1,161
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Biomedical applications of the peptide decorated gold nanoparticles

&
Pages 186-215 | Received 10 Jun 2020, Accepted 09 Nov 2020, Published online: 01 Feb 2021

References

  • Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: a review. Talanta. 2018; 184:537–556.
  • Daraee H, Eatemadi A, Abbasi E, et al. Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):410–422.
  • Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012;41(6):2256–2282.
  • Dykman LA, Khlebtsov NG. Gold Nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae. 2011;3(2):34–55.
  • Jeong H-H, Choi E, Ellis E, et al. Recent advances in gold nanoparticles for biomedical applications: from hybrid structures to multi-functionality. J Mater Chem B. 2019;7(22):3480–3496.
  • Zhang J, Mou L, Jiang X. Surface chemistry of gold nanoparticles for health-related applications. Chem Sci. 2020;11(4):923–936.
  • Mieszawska AJ, Mulder WJM, Fayad ZA, et al. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharmaceutics. 2013;10(3):831–847.
  • Mahato K, Nagpal S, Shah MA, et al. Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. 3 Biotech. 2019;9(2):57
  • Henninot A, Collins JC, Nuss JM. The current state of peptide drug discovery: back to the future? J Med Chem. 2018;61(4):1382–1414.
  • Farhadi T, Hashemian SM. Computer-aided design of amino acid-based therapeutics: a review. Drug Des Devel Ther. 2018;12:1239–1254.
  • Bozovicar K, Bratkovic T. Evolving a peptide: library platforms and diversification strategies. Int J Mol Sci. 2020;21(1):215.
  • Hou W, Zhang X, Liu C-F. Progress in chemical synthesis of peptides and proteins. Trans Tianjin Univ. 2017;23(5):401–419.
  • Jeong WJ, Bu J, Kubiatowicz LJ, et al. Peptide-nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms? Nano Converg. 2018;5(1):38.
  • Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorgan Med Chem. 2018;26(10):2700–2707.
  • Koo HB, Seo J. Antimicrobial peptides under clinical investigation. Peptide Sci. 2019;111:e24122.
  • Divyashree M, Mani MK, Reddy D, et al. Clinical applications of antimicrobial peptides (AMPs): where do we stand now? Protein Pept Lett. 2020;27(2):120–134.
  • Monti S, Barcaro G, Sementa L, et al. Dynamics and self-assembly of bio-functionalized gold nanoparticles in solution: reactive molecular dynamics simulations. Nano Res. 2018;11(4):1757–1767.
  • Walsh TR, Knecht MR. Biointerface structural effects on the properties and applications of bioinspired peptide-based nanomaterials. Chem Rev. 2017;117(20):12641–12704.
  • Bastus NG, Sanchez-Tillo E, Pujals S, et al. Peptides conjugated to gold nanoparticles induce macrophage activation. Mol Immunol. 2009;46:743–748.
  • Bastus NG, Sanchez-Tillo E, Pujals S, et al. Homogeneous conjugation of peptides onto gold nanoparticles enhances macrophage response. ACS Nano. 2009;3(6):1335–1344.
  • Gessner I, Klimpel A, Klußmann M, et al. Interdependence of charge and secondary structure on cellular uptake of cell penetrating peptide functionalized silica nanoparticles. Nanoscale Adv. 2020;2(1):453–462.
  • Spicer CD, Jumeaux C, Gupta B, et al. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev. 2018;47(10):3574–3620.
  • Yang WT, Guo WS, Chang J, et al. Protein/peptide-templated biomimetic synthesis of inorganic nanoparticles for biomedical applications. J Mater Chem B. 2017;5(3):401–417.
  • Zong JY, Cobb SL, Cameron NR. Peptide-functionalized gold nanoparticles: versatile biomaterials for diagnostic and therapeutic applications. Biomater Sci. 2017;5(5):872–886.
