Solís D, Zetter-Salmón E, Contreras-Pérez M, et al. Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatal Agric Biotechnol. 2018;13:46–52.
  • Le HTT, Padgham JL, Sikora RA. Biological control of the rice root-knot nematode Meloidogyne graminicola on rice, using endophytic and rhizosphere fungi. Int J Pest Manag. 2009;55(1):31–36.
  • Chen JL, Sun SZ, Miao CP, et al. Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. J Ginseng Res. 2016;40(4):315–324.
  • Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol. 2009;68(1):1–13.
  • Kumar A, Dames JF, Gupta A, et al. Current developments in arbuscular mycorrhizal fungi research and its role in salinity stress alleviation: A biotechnological perspective. Crit Rev Biotechnol. 2015;35(4):461–474.
  • Suzuki N, Rivero RM, Shulaev V, et al. Abiotic and biotic stress combinations. New Phytol. 2014;203(1):32–43.
  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, et al. Plant growth-promoting bacterial endophytes. Microbiol Res. 2016;183:92–99.
  • Jiao J, Ma Y, Chen S, et al. Melatonin-producing endophytic bacteria from grapevine roots promote the abiotic stress-induced production of endogenous melatonin in their hosts. Front Plant Sci. 2016;7:1387.
  • Pandey V, Ansari MW, Tula S, et al. Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes. Planta. 2016;243(5):1251–1264.
  • Bagri DS, Upadhyaya DC, Kumar A, et al. Overexpression of PDX-II gene in potato (Solanum tuberosum L.) leads to the enhanced accumulation of vitamin B6 in tuber tissues and tolerance to abiotic stresses. Plant Sci. 2018;272:265–275.
  • Hashem A, Kumar A, Al-Dbass AM, et al. Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi J Biol Sci. 2018;26(3):614–624.
  • Ojuederie OB, Babalola OO. Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health. 2017;14(12):1504.
  • Osman GEH, Abulreesh HH, Elbanna K, et al. Recent progress in metal–microbe interactions: prospects in bioremediation. J Pure Appl Microbiol. 2019;13(1):13–26.
  • Tirry N, Tahri Joutey N, Sayel H, et al. Screening of plant growth promoting traits in heavy metals resistant bacteria: prospects in phytoremediation. J Genet Eng Biotechnol. 2018;16(2):613–619.
  • Dubey A, Kumar A, Khan ML. Role of biostimulants for enhancing abiotic stress tolerance in Fabaceae plants. In: Hasanuzzaman M, Araújo S, Gill S, editors. The plant family Fabaceae. Singapore: Springer; 2020. p. 223–236.
  • Kong Z, Mohamad OA, Deng Z, et al. Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress. Environ Sci Pollut Res Int. 2015;22(16):12479–12489.
  • Ahmad P, Kumar A, Gupta A. et al. Polyamines: role in plant under abiotic stress. In: Ashraf M, Ozturk, M, Ahmad M, et al. editors. Crop production for agriculture improvement. Dordrecht: Springer; 2012. p. 491–512.
  • Sziderics AH, Rasche F, Trognitz F, et al. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol. 2007;53(11):1195–1202.
  • Damodaran T, Rai RB, Jha SK, et al. Rhizosphere and endophytic bacteria for induction of salt tolerance in gladiolus grown in sodic soils. J Plant Interact. 2014;9(1):577–584.
  • Li Z, Ma Z, Hao X, et al. Genes conferring copper resistance in Sinorhizobium meliloti CCNWSX0020 also promote the growth of Medicago lupulina in copper-contaminated soil. Appl Environ Microbiol. 2014;80(6):1961–1971.
  • Li Z, Song X, Wang J, et al. Nickel and cobalt resistance properties of Sinorhizobium meliloti isolated from Medicago lupulina growing in gold mine tailing. PeerJ. 2018;6:e5202.
  • Doty SL, Freeman JL, Cohu CM, et al. Enhanced degradation of TCE on a superfund site using endophyte-assisted poplar tree phytoremediation. Environ Sci Technol. 2017;51(17):10050–10058.
  • Ren XM, Guo SJ, Tian W, et al. Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, cu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil. Front Microbiol. 2019;10:1455.
  • Saikia J, Sarma RK, Dhandia R, et al. Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep. 2018;8(1):3560.
