565
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Molecular advancements on over-expression, stability and catalytic aspects of endo-β-mannanases

&
Pages 1-15 | Received 05 Oct 2019, Accepted 30 Aug 2020, Published online: 09 Oct 2020

References

  • Agbor VB, Cicek N, Sparling R, et al. Biomass pretreatment: fundamentals toward application. Biotechnol Adv. 2011;29(6):675–685.
  • Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol. 2010;61:263–289.
  • Aspinall GO. Structural chemistry of the hemicelluloses. Adv Carbohydr Chem. 1959;14:429–468.
  • Dea ICM, Morrison A. Chemistry and interactions of seed galactomannans. Adv Carbohydr Chem Biochem. 1975;31:241–312.
  • McCleary BV, Clark AH, Dea IC, et al. The fine structures of carob and guar galactomannans. Carbohydr Res. 1985;139(1):237–260.
  • Moreira LRS, Filho EXF. An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol. 2008;79(2):165–178.
  • Srivastava PK, Kapoor M. Production, properties, and applications of endo-β-mannanases. Biotechnol Adv. 2017;35(1):1–19.
  • Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991;280(2):309–316.
  • Cantarel BL, Coutinho PM, Rancurel C, et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 2009;37(Database issue):D233–D238.
  • You X, Qin Z, Yan Q, et al. Structural insights into the catalytic mechanism of a novel glycoside hydrolase family 113 β-1,4-mannanase from Amphibacillus xylanus. J Biol Chem. 2018;293(30):11746–11757.
  • Shimizu M, Kaneko Y, Ishihara S, et al. Novel β-1,4-mannanase belonging to a new glycoside hydrolase family in Aspergillus nidulans. J Biol Chem. 2015;290(46):27914–27927.
  • Henrissat B, Callebaut I, Fabrega S, et al. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci USA. 1995;92(15):7090–7094.
  • Bolam DN, Hughes N, Virden R, et al. Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues. Biochemistry. 1996;35(50):16195–16204.
  • Jin Y, Petricevic M, John A, et al. A β-mannanase with a lysozyme-like fold and a novel molecular catalytic mechanism. ACS Cent Sci. 2016;2(12):896–903.
  • You X, Qin Z, Li YX, et al. Structural and biochemical insights into the substrate-binding mechanism of a novel glycoside hydrolase family 134 β-mannanase. Biochim Biophys Acta Gen Subj. 2018;1862(6):1376–1388.
  • Davies G, Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995;3(9):853–859.
  • Ismail SA, Amira AH, Mohamed AE. Economic production of thermo-active endo β-mannanase for the removal of food stain and production of antioxidant manno-oligosaccharides. Biocatal Agric Biotechnol. 2019;22:101387.
  • Singh S, Singh G, Khatri M, et al. Thermo and alkali stable β-mannanase: characterization and application for removal of food (mannans based) stain. Int J Biol Macromol. 2019;134:536–546.
  • Panwar D, Kapoor M. Transcriptional analysis of galactomannooligosaccharides utilization by Lactobacillus plantarum WCFS1. Food Microbiol. 2020;86:103336.
  • Wei X, Fu X, Xiao M, et al. Dietary galactosyl and mannosyl carbohydrates: in-vitro assessment of prebiotic effects. Food Chem. 2020;329:127179.
  • Kaira GS, Panwar D, Kapoor M. Recombinant endo-mannanase (ManB-1601) production using agro-industrial residues: development of economical medium and application in oil extraction from copra. Bioresour Technol. 2016;209:220–227.
  • Maffei G, Bracciale MP, Broggi A, et al. Effect of an enzymatic treatment with cellulase and mannanase on the structural properties of Nannochloropsis microalgae. Bioresour Technol. 2018;249:592–598.
  • Roque BM, Reyes GC, Tewoldebrhan TA, et al. Exogenous β-mannanase supplementation improved immunological and metabolic responses in lactating dairy cows. J Dairy Sci. 2019;102(5):4198–4204.
  • Zhao D, Zhang X, Wang Y, et al. Purification, biochemical and secondary structural characterisation of β-mannanase from Lactobacillus casei HDS-01 and juice clarification potential. Int J Biol Macromol. 2020;154:826–834.
  • Shukor H, Abdeshahian P, Al-Shorgani NKN, et al. Enhanced mannan-derived fermentable sugars of palm kernel cake by mannanase-catalyzed hydrolysis for production of biobutanol. Bioresour Technol. 2016;218:257–264.
  • Uechi K, Watanabe M, Fujii T, et al. Identification and biochemical characterization of major β-mannanase in Talaromyces cellulolyticus mannanolytic system. Appl Biochem Biotechnol. 2020;192(2):616–631.
  • Freiesleben PV, Spodsberg N, Stenbaek A, et al. Boosting of enzymatic softwood saccharification by fungal GH5 and GH26 endomannanases. Biotechnol Biofuels. 2018;11:194.
  • Wang Y, Shu T, Fan P, et al. Characterization of a recombinant alkaline thermostable β-mannanase and its application in eco-friendly ramie degumming. Process Biochem. 2017;61:73–79.
  • Angural S, Kumar A, Kumar D, et al. Lignolytic and hemicellulolytic enzyme cocktail production from Bacillus tequilensis LXM 55 and its application in pulp biobleaching. Bioprocess Biosyst Eng. 2020. DOI:10.1007/s00449-020-02407-4.
  • Morrill J, Manberger A, Rosengren A, et al. β-Mannanase-catalyzed synthesis of alkyl mannooligosides. Appl Microbiol Biotechnol. 2018;102(12):5149–5163.
  • Rosengren A, Butler SJ, Arcos-Hernandez M, et al. Enzymatic synthesis and polymerisation of β-mannosyl acrylates produced from renewable hemicellulosic glycans. Green Chem. 2019;21(8):2104–2118.
  • Li YX, Yi P, Wang NN, et al. High level expression of β-mannanase (RmMan5A) in Pichia pastoris for partially hydrolyzed guar gum production. Int J Biol Macromol. 2017;105:1171–1179.
  • Li YX, Yi P, Liu J, et al. High-level expression of an engineered β-mannanase (mRmMan5A) in Pichia pastoris for manno-oligosaccharide production using steam explosion pretreated palm kernel cake. Bioresour Technol. 2018;256:30–37.
  • Liu Z, Ning C, Yuan M, et al. High-efficiency expression of a superior β-mannanase engineered by cooperative substitution method in Pichia pastoris and its application in preparation of prebiotic mannooligosaccharides. Bioresour Technol. 2020;311:123482.
  • Tang SZ, Lin FL, Zheng J, et al. Effect of gene dosage and incubation temperature on production of β-mannanase by recombinant Pichia pastoris. J Cent South Univ. 2019;26(1):184–195.
  • Song Y, Fu G, Dong H, et al. High-efficiency secretion of β-mannanase in Bacillus subtilis through protein synthesis and secretion optimization. J Agric Food Chem. 2017;65(12):2540–2548.
  • Zhou J, Zhu P, Hu X, et al. Improved secretory expression of lignocellulolytic enzymes in Kluyveromyces marxianus by promoter and signal sequence engineering. Biotechnol Biofuels. 2018;11:235.
  • Nguyen HM, Pham ML, Stelzer EM, et al. Constitutive expression and cell-surface display of a bacterial β-mannanase in Lactobacillus plantarum. Microb Cell Fact. 2019;18(1):76.
  • Yang JK, Chen QC, Zhou B, et al. Manno-oligosaccharide preparation by the hydrolysis of konjac flour with a thermostable endo-mannanase from Talaromyces cellulolyticus. J Appl Microbiol. 2019;127(2):520–532.
  • Kaira GS, Usharani D, Kapoor M. Salt bridges are pivotal for the kinetic stability of GH26 endo-mannanase (ManB-1601). Int J Biol Macromol. 2019;133:1236–1241.
  • Liu W, Tu T, Gu Y, et al. Insight into the Thermophilic mechanism of a glycoside hydrolase family 5 β-mannanase. J Agric Food Chem. 2019;67(1):473–483.
  • Marchetti R, Berrin JG, Couturier M, et al. NMR analysis of the binding mode of two fungal endo-β-1,4-mannanases from GH5 and GH26 families. Org Biomol Chem. 2016;14(1):314–322.
  • Xia W, Lu H, Xia M, et al. A novel glycoside hydrolase family 113 endo-β-1,4-Mannanase from Alicyclobacillus sp. strain A4 and insight into the substrate recognition and catalytic mechanism of this family. Appl Environ Microbiol. 2016;82(9):2718–2727.
  • Hsu Y, Koizumi H, Otagiri M, et al. Trp residue at subsite – 5 plays a critical role in the substrate binding of two protistan GH26 β-mannanases from a termite hindgut. Appl Microbiol Biotechnol. 2018;102(4):1737–1747.
  • Kaira GS, Kapoor M. How substrate subsites in GH26 endo-mannanase contribute towards mannan binding. Biochem Biophys Res Commun. 2019;510(3):358–363.
  • Dong YH, Li JF, Hu D, et al. Replacing a piece of loop-structure in the substrate-binding groove of Aspergillus usamii β-mannanase, AuMan5A, to improve its enzymatic properties by rational design. Appl Microbiol Biotechnol. 2016;100(9):3989–3998.
  • Hu W, Liu X, Li Y, et al. Rational design for the stability improvement of Armillariella tabescens β-mannanase MAN47 based on N-glycosylation modification. Enzyme Microb Technol. 2017;97:82–89.
  • Li YX, Yi P, Yan QJ, et al. Directed evolution of a β-mannanase from Rhizomucor miehei to improve catalytic activity in acidic and thermophilic conditions. Biotechnol Biofuels. 2017;10:143.
  • Liang PH, Lin WL, Hsieh HY, et al. A flexible loop for mannan recognition and activity enhancement in a bifunctional glycoside hydrolase family 5. Biochim Biophys Acta Gen Subj. 2018;1862(3):513–521.
  • Wang XC, You SP, Zhang JX, et al. Rational design of a thermophilic β-mannanase from Bacillus subtilis TJ-102 to improve its thermostability. Enzyme Microb Technol. 2018;118:50–56.
  • Gao DY, Sun XB, Liu MQ, et al. Characterization of thermostable and chimeric enzymes via isopeptide bond-mediated molecular cyclization. J Agric Food Chem. 2019;67(24):6837–6846.
  • Freiesleben PV, Moroz OV, Blagova E, et al. Crystal structure and substrate interactions of an unusual fungal non-CBM carrying GH26 endo-β-mannanase from Yunnania penicillata. Sci Rep. 2019;9(1):2266.
  • Zhang W, Liu Z, Zhou S, et al. Cloning and expression of a β-mannanase gene from Bacillus sp. MK-2 and its directed evolution by random mutagenesis. Enzyme Microb Technol. 2019;124:70–78.
  • Dhawan S, Kaur J. Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol. 2007;27(4):197–216.
  • Van Zyl WH, Rose SH, Trollope K, et al. Fungal β-mannanases: mannan hydrolysis, heterologous production and biotechnological applications. Process Biochem. 2010;45(8):1203–1213.
  • Chauhan PS, Puri N, Sharma P, et al. Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl Microbiol Biotechnol. 2012;93(5):1817–1830.
  • Yamabhai M, Sak-Ubol S, Srila W, et al. Mannan biotechnology: from biofuels to health. Crit Rev Biotechnol. 2016;36(1):32–42.
  • Sharma K, Dhillon A, Goyal A. Insights into structure and reaction mechanism of β-mannanases. Curr Protein Pept Sci. 2018;19:34–47.
  • Bourgault R, Bewley JD. Variation in its C-terminal amino acids determines whether endo-beta-mannanase is active or inactive in ripening tomato fruits of different cultivars. Plant Physiol. 2002;130(3):1254–1262.
  • Zheng J, Zhao W, Guo N, et al. Development of an industrial medium and a novel fed-batch strategy for high-level expression of recombinant β-mananase by Pichia pastoris. Bioresour Technol. 2012;118:257–264.
  • Xu M, Zhang R, Liu X, et al. Improving the acidic stability of a β-mannanase from Bacillus subtilis by site-directed mutagenesis. Process Biochem. 2013;48(8):1166–1173.
  • Zhu T, Sun H, Li P, et al. Constitutive expression of alkaline β-mannanase in recombinant Pichia pastoris. Process Biochem. 2014;49(12):2025–2029.
  • Zhu T, You L, Gong F, et al. Combinatorial strategy of sorbitol feeding and low-temperature induction leads to high-level production of alkaline β-mannanase in Pichia pastoris. Enzyme Microb Technol. 2011;49(4):407–412.
  • Yan XX, An XM, Gu LL, et al. From structure to function: insights into the catalytic substrate specificity and thermostability displayed by Bacillus subtilis mannanase BCman. J Mol Biol. 2008;379(3):535–544.
  • Kumagai Y, Kawakami K, Mukaihara T, et al. The structural analysis and the role of calcium binding site for thermal stability in mannanase. Biochimie. 2012;94(12):2783–2790.
  • Kumagai Y, Uraji M, Wan K, et al. Molecular insights into the mechanism of thermal stability of actinomycete mannanase. FEBS Lett. 2016;590(17):2862–2869.
  • Bagenholm V, Wiemann M, Reddy SK, et al. A surface-exposed GH26 β-mannanase from Bacteroides ovatus: Structure, role, and phylogenetic analysis of BoMan26B. J Biol Chem. 2019;294(23):9100–9117.
  • Kaira GS, Usharani D, Kapoor M. Zn2+ stapling of N and C-terminal maintains stability and substrate affinity in GH26 endo-mannanase. Enz Microb Technol. 2020;135:109497.
  • Pham TA, Berrin JG, Record E, et al. Hydrolysis of softwood by Aspergillus mannanase: role of a carbohydrate-binding module. J Biotechnol. 2010;148(4):163–170.
  • Sunna A. Modular organisation and functional analysis of dissected modular beta-mannanase CsMan26 from Caldicellulosiruptor Rt8B.4. Appl Microbiol Biotechnol. 2010;86(1):189–200.
  • Santos CR, Paiva JH, Meza AN, et al. Molecular insights into substrate specificity and thermal stability of a bacterial GH5-CBM27 endo-1,4-β-D-mannanase. J Struct Biol. 2012;177(2):469–476.
  • Lu H, Luo H, Shi P, et al. A novel thermophilic endo-β-1,4-mannanase from Aspergillus nidulans XZ3: functional roles of carbohydrate-binding module and Thr/Ser-rich linker region. Appl Microbiol Biotechnol. 2014;98(5):2155–2163.
  • Tang CD, Shi HL, Tang QH, et al. Genome mining and motif truncation of glycoside hydrolase family 5 endo-β-1, 4-mannanase encoded by Aspergillus oryzae RIB40 for potential konjac flour hydrolysis or feed additive. Enzyme Microb Technol. 2016;93-94:99–104.
  • Wang R, Gong L, Xue X, et al. Identification of the C-terminal GH5 domain from CbCel9B/Man5A as the first glycoside hydrolase with thermal activation property from a multimodular bifunctional enzyme. PloS One. 2016;11(6):e0156802.
  • Srivastava PK, Appu Rao AG, Kapoor M. Metal-dependent thermal stability of recombinant endo-mannanase (ManB-1601) belonging to family GH 26 from Bacillus sp. CFR1601. Enzyme Microb Technol. 2016;84:41–49.
  • Hilge M, Gloor SM, Rypniewski W, et al. High-resolution native and complex structures of thermostable β-mannanase from Thermomonospora fusca-substrate specificity in glycosyl hydrolase family 5. Structure. 1998;6(11):1433–1444.
  • Wang C, Luo H, Niu C, et al. Biochemical characterization of a thermophilic β-mannanase from Talaromyces leycettanus JCM12802 with high specific activity. Appl Microbiol Biotechnol. 2015;99(3):1217–1228.
  • Ghosh A, Luis AS, Bras JL, et al. Thermostable recombinant β-(1→4)-mannanase from C. thermocellum: biochemical characterization and manno-oligosaccharides production. J Agric Food Chem. 2013;61(50):12333–12344.
  • Han Y, Dodd D, Hespen CW, et al. Comparative analyses of two thermophilic enzymes exhibiting both beta-1,4 mannosidic and beta-1,4 glucosidic cleavage activities from Caldanaerobius polysaccharolyticus. J Bacteriol. 2010;192(16):4111–4121.
  • Couturier M, Roussel A, Rosengren A, et al. Structural and biochemical analyses of glycoside hydrolase families 5 and 26 β-(1,4)-mannanases from Podospora anserina reveal differences upon manno-oligosaccharide catalysis. J Biol Chem. 2013;288(20):14624–14635.
  • Hogg D, Pell G, Dupree P, et al. The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation. Biochem J. 2003;371(Pt 3):1027–1043.
  • Mizutani K, Sakka M, Kimura T, et al. Essential role of a family-32 carbohydrate-binding module in substrate recognition by Clostridium thermocellum mannanase CtMan5A. FEBS Lett. 2014;588(9):1726–1730.
  • Boraston AB, Revett TJ, Boraston CM, et al. Structural and thermodynamic dissection of specific mannan recognition by a carbohydrate binding module, TmCBM27. Structure. 2003;11(6):665–675.
  • Mizutani K, Fernandes VO, Karita S, et al. Influence of a mannan binding family 32 carbohydrate binding module on the activity of the appended mannanase. Appl Environ Microbiol. 2012;78(14):4781–4787.
  • Cartmell A, Topakas E, Ducros VM, et al. The Cellvibrio japonicus mannanase CjMan26C displays a unique exo-mode of action that is conferred by subtle changes to the distal region of the active site. J Biol Chem. 2008;283(49):34403–34413.
  • DeBoy RT, Mongodin EF, Fouts DE, et al. Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus. J Bacteriol. 2008;190(15):5455–5463.
  • Morrill J, Kulcinskaja E, Sulewska AM, et al. The GH5 1,4-β-mannanase from Bifidobacterium animalis subsp. lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes. BMC Biochem. 2015;16:26.
  • Tanaka M, Umemoto Y, Okamura H, et al. Cloning and characterization of a beta-1,4-mannanase 5C possessing a family 27 carbohydrate-binding module from a marine bacterium, Vibrio sp. strain MA-138. Biosci Biotechnol Biochem. 2009;73(1):109–116.
  • Perret S, Belaich A, Fierobe HP, et al. Towards designer cellulosomes in Clostridia: mannanase enrichment of the cellulosomes produced by Clostridium cellulolyticum. J Bacteriol. 2004;186(19):6544–6552.
  • Aspeborg H, Coutinho PM, Wang Y, et al. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol. 2012;12:186.
  • Chen Z, Friedland GD, Pereira JH, et al. Tracing determinants of dual substrate specificity in glycoside hydrolase family 5. J Biol Chem. 2012;287(30):25335–25343.
  • Su X, Mackie RI, Cann IK. Biochemical and mutational analyses of a multidomain cellulase/mannanase from Caldicellulosiruptor bescii. Appl Environ Microbiol. 2012;78(7):2230–2240.
  • Ye L, Su X, Schmitz GE, et al. Molecular and biochemical analyses of the GH44 module of CbMan5B/Cel44A, a bifunctional enzyme from the hyperthermophilic bacterium Caldicellulosiruptor bescii. Appl Environ Microbiol. 2012;78(19):7048–7059.
  • Hagglund P, Eriksson T, Collen A, et al. A cellulose-binding module of the Trichoderma reesei beta-mannanase Man5A increases the mannan-hydrolysis of complex substrates. J Biotechnol. 2003;101(1):37–48.
  • Ximenes EA, Chen H, Kataeva IA, et al. A mannanase, ManA, of the polycentric anaerobic fungus Orpinomyces sp. strain PC-2 has carbohydrate binding and docking modules. Can J Microbiol. 2005;51(7):559–568.
  • Dilokpimol A, Nakai H, Gotfredsen CH, et al. Recombinant production and characterisation of two related GH5 endo-β-1,4-mannanases from Aspergillus nidulans FGSC A4 showing distinctly different transglycosylation capacity . Biochim Biophys Acta. 2011;1814(12):1720–1729.
  • Kim MK, An YJ, Song JM, et al. Structure-based investigation into the functional roles of the extended loop and substrate-recognition sites in an endo-β-1,4-D-mannanase from the Antarctic springtail, Cryptopygus antarcticus. Proteins. 2014;82(11):3217–3223.
  • Akino T, Kato C, Horikoshi K. Two Bacillus beta-mannanases having different COOH termini are produced in Escherichia coli carrying pMAH5. Appl Environ Microbiol. 1989;55(12):3178–3183.
  • Braithwaite KL, Black GW, Hazlewood GP, et al. A non-modular endo-β-1, 4-mannanase from Pseudomonas fluorescens subspecies cellulosa. Biochem J. 1995;305(3):1005–1010.
  • Hogg D, Woo EJ, Bolam DN, et al. Crystal structure of mannanase 26A from Pseudomonas cellulosa and analysis of residues involved in substrate binding. J Biol Chem. 2001;276(33):31186–31192.
  • Nours JL, Anderson L, Stoll D, et al. The structure and characterization of a modular endo-beta-1,4-mannanase from Cellulomonas fimi. Biochemistry. 2005;44(38):12700–12708.
  • Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42(Web Server issue):W320–W324.
  • Tailford LE, Ducros VMA, Flint JE, et al. Understanding how diverse beta-mannanases recognize heterogeneous substrates. Biochemistry. 2009;48(29):7009–7018.
  • Stoll D, Boraston A, Stalbrand H, et al. Mannanase Man26A from Cellulomonas fimi has a mannan-binding module. FEMS Microbiol Lett. 2000;183(2):265–269.
  • Ghosh A, Luis AS, Bras JL, et al. Deciphering ligand specificity of a Clostridium thermocellum family 35 carbohydrate binding module (CtCBM35) for gluco- and galacto- substituted mannans and its calcium induced stability. PloS One. 2013;8(12):e80415.
  • Kulcinskaja E, Rosengren A, Ibrahim R, et al. Expression and characterization of a Bifidobacterium adolescentis beta-mannanase carrying mannan-binding and cell association motifs. Appl Environ Microbiol. 2013;79(1):133–140.
  • Sunna A, Gibbs MD, Bergquist PL. Identification of novel beta-mannan- and beta-glucan-binding modules: evidence for a superfamily of carbohydrate-binding modules. Biochem J. 2001;356(Pt 3):791–798.
  • Halstead JR, Vercoe PE, Gilbert HJ, et al. A family 26 mannanase produced by Clostridium thermocellum as a component of the cellulosome contains a domain which is conserved in mannanases from anaerobic fungi. Microbiology. 1999;145(11):3101–3108.
  • Couturier M, Haon M, Coutinho PM, et al. Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Appl Environ Microbiol. 2011;77(1):237–246.
  • Zhang Y, Ju J, Peng H, et al. Biochemical and structural characterization of the intracellular mannanase AaManA of Alicyclobacillus acidocaldarius reveals a novel glycoside hydrolase family belonging to clan GH-A. J Biol Chem. 2008;283(46):31551–31558.
  • Sakai K, Mochizuki M, Yamada M, et al. Biochemical characterization of thermostable β-1,4-mannanase belonging to the glycoside hydrolase family 134 from Aspergillus oryzae. Appl Microbiol Biotechnol. 2017;101(8):3237–3245.
  • Zhao Y, Zhang Y, Cao Y, et al. Structural analysis of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5: implications for adaptation to alkaline conditions. PloS One. 2011;6(1):e14608.
  • Nielsen JE, McCammon JA. Calculating pKa values in enzyme active sites. Protein Sci. 2003;12(9):1894–1901.
  • Li Y, Hu F, Wang X, et al. A rational design for trypsin-resistant improvement of Armillariella tabescens β-mannanase MAN47 based on molecular structure evaluation. J Biotechnol. 2013;163(4):401–407.
  • Tang CD, Li JF, Wei XH, et al. Fusing a carbohydrate-binding module into the Aspergillus usamii β-mannanase to improve its thermostability and cellulose-binding capacity by in silico design. PLoS One. 2013;8(5):e64766.
  • Huang JW, Chen CC, Huang CH, et al. Improving the specific activity of β-mannanase from Aspergillus niger BK01 by structure-based rational design. Biochim Biophys Acta. 2014;1844(3):663–669.
  • Zhang X, Rogowski A, Zhao L, et al. Understanding how the complex molecular architecture of mannan-degrading hydrolases contributes to plant cell wall degradation. J Biol Chem. 2014;289(4):2002–2012.
  • Guo N, Zheng J, Wu LS, et al. Engineered bifunctional enzymes of endo-1, 4-β-xylanase/endo-1,4-β-mannanase were constructed for synergistically hydrolyzing hemicellulose. J Mol Catal B Enzym. 2013;97:311–318.
  • Jahn M, Stoll D, Warren RAJ, et al. Expansion of the glycosynthase repertoire to produce defined manno-oligosaccharides. Chem Commun. 2003;12(12):1327–1329.
  • Hekmat O, Lo Leggio L, Rosengren A, et al. Rational engineering of mannosyl binding in the distal glycone subsites of Cellulomonas fimi endo-beta-1,4-mannanase: mannosyl binding promoted at subsite -2 and demoted at subsite -3. Biochemistry. 2010;49(23):4884–4896.
  • Li J, Wei X, Tang C, et al. Directed modification of the Aspergillus usamii β-mannanase to improve its substrate affinity by in silico design and site-directed mutagenesis. J Ind Microbiol Biotechnol. 2014;41(4):693–700.
  • Couturier M, Feliu J, Bozonnet S, et al. Molecular engineering of fungal GH5 and GH26 beta-(1,4)-mannanases toward improvement of enzyme activity. PloS One. 2013;8(11):e79800.
  • Wang J, Zhang Q, Huang Z, et al. Directed evolution of a family 26 glycoside hydrolase: endo-β-1, 4-mannanase from Pantoea agglomerans A021. J Biotechnol. 2013;167(3):350–356.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.