  • Liu X, Zhang Q, Knoll W, et al. Rational design of functional peptide-gold hybrid nanomaterials for molecular interactions. Adv Mater. 2020;32(37):2000866.
  • Egorova EA, van Rijt MMJ, Sommerdijk N, et al. One peptide for them all: gold nanoparticles of different sizes are stabilized by a common peptide amphiphile. ACS Nano. 2020;14(5):5874–5886.
  • Govorov AO, Gun'ko YK, Slocik JM, et al. Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects. J Mater Chem. 2011;21(42):16806–16818.
  • Slocik JM, Govorov AO, Naik RR. Plasmonic circular dichroism of peptide-functionalized gold nanoparticles. Nano Lett. 2011;11(2):701–705.
  • Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38(6):1759–1782.
  • Zhang DL, Luo G, Ding XX, et al. Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharm Sin B. 2012;2(6):549–561.
  • Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5(5):442–453.
  • Li T, He XX, Wang ZX. The application of peptide functionalized gold nanoparticles. ACS Sym Ser. 2012;1113:55–68.
  • Chen WH, Luo GF, Zhang XZ. Recent advances in subcellular targeted cancer therapy based on functional materials. Adv Mater. 2019;31(3):1802725.
  • Wang J, Hu X, Xiang D. Nanoparticle drug delivery systems: an excellent carrier for tumor peptide vaccines. Drug Deliv. 2018;25(1):1319–1327.
  • Kodiha M, Wang YM, Hutter E, et al. Off to the organelles - killing cancer cells with targeted gold nanoparticles. Theranostics. 2015;5(4):357–370.
  • Mieszawska AJ, Mulder WJ, Fayad ZA, et al. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm. 2013;10(3):831–847.
  • Chen YP, Xianyu YL, Jiang XY. Surface modification of gold nanoparticles with small molecules for biochemical analysis. Acc Chem Res. 2017;50(2):310–319.
  • Bartczak D, Nitti S, Millar TM, et al. Exocytosis of peptide functionalized gold nanoparticles in endothelial cells. Nanoscale. 2012;4(15):4470–4472.
  • Pujals S, Sabido E, Tarrago T, et al. All-D proline-rich cell-penetrating peptides: a preliminary in vivo internalization study. Biochem Soc T. 2007;35(4):794–796.
  • Pujals S, Bastus NG, Pereiro E, et al. Shuttling gold nanoparticles into tumoral cells with an amphipathic proline-rich peptide. Chembiochem. 2009;10(6):1025–1031.
  • Krpetic Z, Saleemi S, Prior IA, et al. Negotiation of intracellular membrane barriers by TAT-modified gold nanoparticles. ACS Nano. 2011;5(6):5195–5201.
  • Nativo P, Prior IA, Brust M. Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano. 2008;2(8):1639–1644.
  • Petersen S, Barchanski A, Taylor U, et al. Penetratin-conjugated gold nanoparticles - design of cell-penetrating nanomarkers by femtosecond laser ablation. J Phys Chem C. 2011;115(12):5152–5159.
  • Tiwari PM, Eroglu E, Bawage SS, et al. Enhanced intracellular translocation and biodistribution of gold nanoparticles functionalized with a cell-penetrating peptide (VG-21) from vesicular stomatitis virus. Biomaterials. 2014;35(35):9484–9494.
  • Lee JS, Tung CH. Enhancing the cellular delivery of nanoparticles using lipo-oligoarginine peptides. Adv Funct Mater. 2012;22(23):4924–4930.
  • Singh L, Parboosing R, Kruger HG, et al. Intracellular localization of gold nanoparticles with targeted delivery in MT-4 lymphocytes. Adv Nat Sci: Nanosci Nanotechnol. 2016;7(4):045013.
  • Tkachenko AG, Xie H, Liu YL, et al. Cellular trajectories of peptide-modified gold particle complexes: Comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem. 2004;15(3):482–490.