  • Wang JL, Li T, Liu GY, et al. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Rep. 2016;6:22028.
  • Márquez LM, Redman RS, Rodriguez RJ, et al. A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science. 2007;315(5811):513–515.
  • Porcel R, Aroca R, Ruiz-Lozano JM. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev. 2012;32(1):181–200.
  • Kumar A, Sharma S, Mishra S. Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation, and mycorrhizal dependency of Jatropha curcas L. J Plant Growth Regul. 2010;29(3):297–306.
  • Pozo MJ, López-Ráez JA, Azcón-Aguilar C, et al. Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol. 2015;205(4):1431–1436.
  • Gutjahr C. Phytohormone signaling in arbuscular mycorhiza development. Curr Opin Plant Biol. 2014;20:26–34.
  • Gensollen T, Iyer SS, Kasper DL, et al. How colonization by microbiota in early life shapes the immune system. Science. 2016;352(6285):539–544.
  • Newman M-A, Sundelin T, Nielsen JT, et al. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci. 2013;4:139.
  • Sánchez-Vallet A, Mesters JR, Thomma BPHJ. The battle for chitin recognition in plant–microbe interactions. FEMS Microbiol Rev. 2015;39(2):171–183.
  • Trdá L, Boutrot F, Claverie J, et al. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. Front Plant Sci. 2015;6:219.
  • Staerck C, Gastebois A, Vandeputte P, et al. Microbial antioxidant defense enzymes. Microb Pathog. 2017;110:56–65.
  • Krishna SBN, Dubey A, Malla MA, et al. Integrating microbiome network: establishing linkages between plants, microbes and human health. Open Microbiol J. 2019;13(1):330–342.
  • Berendsen RL, van Verk MC, Stringlis IA, et al. Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics. 2015;16(1):539.
  • Subudhi E, Sahoo RK, Dey S, et al. Unraveling plant–endophyte interactions: an omics insight; 2019. p. 249–267. Available from:
  • Busby PE, Peay KG, Newcombe G. Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytol. 2016;209(4):1681–1692.
  • Megías E, Megías M, Ollero FJ, et al. Draft genome sequence of Pantoea ananatis strain AMG521, a rice plant growth-promoting bacterial endophyte isolated from the Guadalquivir marshes in southern Spain. Genome Announc. 2016;4(1):e01681–15.
  • Li S, Tang Y, Fang X, et al. Whole-genome sequence of Arthrinium phaeospermum, a globally distributed pathogenic fungus. Genomics. 2020;112(1):919–929.
  • Jeon J, Park S-Y, Kim JA, et al. Draft genome sequence of Amphirosellinia nigrospora JS-1675, an endophytic fungus from Pteris cretica. Microbiol Resour Announc. 2019;8:e00069-19.
  • Fill TP, Baretta JF, de Almeida LGP, et al. Draft genome sequence of the fungus Penicillium brasilianum (strain LaBioMMi 136), a plant endophyte from Melia azedarach. Microbiol Resour Announc. 2018;7(21):e01235.
  • Meena N, Vasundhara M, Reddy MS, et al. Draft genome sequence of a fungus (Fusarium tricinctum) cultured from a monoisolate native to the Himalayas. Genome Announc. 2018;6(20):e00365-18.
  • Kim JA, Jeon J, Kim KT, et al. Draft genome sequence of an endophytic fungus, Gaeumannomyces sp. strain JS-464, isolated from a reed plant, Phragmites communis. Genome Announc. 2017;5(31):e00734.
  • Kim JA, Jeon J, Park SY, et al. Genome sequence of an endophytic fungus, Fusarium solani JS-169, which has antifungal activity. Genome Announc. 2017;5(42):e01071-17.
  • Kim H, Mohanta TK, Park YH, et al. Complete genome sequence of the mountain-cultivated ginseng endophyte Burkholderia stabilis and its antimicrobial compounds against ginseng root rot disease. Biol Control. 2020;140:104126.
  • Zhou J, Xia F, Che S, et al. Complete genome sequence of Pantoea sp. strain CCBC3-3-1, an antagonistic endophytic bacterium isolated from a Cotinus coggygria branch. Microbiol Resour Announc. 2019;8:e01004-19.
  • Zeng Q, Xie J, Li Y, et al. Draft genome sequence of an endophytic biocontrol bacterium, Bacillus velezensis PG12, isolated from apple fruit. Microbiol Resour Announc. 2019;8:e00468-19.
  • Beracochea M, Taulé C, Battistoni F. Draft genome sequence of Kosakonia radicincitans UYSO10, an endophytic plant growth-promoting bacterium of sugarcane (Saccharum officinarum). Microbiol Resour Announc. 2019;8:e01000.
  • Niem J, Billones-Baaijens R, Savocchia S, et al. Draft genome sequences of endophytic Pseudomonas spp. isolated from grapevine tissue and antagonistic to Grapevine trunk disease pathogens. Microbiol Resour Announc. 2019;8(26):e00345-19.
  • Sahib MR, Yang P, Bokros N, et al. Improved draft genome sequence of Microbacterium sp. strain LKL04, a bacterial endophyte associated with switchgrass plants. Microbiol Resour Announc. 2019;8:e00927.
  • Aremu BR, Prigent-Combaret C, Babalola OO. Draft genome sequence of Bacillus velezensis strain ZeaDK315 Endo16. Microbiol Resour Announc. 2019;8:e00136.
  • Passari AK, Rajput V, Zothanpuia , et al. Draft genome sequence of plant growth-promoting endophytic Microbacterium hydrothermale BPSAC84, isolated from the medicinal plant Mirabilis jalapa. Microbiol Resour Announc. 2019;8:e00406-19.
  • Mukhtar T, Afridi MS, McArthur R, et al. Draft genome sequence of Bacillus pumilus SCAL1, an endophytic heat-tolerant plant growth-promoting bacterium. Genome Announc. 2018;6:18.
  • Hong CE, Kim JU, Lee JW, et al. Complete genome sequence of the endophytic bacterium Chryseobacterium indologenes PgBE177, isolated from Panax quinquefolius. Microbiol Resour Announc. 2018;7:e01234–18.
  • Shang N, Zhu Q, Dai M, et al. Complete genome sequence of the heavy-metal-tolerant endophytic type strain of Salinicola tamaricis. Genome Announc. 2018;6(16):e00358-18.
  • Reyna-Flores F, Barrios-Camacho H, Dantán-González E, et al. Draft genome sequences of endophytic isolates of Klebsiella variicola and Klebsiella pneumoniae obtained from the same sugarcane plant. Genome Announc. 2018;6(12):e00147-18.
  • Cheng W, Zhan G, Liu W, et al. Draft genome sequence of endophytic Herbaspirillum sp. strain WT00C, a tea plant growth-promoting bacterium. Genome Announc. 2017;5(11):e01719-16.
  • Yaish MW. Draft genome sequence of the endophytic Bacillus aryabhattai strain squ-r12, identified from Phoenix dactylifera L. roots. Genome Announc. 2017;5(32):e00718-17.
  • Kruasuwan W, Salih TS, Brozio S, et al. Draft genome sequence of plant growth-promoting endophytic Streptomyces sp. GKU 895 isolated from the roots of sugarcane. Genome Announc. 2017;5(19):e00358-17.
  • Hong CE, Jo SH, Jo IH, et al. Draft genome sequence of the endophytic bacterium Variovorax paradoxus KB5, which has antagonistic activity against a phytopathogen, Pseudomonas syringae pv. tomato DC3000. Genome Announc. 2017;5(36):e00950-17.
  • Annapurna K, Govindasamy V, Sharma M, et al. Draft genome sequence of Pseudomonas stutzeri strain KMS 55, an endophytic diazotroph isolated from rice roots. Genome Announc. 2017;5(40):e00972-17.
  • Tringe SG, Von Mering C, Kobayashi A, et al. Comparative metagenomics of microbial communities. Science. 2005;308(5721):554–557.
  • Tian BY, Cao Y, Zhang KQ. Metagenomic insights into communities, functions of endophytes, and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots. Sci Rep. 2015;5:17087.
  • Wemheuer F, Wemheuer B, Daniel R, et al. Deciphering bacterial and fungal endophyte communities in leaves of two maple trees with green islands. Sci Rep. 2019;9(1):14183.
  • Delmotte N, Knief C, Chaffron S, et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A. 2009;106(38):16428–16433.
  • Rastogi G, Coaker GL, Leveau JHJ. New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol Lett. 2013;348(1):1–10.
  • Kaul S, Sharma TK, Dhar M. "Omics" tools for better understanding the plant–endophyte interactions. Front Plant Sci. 2016;7:955.
  • Felitti S, Shields K, Ramsperger M, et al. Transcriptome analysis of Neotyphodium and Epichloë grass endophytes. Fungal Genet Biol. 2006;43(7):465–475.
  • Wang Y, Ohara Y, Nakayashiki H, et al. Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant Microbe Interact. 2005;18(5):385–396.
  • Chen X, Krug L, Yang H, et al. Nicotiana tabacum seed endophytic communities share a common core structure and genotype-specific signatures in diverging cultivars. Comput Struct Biotechnol J. 2020;18:287–295.
  • Lery LMS, Hemerly AS, Nogueira EM, et al. Quantitative proteomic analysis of the interaction between the endophytic plant-growth-promoting bacterium Gluconacetobacter diazotrophicus and sugarcane. Mol Plant Microbe Interact. 2011;24(5):562–576.
  • Andrés MF, Diaz CE, Giménez C, et al. Endophytic fungi as novel sources of biopesticides: the Macaronesian Laurel forest, a case study. Phytochem Rev. 2017;16(5):1009–1022.
  • Shukla ST, Habbu PV, Kulkarni VH, et al. Endophytic microbes: a novel source for biologically/pharmacologically active secondary metabolites. Asian J Pharmacol Toxicol. 2014;7(5):1–16.
  • Gouda S, Das G, Sen SK, et al. Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol. 2016;7:1538–1538.
  • Martinez-Klimova E, Rodríguez-Peña K, Sánchez S. Endophytes as sources of antibiotics. Biochem Pharmacol. 2017;134:1–17.
  • Guzmán-Trampe S, Rodríguez-Peña K, Espinosa-Gómez A, et al. Endophytes as a potential source of new antibiotics. Antibiot Curr Innov Fut Trends. 2015;175–206.
  • Kumar A, Patil D, Rajamohanan PR, et al. Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One. 2013;8(9):e71805.
  • Palem PPC, Kuriakose GC, Jayabaskaran C. An endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS One. 2015;10(12):e0144476.
  • Flewelling AJ, Currie J, Gray CA, et al. Endophytes from marine macroalgae: promising sources of novel natural products. Curr Sci. 2015;109:88–111.
  • Chhipa H, Chowdhary K, Kaushik N. Artificial production of agarwood oil in Aquilaria sp. by fungi: a review. Phytochem Rev. 2017;16(5):835–860.
  • Naik S, Shaanker RU, Ravikanth G, et al. How and why do endophytes produce plant secondary metabolites? Symbiosis. 2019;78(3):193–201.
  • Li HY, Wei DQ, Shen M, et al. Endophytes and their role in phytoremediation. Fungal Divers. 2012;54(1):11–18.
  • Nongkhlaw FMW, Joshi SR. Investigation on the bioactivity of culturable endophytic and epiphytic bacteria associated with ethnomedicinal plants. J Infect Dev Ctries. 2015;9(9):954–961.
  • Tan RX, Zou WX. Endophytes: a rich source of functional metabolites. Nat Prod Rep. 2001;18(4):448–459.
  • Akiyama H. Antibacterial action of several tannins against Staphylococcus aureus. J Antimicrob Chemother. 2001;48(4):487–491.
  • Howitz KT, Sinclair DA. Xenohormesis: sensing the chemical cues of other species. Cell. 2008;133(3):387–391.
  • Card S, Johnson L, Teasdale S, et al. Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol. 2016;92(8):fiw114.
  • Mesa V, Navazas A, González-Gil R, et al. Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica. Appl Environ Microbiol. 2017;83(8):e03411.
  • Waghunde RR, Shelake RM, Shinde MS, et al. Endophyte microbes: a weapon for plant health management. In: Panpatte D, Jhala Y, Vyas R, et al., editors. Microorganisms for green revolution. Microorganisms for sustainability. Vol. 6. Singapore: Springer; 2017. p. 303–325.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.