1,167
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

l-arginine production in Corynebacterium glutamicum: manipulation and optimization of the metabolic process

, , , & ORCID Icon
Pages 172-185 | Received 14 Apr 2020, Accepted 17 Sep 2020, Published online: 05 Nov 2020

References

  • Lee JH, Wendisch VF. Production of amino acids - genetic and metabolic engineering approaches. Bioresour Technol. 2017;245(Pt B):1575–1587.
  • D'Este M, Alvarado-Morales M, Angelidaki I. Amino acids production focusing on fermentation technologies - a review. Biotechnol Adv. 2018;36(1):14–25.
  • Sepandi M, Abbaszadeh S, Qobady S, et al. Effect of L-arginine supplementation on lipid profiles and inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2019;148:104407.
  • Gogoi M, Datey A, Wilson K, et al. Dual role of arginine metabolism in establishing pathogenesis. Curr Opin Microbiol. 2016;29:43–48.
  • Su L, Ma Y, Wu J. Extracellular expression of natural cytosolic arginine deiminase from Pseudomonas putida and its application in the production of L-citrulline. Bioresour Technol. 2015;196:176–183.
  • Huang K, Mu W, Zhang T, et al. Cloning, expression, and characterization of a thermostable L-arginase from Geobacillus thermodenitrificans NG80-2 for L-ornithine production. Biotechnol Appl Biochem. 2016;63(3):391–397.
  • Song W, Sun X, Chen X, et al. Enzymatic production of L-citrulline by hydrolysis of the guanidinium group of L-arginine with recombinant arginine deiminase. J Biotechnol. 2015;208:37–43.
  • Li Y, Wei H, Wang T, et al. Current status on metabolic engineering for the production of L-aspartate family amino acids and derivatives. Bioresour Technol. 2017;245(Pt B):1588–1602.
  • Zhang B, Yu M, Wei WP, et al. Optimization of L-ornithine production in recombinant Corynebacterium glutamicum S9114 by cg3035 overexpression and manipulating the central metabolic pathway. Microb Cell Fact. 2018;17(1):91.
  • Zhang B, Yu M, Zhou Y, et al. Systematic pathway engineering of Corynebacterium glutamicum S9114 for L-ornithine production. Microb Cell Fact. 2017;16(1):158.
  • Sgobba E, Stumpf A, Vortmann M, et al. Synthetic Escherichia coli-Corynebacterium glutamicum consortia for L-lysine production from starch and sucrose. Bioresour Technol. 2018; 260:302–310.
  • Yang H, Zhang C, Lai N, et al. Efficient isopropanol biosynthesis by engineered Escherichia coli using biologically produced acetate from syngas fermentation. Bioresour Technol. 2020;296:122337.
  • Wei Y, Mohsin A, Hong Q, et al. Enhanced production of biosynthesized lycopene via heterogenous MVA pathway based on chromosomal multiple position integration strategy plus plasmid systems in Escherichia coli. Bioresour Technol. 2018;250:382–389.
  • Rui J, You S, Zheng Y, et al. High-efficiency and low-cost production of cadaverine from a permeabilized-cell bioconversion by a Lysine-induced engineered Escherichia coli. Bioresour Technol. 2020; 302:122844.
  • Lee T, Min W, Kim H, et al. Improved production of 3-hydroxypropionic acid in engineered Escherichia coli by rebalancing heterologous and endogenous synthetic pathways. Bioresour Technol. 2020;299:122600.
  • Fang H, Li D, Kang J, et al. Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12. Nat Commun. 2018;9(1):4917.
  • Guo D, Kong S, Zhang L, et al. Biosynthesis of advanced biofuel farnesyl acetate using engineered Escherichia coli. Bioresour Technol. 2018;269:577–580.
  • Sarria S, Kruyer NS, Peralta-Yahya P. Microbial synthesis of medium-chain chemicals from renewables. Nat Biotechnol. 2017;35(12):1158–1166.
  • Li S, Li Y, Smolke CD. Strategies for microbial synthesis of high-value phytochemicals. Nat Chem. 2018;10(4):395–404.
  • Ginesy M, Belotserkovsky J, Enman J, et al. Metabolic engineering of Escherichia coli for enhanced arginine biosynthesis. Microb Cell Fact. 2015;14:29.
  • Okuda S, Sherman DJ, Silhavy TJ, et al. Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model. Nat Rev Microbiol. 2016;14(6):337–345.
  • Becker J, Wittmann C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol Adv. 2019;37(6):107360.