  • Wei L, Yang QY, Xiao LH. Tempo-spatially resolved cellular dynamics of human immunodeficiency virus transacting activator of transcription (Tat) peptide-modified nanocargos in living cells. Nanoscale. 2014;6(17):10207–10215.
  • Yang C, Uertz J, Yohan D, et al. Peptide modified gold nanoparticles for improved cellular uptake, nuclear transport, and intracellular retention. Nanoscale. 2014;6(20):12026–12033.
  • Ye S, Kang N, Chen M, et al. Tat/HA2 peptides conjugated AuNR@pNIPAAm as a photosensitizer carrier for near infrared triggered photodynamic therapy. Mol Pharm. 2015;12(7):2444–2458.
  • Cesbron Y, Shaheen U, Free P, et al. TAT and HA2 facilitate cellular uptake of gold nanoparticles but do not lead to cytosolic localisation. Plos One. 2015;10(4):e0121683.
  • Oliveira S, van Rooy I, Kranenburg O, et al. Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. Int J Pharm. 2007;331(2):211–214.
  • Wang GK, Norton AS, Pokharel D, et al. KDEL peptide gold nanoconstructs: promising nanoplatforms for drug delivery. Nanomedicine. 2013;9(3):366–374.
  • Oh E, Delehanty JB, Sapsford KE, et al. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano. 2011;5(8):6434–6448.
  • Sun LL, Liu DJ, Wang ZX. Functional gold nanoparticle-peptide complexes as cell-targeting agents. Langmuir. 2008;24(18):10293–10297.
  • Todorova N, Chiappini C, Mager M, et al. Surface presentation of functional peptides in solution determines cell internalization efficiency of TAT conjugated nanoparticles. Nano Lett. 2014;14(9):5229–5237.
  • Santi M, Maccari G, Mereghetti P, et al. Rational design of a transferrin-binding peptide sequence tailored to targeted nanoparticle internalization. Bioconjug Chem. 2017;28(2):471–480.
  • Wang GK, Papasani MR, Cheguru P, et al. Gold-peptide nanoconjugate cellular uptake is modulated by serum proteins. Nanomed-Nanotechnol. 2012;8(6):822–832.
  • Albanese A, Chan WCW. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano. 2011;5(7):5478–5489.
  • Ojea-Jimenez I, Garcia-Fernandez L, Lorenzo J, et al. Facile preparation of cationic gold nanoparticle-bioconjugates for cell penetration and nuclear targeting. ACS Nano. 2012;6(9):7692–7702.
  • Thakor AS, Jokerst J, Zavaleta C, et al. Gold Nanoparticles: a revival in precious metal administration to patients. Nano Lett. 2011;11(10):4029–4036.
  • Chen WH, Chen JX, Cheng H, et al. A new anti-cancer strategy of damaging mitochondria by pro-apoptotic peptide functionalized gold nanoparticles. Chem Commun (Camb). 2013;49(57):6403–6405.
  • Ma XC, Wang XB, Zhou M, et al. A mitochondria-targeting gold-peptide nanoassembly for enhanced cancer-cell killing. Adv Healthc Mater. 2013;2(12):1638–1643.
  • Akrami M, Balalaie S, Hosseinkhani S, et al. Tuning the anticancer activity of a novel pro-apoptotic peptide using gold nanoparticle platforms. Sci Rep. 2016;6:31030.
  • Galbiati E, Gambini L, Civitarese V, et al. “Blind” targeting in action: from phage display to breast cancer cell targeting with peptide-gold nanoconjugates. Pharmacol Res. 2016;111:155–162.
  • Jimenez-Mancilla N, Ferro-Flores G, Ocampo-Garcia B, et al. Multifunctional targeted radiotherapy system for induced tumours expressing gastrin-releasing peptide receptors. CNANO. 2012;8(2):193–201.
  • Vilchis-Juarez A, Ferro-Flores G, Santos-Cuevas C, et al. Molecular targeting radiotherapy with cyclo-RGDfK(C) peptides conjugated to Lu-177-labeled gold nanoparticles in tumor-bearing mice. J. Biomed. Nanotechnol. 2014;10:393–404.
  • Li YJ, Zhao LZ, Xu XY, et al. Design of Tc-99(m)-labeled low generation dendrimer-entrapped gold nanoparticles for targeted single photon emission computed tomography/computed tomography imaging of gliomas. J Biomed Nanotechnol. 2019;15(6):1201–1212.
  • Antosh MP, Wijesinghe DD, Shrestha S, et al. Enhancement of radiation effect on cancer cells by gold-pHLIP. Proc Natl Acad Sci U S A. 2015;112(17):5372–5376.
  • Yao L, Danniels J, Moshnikova A, et al. pHLIP peptide targets nanogold particles to tumors. Proc Natl Acad Sci U S A. 2013;110(2):465–470.
  • Qu XC, Li XX, Liang JN, et al. Micro-CT Imaging of RGD-conjugated gold nanorods targeting tumor in vivo. J. Nanomater. 2016;2016:1–13.
  • Wu MH, Zhang YY, Zhang Y, et al. Tumor angiogenesis targeting and imaging using gold nanoparticle probe with directly conjugated cyclic NGR. RSC Adv. 2018;8(3):1706–1716.
  • Sun MM, Peng D, Hao HJ, et al. Thermally triggered in situ assembly of gold nanoparticles for cancer multimodal imaging and photothermal therapy. ACS Appl Mater Interfaces. 2017;9(12):10453–10460.
  • Zhang L, Su HL, Cai JL, et al. A multifunctional platform for tumor angiogenesis-targeted chemo-thermal therapy using polydopamine-coated gold nanorods. ACS Nano. 2016;10(11):10404–10417.
  • Chen Q, Wang H, Liu H, et al. Multifunctional dendrimer-entrapped gold nanoparticles modified with RGD peptide for targeted computed tomography/magnetic resonance dual-modal imaging of tumors. Anal Chem. 2015;87(7):3949–3956.
  • Zhao Y, Liu W, Tian Y, et al. Anti-EGFR peptide-conjugated triangular gold nanoplates for computed tomography/photoacoustic imaging-guided photothermal therapy of non-small cell lung cancer. ACS Appl Mater Interfaces. 2018;10(20):16992–17003.
  • Lee SB, Lee YJ, Cho SJ, et al. Antigen-free radionuclide-embedded gold nanoparticles for dendritic cell maturation, tracking, and strong antitumor immunity. Adv Healthc Mater. 2018;7:e170369.
  • Kumar A, Ma HL, Zhang X, et al. Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials. 2012;33(4):1180–1189.
  • Kumar A, Huo SD, Zhang X, et al. Neuropilin-1-targeted gold nanoparticles enhance therapeutic efficacy of platinum(IV) drug for prostate cancer treatment. ACS Nano. 2014;8(5):4205–4220.
  • Ali MRK, Wu Y, Ghosh D, et al. Nuclear membrane-targeted gold nanoparticles inhibit cancer cell migration and invasion. ACS Nano. 2017;11(4):3716–3726.
  • Alkilany AM, Boulos SP, Lohse SE, et al. Homing peptide-conjugated gold nanorods: the effect of amino acid sequence display on nanorod uptake and cellular proliferation. Bioconjugate Chem. 2014;25(6):1162–1171.
  • Chanda N, Shukla R, Katti KV, et al. Gastrin releasing protein receptor specific gold nanorods: breast and prostate tumor avid nanovectors for molecular imaging. Nano Lett. 2009;9(5):1798–1805.
  • Heidari Z, Sariri R, Salouti M. Gold nanorods-bombesin conjugate as a potential targeted imaging agent for detection of breast cancer. J Photochem Photobio B. 2014;130:40–46.
  • Chanda N, Kattumuri V, Shukla R, et al. Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc Natl Acad Sci U S A. 2010;107(19):8760–8765.
  • