947
Views
14
CrossRef citations to date
0
Altmetric
Review Articles

Sustainable production and biomedical application of polymalic acid from renewable biomass and food processing wastes

, , , , &
Pages 216-228 | Received 15 Jun 2020, Accepted 24 Oct 2020, Published online: 05 Nov 2020

References

  • Domurado D, Fournie P, Braud C, et al. In vivo fates of degradable poly(β-malic acid) and of its precursor, malic acid. J Bioact Compat Pol. 2003;18(1):23–32.
  • Portilla-Arias JA, Garcia-Alvarez M, Galbis JA, et al. Biodegradable nanoparticles of partially methylated fungal poly(beta-L-malic acid) as a novel protein delivery carrier . Macromol Biosci. 2008;8(6):551–559.
  • Huang ZW, Laurent V, Chetouani G, et al. New functional degradable and bio-compatible nanoparticles based on poly(malic acid) derivatives for site-specific anti-cancer drug delivery. Int J Pharm. 2012;423(1):84–92.
  • Qiao Y, Liu B, Peng Y, et al. Preparation and biological evaluation of a novel pH-sensitive poly(β-malic acid) conjugate for antitumor drug delivery (vol 42, pg 3495, 2018). Int J Mol Med. 2019;44:1595–1595.
  • Feng J, Li T, Zhang X, et al. Efficient production of polymalic acid from xylose mother liquor, an environmental waste from the xylitol industry, by a T-DNA-based mutant of Aureobasidium pullulans. Appl Microbiol Biotechnol. 2019;103(16):6519–6527.
  • Kövilein A, Kubisch C, Cai L, et al. Malic acid production from renewables: a review. J Chem Technol Biotechnol. 2020;95(3):513–526.
  • Zou X, Zhou Y, Yang S-T. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis. Biotechnol Bioeng. 2013;110(8):2105–2113.
  • Prasongsuk S, Lotrakul P, Ali I, et al. The current status of Aureobasidium pullulans in biotechnology. Folia Microbiol (Praha). 2018;63(2):129–140.
  • Chi Z, Liu G-L, Liu C-G, et al. Poly(β-L-malic acid) (PMLA) from Aureobasidium spp. and its current proceedings. Appl Microbiol Biotechnol. 2016;100(9):3841–3851.
  • Zou X, Cheng C, Feng J, et al. Biosynthesis of polymalic acid in fermentation: advances and prospects for industrial application. Crit Rev Biotechnol. 2019;39(3):408–421.
  • Gostincar C, Ohm RA, Kogej T, et al. Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics. 2014;15:549.
  • Wei P, Cheng C, Lin M, et al. Production of poly(malic acid) from sugarcane juice in fermentation by Aureobasidium pullulans: kinetics and process economics. Bioresour Technol. 2017;224:581–589.
  • Xia J, Xu J, Liu X, et al. Economic co-production of poly(malic acid) and pullulan from Jerusalem artichoke tuber by Aureobasidium pullulans HA-4D. BMC Biotechnol. 2017;17(1):20.
  • Zeng W, Zhang B, Li M, et al. Development and benefit evaluation of fermentation strategies for poly(malic acid) production from malt syrup by Aureobasidium melanogenum GXZ-6. Bioresour Technol. 2019;274:479–487.
  • Cao W, Wang Y, Shen F, et al. Efficient β-poly(L-malic acid) production from Jerusalem artichoke by Aureobasidium pullulans ipe-1 immobilized in luffa sponge matrices. Bioresour Technol. 2019;288:121497.
  • Zou X, Wang Y, Tu G, et al. Adaptation and transcriptome analysis of Aureobasidium pullulans in corncob hydrolysate for increased inhibitor tolerance to malic acid production. PLoS One. 2015;10(3):e0121416
  • Woiciechowski AL, Dalmas Neto CJ, de Souza Vandenberghe LP, et al. Lignocellulosic biomass: acid and alkaline pretreatments and their effects on biomass recalcitrance – conventional processing and recent advances. Bioresour Technol. 2020;304:122848.
  • Jin C, Hou W, Yao R, et al. Adaptive evolution of Gluconobacter oxydans accelerates the conversion rate of non-glucose sugars derived from lignocellulose biomass. Bioresour Technol. 2019;289:121623.
  • Cao W, Cao W, Shen F, et al. Membrane-assisted β-poly(L-malic acid) production from bagasse hydrolysates by Aureobasidium pullulans ipe-1. Bioresour Technol. 2020;295:122260.
  • Tu G, Wang Y, Ji Y, et al. The effect of Tween 80 on the polymalic acid and pullulan production by Aureobasidium pullulans CCTCC M2012223. World J Microbiol Biotechnol. 2015;31(1):219–226.
  • Yegin S, Saha BC, Kennedy GJ, et al. Valorization of egg shell as a detoxifying and buffering agent for efficient polymalic acid production by Aureobasidium pullulans NRRL Y-2311-1 from barley straw hydrolysate. Bioresource Technol. 2019;278:130–137.
  • Feng J, Yang J, Yang W, et al. Metabolome- and genome-scale model analyses for engineering of Aureobasidium pullulans to enhance polymalic acid and malic acid production from sugarcane molasses. Biotechnol Biofuels. 2018;11:94
  • Cheng C, Zhou Y, Lin M, et al. Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: fermentation kinetics and economic analysis. Bioresour Technol. 2017;223:166–174.
  • Zou X, Yang J, Tian X, et al. Production of polymalic acid and malic acid from xylose and corncob hydrolysate by a novel Aureobasidium pullulans YJ 6-11 strain. Process Biochem. 2016;51(1):16–23.
  • Leathers TD, Manitchotpisit P. Production of poly(β-L-malic acid) (PMA) from agricultural biomass substrates by Aureobasidium pullulans. Biotechnol Lett. 2013;35(1):83–89.
  • Zan Z, Zou X. Efficient production of polymalic acid from raw sweet potato hydrolysate with immobilized cells of Aureobasidium pullulans CCTCC M2012223 in aerobic fibrous bed bioreactor. J Chem Technol Biotechnol. 2013;88(10):1822–1827.
  • Cheng H, Wang H, Lv J, et al. A novel method to prepare L-Arabinose from xylose mother liquor by yeast-mediated biopurification. Microb Cell Fact. 2011;10:43.
  • West TP. Microbial production of malic acid from biofuel-related coproducts and biomass. Fermentation-Basel. 2017;3(2):14.
  • Wang K, Chi Z, Liu G-L, et al. A novel PMA synthetase is the key enzyme for polymalate biosynthesis and its gene is regulated by a calcium signaling pathway in Aureobasidium melanogenum ATCC62921. Int J Biol Macromol. 2020;156:1053–1063.
  • Feng J, Yang J, Li X, et al. Reconstruction of a genome-scale metabolic model and in silico analysis of the polymalic acid producer Aureobasidium pullulans CCTCC M2012223. Gene. 2017;607:1–8.
  • Yang J, Yang W, Feng J, et al. Enhanced polymalic acid production from the glyoxylate shunt pathway under exogenous alcohol stress. J Biotechnol. 2018;275:24–30.
  • Brown SH, Bashkirova L, Berka R, et al. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid. Appl Microbiol Biotechnol. 2013;97(20):8903–8912.
  • Chen X, Wang Y, Dong X, et al. Engineering rTCA pathway and C4-dicarboxylate transporter for L-malic acid production. Appl Microbiol Biotechnol. 2017;101(10):4041–4052.
  • Song X, Wang Y, Wang P, et al. GATA-type transcriptional factor Gat1 regulates nitrogen uptake and polymalic acid biosynthesis in polyextremotolerant fungus Aureobasidium pullulans. Environ Microbiol. 2020;22(1):229–242.
  • Zhang Y, Feng J, Wang P, et al. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans. Gene. 2019;709:8–16.
  • Liu YQ, Bai CX, Liu Q, et al. Engineered ethanol-driven biosynthetic system for improving production of acetyl-CoA derived drugs in Crabtree-negative yeast. Metab Eng. 2019;54:275–284.
  • Liu JH, Li HL, Xiong H, Xie XX, et al. Two-stage carbon distribution and cofactor generation for improving l-threonine production of Escherichia coli. Biotechnol Bioeng. 2019;116(1):110–120.
  • Kim SG, Noh MH, Lim HG, et al. Molecular parts and genetic circuits for metabolic engineering of microorganisms. FEMS Microbiol Lett. 2018;365:1–10.
  • Wang Y, Song X, Zhang Y, et al. Effects of nitrogen availability on polymalic acid biosynthesis in the yeast-like fungus Aureobasidium pullulans. Microb Cell Fact. 2016;15(1):146.
  • Deutscher J. The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol. 2008;11(2):87–93.
  • Conrad M, Schothorst J, Kankipati HN, et al. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 2014;38(2):254–299.
  • Amodeo GA, Rudolph MJ, Tong L. Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1. Nature. 2007;449(7161):492–U413.
  • Hedbacker K, Carlson M. Regulation of the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase. Eukaryot Cell. 2006;5(12):1950–1956.
  • Roth S, Kumme J, Schüller H-J. Transcriptional activators Cat8 and Sip4 discriminate between sequence variants of the carbon source-responsive promoter element in the yeast Saccharomyces cerevisiae. Curr Genet. 2004;45(3):121–128.
  • Fernandez-Garcia P, Pelaez R, Herrero P, et al. Phosphorylation of yeast hexokinase 2 regulates its nucleocytoplasmic shuttling. J Biol Chem. 2012;287(50):42151–42164.
  • Mojardin L, Vega M, Moreno F, et al. Lack of the NAD+-dependent glycerol 3-phosphate dehydrogenase impairs the function of transcription factors Sip4 and Cat8 required for ethanol utilization in Kluyveromyces lactis. Fungal Genet Biol. 2018;111:16–29.
  • Broach JR. Nutritional control of growth and development in yeast. Genetics. 2012;192(1):73–105.
  • Georis I, Tate JJ, Cooper TG, et al. Tor pathway control of the nitrogen-responsive DAL5 gene bifurcates at the level of Gln3 and Gat1 regulation in Saccharomyces cerevisiae. J Biol Chem. 2008;283(14):8919–8929.
  • Georis I, Tate JJ, Cooper TG, et al. Nitrogen-responsive regulation of GATA protein family activators Gln3 and Gat1 occurs by two distinct pathways, one inhibited by rapamycin and the other by methionine sulfoximine. J Biol Chem. 2011;286(52):44897–44912.
  • Zhang HL, Cai J, Dong JQ, et al. High-level production of poly (β-L: -malic acid) with a new isolated Aureobasidium pullulans strain. Appl Microbiol Biotechnol. 2011;92(2):295–303.
  • Jiang HC, Shen YN, Liu WD, et al. Deletion of the putative stretch-activated ion channel Mid1 is hypervirulent in Aspergillus fumigatus. Fungal Genet Biol. 2014;62:62–70.
  • Rusnak F, Mertz P. Calcineurin: form and function. Physiol Rev. 2000;80(4):1483–1521.
  • Ho DP, Ngo HH, Guo W. A mini review on renewable sources for biofuel. Bioresour Technol. 2014;169:742–749.
  • Saha BC, Iten LB, Cotta MA, Wu YV. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 2005;40(12):3693–3700.
  • Fu HX, Yu L, Lin M, et al. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose. Metab Eng. 2017;40:50–58.
  • Oehling V, Klaassen P, Frick O, et al. L-Arabinose triggers its own uptake via induction of the arabinose-specific Gal2p transporter in an industrial Saccharomyces cerevisiae strain. Biotechnol Biofuels. 2018;11:231
  • Alcaino J, Bravo N, Cordova P, et al. The involvement of Mig1 from Xanthophyllomyces dendrorhous in catabolic repression: an active mechanism contributing to the regulation of carotenoid production. Plos One. 2016;11(9):e0162838.
  • Li J, Lin L, Sun T, et al. Direct production of commodity chemicals from lignocellulose using Myceliophthora thermophila. Metab Eng. 2020;61:416–426.
  • Kehoe S, Zhang X, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury. 2012;43(5):553–572.
  • Mansour HM, Sohn M, Al-Ghananeem A, et al. Materials for pharmaceutical dosage forms: molecular pharmaceutics and controlled release drug delivery aspects. Int J Mol Sci. 2010;11(9):3298–3322.
  • Portilla-Arias JA, García-Alvarez M, Martínez de Ilarduya A, et al. Nanostructurated complexes of poly(beta,L-malate) and cationic surfactants: synthesis, characterization and structural aspects. Biomacromolecules. 2006;7(1):161–170.
  • Portilla-Arias JA, García-Alvarez M, de Ilarduya AM, et al. Ionic complexes of biosynthetic poly(malic acid) and poly(glutamic acid) as prospective drug-delivery systems. Macromol Biosci. 2007;7(7):897–906.
  • Garcı´A-Alvarez M, De Ilarduya AMn, Portilla JA, et al. Ionic complexes of biotechnological polyacids with cationic surfactants. Macromol. Symp. 2008;273(1):85–94.
  • Lanz-Landázuri A, De Ilarduya AM, García-Alvarez M, et al. Poly(β,L-malic acid)/Doxorubicin ionic complex: a pH-dependent delivery system. React Funct Polym. 2014;81:45–53.
  • Nottelet B, Tommaso CD, Mondon K, et al. Fully biodegradable polymeric micelles based on hydrophobic- and hydrophilic-functionalized poly(lactide) block copolymers. J Polym Sci A Polym Chem 2010;48(15):3244–3254.
  • Osanai S, Nakamura K. Effects of complexation between liposome and poly(malic acid) on aggregation and leakage behaviour. Biomaterials. 2000;21(9):867–876.
  • Lanz-Landázuri A, García-Alvarez M, Portilla-Arias J, et al. Poly(methyl malate) nanoparticles: formation, degradation, and encapsulation of anticancer drugs. Macromol Biosci. 2011;11(10):1370–1377.
  • Lanz-Landázuri A, García-Alvarez M, Portilla-Arias J, et al. Modification of microbial polymalic acid with hydrophobic amino acids for drug-releasing nanoparticles. Macromol Chem Phys. 2012;213(15):1623–1631.
  • Portilla-Arias J, Patil R, Hu J, et al. Nanoconjugate platforms development based in poly(β, L-malic acid) methyl esters for tumor drug delivery. J Nanomater. 2010;2010:1–8.
  • Lee B-S, Fujita M, Khazenzon NM, et al. Polycefin, a new prototype of a multifunctional nanoconjugate based on poly(beta-L-malic acid) for drug delivery. Bioconjug Chem. 2006;17(2):317–326.
  • Loyer P, Cammas-Marion S. Natural and synthetic poly(malic acid)-based derivates: a family of versatile biopolymers for the design of drug nanocarriers. J Drug Target. 2014;22(7):556–575.
  • Ljubimova JY, Fujita M, Khazenzon NM, et al. Nanoconjugate based on polymalic acid for tumor targeting. Chem Biol Interact. 2008;171(2):195–203.
  • Ding H, Inoue S, Ljubimov AV, et al. Inhibition of brain tumor growth by intravenous poly(β-L-malic acid) nanobioconjugate with pH-dependent drug release. P Natl Acad SciI USA. 2010;107(42):18143–18148.
  • Israel LL, Braubach O, Galstyan A, et al. A combination of tri-leucine and angiopep-2 drives a polyanionic polymalic acid nanodrug platform across the blood-brain barrier. ACS Nano. 2019;13(2):1253–1271.
  • Sun T, Patil R, Galstyan A, et al. Blockade of a laminin-411-notch axis with CRISPR/Cas9 or a nanobioconjugate inhibits glioblastoma growth through tumor-microenvironment cross-talk. Cancer Res. 2019;79(6):1239–1251.
  • Galstyan A, Markman JL, Shatalova ES, et al. Blood–brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy. Nat Commun. 2019;10(1):13.
  • Wang L, Neoh K-G, Kang E-T, et al. Biodegradable magnetic-fluorescent magnetite/poly(dl-lactic acid-co-alpha,beta-malic acid) composite nanoparticles for stem cell labeling. Biomaterials. 2010;31(13):3502–3511.
  • Black KL, Ljubimova J, Ljubimov A, et al. Polymalic acid based nanoconjugates for imaging. United States patent US 10383958. 2019.
  • Patil R, Galstyan A, Sun T, et al. Polymalic acid chlorotoxin nanoconjugate for near-infrared fluorescence guided resection of glioblastoma multiforme. Biomaterials. 2019;206:146–159.
  • Patil R, Ljubimov AV, Gangalum PR, et al. MRI virtual biopsy and treatment of brain metastatic tumors with targeted nanobioconjugates: nanoclinic in the brain. ACS Nano. 2015;9(5):5594–5608.
  • Patil R, Gangalum PR, Wagner S, et al. Curcumin targeted, polymalic acid-based MRI contrast agent for the detection of Aβ Plaques in Alzheimer's Disease. Macromol Biosci. 2015;15(9):1212–1217.
  • He B, Wan E, Chan-Park MB. Synthesis and degradation of biodegradable photo-cross-linked poly(α,β-malic acid)-based hydrogel. Chem. Mater. 2006;18(17):3946–3955.
  • He B, Zeng J, Nie Y, et al. In situ gelation of supramolecular hydrogel for anti-tumor drug delivery. Macromol Biosci. 2009;9(12):1169–1175.
  • Poon YF, Cao Y, Zhu Y, et al. Addition of beta-malic acid-containing poly(ethylene glycol) dimethacrylate to form biodegradable and biocompatible hydrogels. Biomacromolecules. 2009;10(8):2043–2052.
  • Wang W, Liu Y, Wang J, et al. A novel copolymer poly(lactide-co-beta-malic acid) with extended carboxyl arms offering better cell affinity and hemacompatibility for blood vessel engineering. Tissue Eng Part A. 2009;15(1):65–73.
  • Liu Y, Wang W, Wang J, et al. Blood compatibility evaluation of poly(D,L-lactide-co-beta-malic acid) modified with the GRGDS sequence. Colloids Surf B Biointerfaces. 2010;75(1):370–376.
  • Qiu Y, Wanyan Q, Xie W, et al. Green and biomass-derived materials with controllable shape memory transition temperatures based on cross-linked Poly(L-malic acid). Polymer. 2019;180:121733.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.