  • Jeandet P, Sobarzo-Sanchez E, Clement C, et al. Engineering stilbene metabolic pathways in microbial cells. Biotechnol Adv. 2018;36(8):2264–2283.
  • Kim HT, Khang TU, Baritugo KA, et al. Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical. Metab Eng. 2019;51:99–109.
  • Cleto S, Jensen JVK, Wendisch VF, et al. Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol. 2016;5(5):375–385.
  • Hashiro S, Mitsuhashi M, Chikami Y, et al. Construction of Corynebacterium glutamicum cells as containers encapsulating dsRNA overexpressed for agricultural pest control. Appl Microbiol Biotechnol. 2019;103(20):8485–8496.
  • Zhang J, Yang F, Yang Y, et al. Optimizing a CRISPR-Cpf1-based genome engineering system for Corynebacterium glutamicum. Microb Cell Fact. 2019;18(1):60.
  • Jiang Y, Qian F, Yang J, et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun. 2017;8:15179.
  • Zhang B, Yu M, Zhou Y, et al. Improvement of L-ornithine production by attenuation of argF in engineered Corynebacterium glutamicum S9114. AMB Express. 2018;8(1):26.
  • Park SH, Kim HU, Kim TY, et al. Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nat Commun. 2014;5(1):9.
  • Lubitz D, Jorge JM, Pérez-García F, et al. Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2016;100(19):8465–8474.
  • Zhan M, Kan B, Dong J, et al. Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply. J Ind Microbiol Biotechnol. 2019;46(1):45–54.
  • Man Z, Xu M, Rao Z, et al. Systems pathway engineering of Corynebacterium crenatum for improved L-arginine production. Sci Rep. 2016;6:28629.
  • Guo J, Man Z, Rao Z, et al. Improvement of the ammonia assimilation for enhancing L-arginine production of Corynebacterium crenatum. J Ind Microbiol Biotechnol. 2017;44(3):443–451.
  • Man Z, Rao Z, Xu M, et al. Improvement of the intracellular environment for enhancing L-arginine production of Corynebacterium glutamicum by inactivation of H2O2-forming flavin reductases and optimization of ATP supply. Metab Eng. 2016;38:310–321.
  • Xu M, Rao Z, Yang J, et al. The effect of a LysE exporter overexpression on L-arginine production in Corynebacterium crenatum. Curr Microbiol. 2013;67(3):271–278.
  • Xu M, Li J, Shu Q, et al. Enhancement of L-arginine production by increasing ammonium uptake in an AmtR-deficient Corynebacterium crenatum mutant. J Ind Microbiol Biotechnol. 2019;46(8):1155–1166.
  • Zhang J, Xu M, Ge X, et al. Reengineering of the feedback-inhibition enzyme N-acetyl-l-glutamate kinase to enhance l-arginine production in Corynebacterium crenatum. J Ind Microbiol Biotechnol. 2017;44(2):271–283.
  • Huang M, Zhao Y, Li R, et al. Improvement of L-arginine production by in silico genome-scale metabolic network model guided genetic engineering. 3 Biotech. 2020;10(3):1–10.
  • Xu M, Tang M, Chen J, et al. PII signal transduction protein GlnK alleviates the feedback inhibition of N-acetyl-l-glutamate kinase by L-arginine in Corynebacterium glutamicum. Appl Environ Microbiol. 2020;86(8):e00039.
  • Zhang B, Fang W, Qiu YL, et al. Increased L-arginine production by site-directed mutagenesis of N-acetyl-l-glutamate kinase and proB gene deletion in Corynebacterium crenatum. Biomed Environ Sci. 2015;28(12):864–874.
  • Xu M, Qin J, Rao Z, et al. Effect of Polyhydroxybutyrate (PHB) storage on L-arginine production in recombinant Corynebacterium crenatum using coenzyme regulation. Microb Cell Fact. 2016;15:15.
  • Zhao Q, Luo Y, Dou W, et al. Controlling the transcription levels of argGH redistributed L-arginine metabolic flux in N-acetylglutamate kinase and ArgR-deregulated Corynebacterium crenatum. J Ind Microbiol Biotechnol. 2016;43(1):55–66.
  • Cheng G, Xu J, Xia X, et al. Breeding L-arginine-producing strains by a novel mutagenesis method: atmospheric and room temperature plasma (ARTP). Prep Biochem Biotechnol. 2016;46(5):509–516.
  • Chen M, Chen X, Wan F, et al. Effect of Tween 40 and DtsR1 on L-arginine overproduction in Corynebacterium crenatum. Microb Cell Fact. 2015;14:119.
  • Xu M, Rao Z, Dou W, et al. Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatum L-arginine production. Amino Acids. 2012;43(1):255–266.
  • Dou W, Xu M, Cai D, et al. Improvement of L-arginine production by overexpression of a bifunctional ornithine acetyltransferase in Corynebacterium crenatum. Appl Biochem Biotechnol. 2011;165(3–4):845–855.
  • Shin JH, Lee SY. Metabolic engineering of microorganisms for the production of L-arginine and its derivatives. Microb Cell Fact. 2014;13:166.
  • Lee SY, Park J-M, Lee JH, et al. Interaction of transcriptional repressor ArgR with transcriptional regulator FarR at the argB promoter region in Corynebacterium glutamicum. Appl Environ Microbiol. 2011;77(3):711–718.
  • Yim SH, Jung S, Lee SK, et al. Purification and characterization of an arginine regulatory protein, ArgR, in Corynebacterium glutamicum. J Ind Microbiol Biotechnol. 2011;38(12):1911–1920.
  • Morizono H, Cabrera-Luque J, Shi D, et al. Acetylornithine transcarbamylase: a novel enzyme in arginine biosynthesis. J Bacteriol. 2006;188(8):2974–2982.
  • Wu XY, Guo XY, Zhang B, et al. Recent advances of L-ornithine biosynthesis in metabolically engineered Corynebacterium glutamicum. Front Bioeng Biotechnol. 2019;7:440.
  • Lee SY, Kim HU. Systems strategies for developing industrial microbial strains. Nat Biotechnol. 2015;33(10):1061–1072.
  • Chen XL, Zhang B, Li T, et al. Expression and characterization of ArgR, an arginine regulatory protein in Corynebacterium crenatum. Biomed Environ Sci. 2014;27:436–443.
  • Xu M, Rao Z, Dou W, et al. The role of ArgR repressor regulation on L-arginine production in Corynebacterium crenatum. Appl Biochem Biotechnol. 2013;170(3):587–597.
  • Xu M, Rao Z, Yang J, et al. Heterologous and homologous expression of the arginine biosynthetic argC ∼ H cluster from Corynebacterium crenatum for improvement of (L) -arginine production. J Ind Microbiol Biotechnol. 2012;39(3):495–502.
  • Huang Y, Li C, Zhang H, et al. Monomeric Corynebacterium glutamicum N-acetyl glutamate kinase maintains sensitivity to L-arginine but has a lower intrinsic catalytic activity. Appl Microbiol Biotechnol. 2016;100(4):1789–1798.
  • Ikeda M, Mitsuhashi S, Tanaka K, et al. Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer. Appl Environ Microbiol. 2009;75(6):1635–1641.
  • Xu M, Rao Z, Dou W, et al. Site-directed mutagenesis studies on the L-arginine-binding sites of feedback inhibition in N-acetyl-L-glutamate kinase (NAGK) from Corynebacterium glutamicum. Curr Microbiol. 2012;64(2):164–172.
  • Jensen JV, Eberhardt D, Wendisch VF. Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine. J Biotechnol. 2015;214:85–94.
  • Schendzielorz G, Dippong M, Grünberger A, et al. Taking control over control: use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways. ACS Synth Biol. 2014;3(1):21–29.
  • Huang Y, Zhang H, Tian H, et al. Mutational analysis to identify the residues essential for the inhibition of N-acetyl glutamate kinase of Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2015;99(18):7527–7537.
  • Lee SY, Cho JY, Lee HJ, et al. Enhancement of ornithine production in proline-supplemented Corynebacterium glutamicum by ornithine cyclodeaminase. J Microbiol Biotechnol. 2010;20(1):127–131.
  • Wendisch VF, Jorge JM, Pérez-García F, et al. Updates on industrial production of amino acids using Corynebacterium glutamicum. World J Microbiol Biotechnol. 2016;32(6):105
  • Zhang B, Ren LQ, Yu M, et al. Enhanced L-ornithine production by systematic manipulation of L-ornithine metabolism in engineered Corynebacterium glutamicum S9114. Bioresour Technol. 2018;250:60–68.
  • Park SH, Kim HU, Kim TY, et al. Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nat Commun. 2014;5:4618.
  • Zhang X, Lai L, Xu G, et al. Rewiring the central metabolic pathway for high‐yield L‐serine production in Corynebacterium glutamicum by using glucose. Biotechnol J. 2019;14(6):1800497.
  • Tenhaef N, Brüsseler C, Radek A, et al. Production of d-xylonic acid using a non-recombinant Corynebacterium glutamicum strain. Bioresour Technol. 2018;268:332–339.
  • Shin W-S, Lee D, Lee SJ, et al. Characterization of a non-phosphotransferase system for cis,cis-muconic acid production in Corynebacterium glutamicum . Biochem Biophys Res Commun. 2018;499(2):279–284.
  • Zhang B, Gao G, Chu XH, et al. Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of L-ornithine driven by glucose and xylose. Bioresour Technol. 2019; 284:204–213.
  • Xu JZ, Yang HK, Zhang WG. NADPH metabolism: a survey of its theoretical characteristics and manipulation strategies in amino acid biosynthesis. Crit Rev Biotechnol. 2018;38(7):1061–1076.
  • Wu W, Zhang Y, Liu D, et al. Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum. Metab Eng. 2019;52:77–86.
  • Hwang GH, Cho JY. Implication of gluconate kinase activity in L-ornithine biosynthesis in Corynebacterium glutamicum. J Ind Microbiol Biotechnol. 2012;39(12):1869–1874.
  • Li Y, Cong H, Liu B, et al. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level. Antonie Van Leeuwenhoek. 2016;109(9):1185–1197.
  • Zhang H, Li Y, Wang C, et al. Understanding the high L-valine production in Corynebacterium glutamicum VWB-1 using transcriptomics and proteomics. Sci Rep. 2018;8(1):3632.
  • Ma W, Wang J, Li Y, et al. Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve L‐isoleucine production. Biotechnol Appl Biochem. 2016;63(6):877–885.
  • Siedler S, Lindner SN, Bringer S, et al. Reductive whole-cell biotransformation with Corynebacterium glutamicum: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using pfkA and gapA deletion mutants. Appl Microbiol Biotechnol. 2013;97(1):143–152.
  • Takeno S, Hori K, Ohtani S, et al. L-Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene. Metab Eng. 2016;37:1–10.
  • Hoffmann SL, Jungmann L, Schiefelbein S, et al. Lysine production from the sugar alcohol mannitol: design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes. Metab Eng. 2018;47:475–487.
  • Takeno S, Murata R, Kobayashi R, et al. Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production. Appl Environ Microbiol. 2010;76(21):7154–7160.
  • Lindner SN, Niederholtmeyer H, Schmitz K, et al. Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production. Appl Microbiol Biotechnol. 2010;87(2):583–593.
  • Xu M, Rao Z, Xu H, et al. Enhanced production of L-arginine by expression of Vitreoscilla hemoglobin using a novel expression system in Corynebacterium crenatum. Appl Biochem Biotechnol. 2011;163(6):707–719.
  • Nakayama Y, Yoshimura K, Iida H. A gain-of-function mutation in gating of Corynebacterium glutamicum NCgl1221 causes constitutive glutamate secretion. Appl Environ Microbiol. 2012;78(15):5432–5434.
  • Nakamura J, Hirano S, Ito H, et al. Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production. Appl Environ Microbiol. 2007;73(14):4491–4498.
  • Wang Y, Cao G, Xu D, et al. A novel Corynebacterium glutamicum L-glutamate exporter. Appl Environ Microbiol. 2018;84(6):e02691.
  • Shang X, Zhang Y, Zhang G, et al. Characterization and molecular mechanism of AroP as an aromatic amino acid and histidine transporter in Corynebacterium glutamicum. J Bacteriol. 2013;195(23):5334–5342.
  • Vrljic M, Sahm H, Eggeling L. A new type of transporter with a new type of cellular function: L-lysine export from Corynebacterium glutamicum. Mol Microbiol. 1996;22(5):815–826.
  • Kind S, Kreye S, Wittmann C. Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metab Eng. 2011;13(5):617–627.
  • Kennerknecht N, Sahm H, Yen MR, et al. Export of L-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family. J Bacteriol. 2002;184(14):3947–3956.
  • Chen C, Li Y, Hu J, et al. Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production. Metab Eng. 2015;29:66–75.
  • Bellmann A, Vrljic M, Patek M, et al. Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum. Microbiology (Reading). 2001;147(Pt 7):1765–1774.
  • Marbaniang CN, Gowrishankar J. Transcriptional cross-regulation between Gram-negative and Gram-positive bacteria, demonstrated using ArgP-argO of Escherichia coli and LysG-lysE of Corynebacterium glutamicum. J Bacteriol. 2012;194(20):5657–5666.
  • Stella RG, Wiechert J, Noack S, et al. Evolutionary engineering of Corynebacterium glutamicum. Biotechnol J. 2019;14(9):e1800444.
  • Zeng W, Guo L, Xu S, et al. High-throughput screening technology in industrial biotechnology. Trends Biotechnol. 2020;38:888–906.
  • Nguyen NH, Kim J-R, Park S. Application of transcription factor-based 3-hydroxypropionic acid biosensor. Biotechnol Bioproc E. 2018;23(5):564–572.
  • Thompson MG, Costello Z, Hummel NF, et al. Robust characterization of two distinct glutarate sensing transcription factors of Pseudomonas putida L-lysine metabolism. ACS Synth Biol. 2019;8(10):2385–2396.
  • Hanko EK, Minton NP, Malys N. A transcription factor-based biosensor for detection of itaconic acid. ACS Synth Biol. 2018;7(5):1436–1446.
  • De Paepe B, Maertens J, Vanholme B, et al. Chimeric LysR-type transcriptional biosensors for customizing ligand specificity profiles toward flavonoids. ACS Synth Biol. 2019;8(2):318–331.
  • Trabelsi H, Koch M, Faulon JL. Building a minimal and generalizable model of transcription factor-based biosensors: SHowcasing flavonoids. Biotechnol Bioeng. 2018;115(9):2292–2304.
  • Zhang J, Barajas JF, Burdu M, et al. Development of a transcription factor-based lactam biosensor. ACS Synth Biol. 2017;6(3):439–445.
  • Kortmann M, Mack C, Baumgart M, et al. Pyruvate carboxylase variants enabling improved lysine production from glucose identified by biosensor-based high-throughput fluorescence-activated cell sorting screening. ACS Synth Biol. 2019;8(2):274–281.
  • Han G, Xu N, Sun X, et al. Improvement of L-valine production by atmospheric and room temperature plasma mutagenesis and high-throughput screening in Corynebacterium glutamicum. ACS Omega. 2020;5(10):4751–4758.
  • Raghavan SS, Chee S, Li J, et al. Development and application of a transcriptional sensor for detection of heterologous acrylic acid production in E. coli. Microb Cell Fact. 2019;18(1):1–12.
  • Qian S, Li Y, Cirino PC. Biosensor-guided improvements in salicylate production by recombinant Escherichia coli. Microb Cell Fact. 2019;18(1):18.
  • Kim SK, Kim SH, Subhadra B, et al. A genetically encoded biosensor for monitoring isoprene production in engineered Escherichia coli. ACS Synth Biol. 2018;7(10):2379–2390.
  • Liu C, Zhang B, Liu Y-M, et al. New intracellular shikimic acid biosensor for monitoring shikimate synthesis in Corynebacterium glutamicum. ACS Synth Biol. 2018;7(2):591–601.
  • Zheng B, Ma X, Wang N, et al. Utilization of rare codon-rich markers for screening amino acid overproducers. Nat Commun. 2018;9(1):11.
  • Xu M, Liu P, Chen J, et al. Development of a novel biosensor-driven mutation and selection system via in situ growth of Corynebacterium crenatum for the production of L-arginine. Front Bioeng Biotechnol. 2020; 8:175.
  • Chen J, Wang Y, Guo X, et al. Efficient bioproduction of 5-aminolevulinic acid, a promising biostimulant and nutrient, from renewable bioresources by engineered Corynebacterium glutamicum. Biotechnol Biofuels. 2020;13(1):1–13.
  • Wendisch VF, De Brito LF, Lopez MG, et al. The flexible feedstock concept in industrial biotechnology: metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. J Biotechnol. 2016;234:139–157.
  • Teusink B, Smid EJ. Modelling strategies for the industrial exploitation of lactic acid bacteria. Nat Rev Microbiol. 2006;4(1):46–56.
  • Kim S, Jeong H, Kim EY, et al. Genomic and transcriptomic landscape of Escherichia coli BL21(DE3). Nucleic Acids Res. 2017;45(9):5285–5293.
  • Varela C, Schmidt SA, Borneman AR, et al. Systems-based approaches enable identification of gene targets which improve the flavour profile of low-ethanol wine yeast strains. Metab Eng. 2018;49:178–191.
  • Shen HJ, Cheng BY, Zhang YM, et al. Dynamic control of the mevalonate pathway expression for improved zeaxanthin production in Escherichia coli and comparative proteome analysis. Metab Eng. 2016;38:180–190.
  • Wang B, Hu Q, Zhang Y, et al. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum. Microb Cell Fact. 2018;17(1):63.
  • Cho JS, Choi KR, Prabowo CPS, et al. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab Eng. 2017;42:157–167.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.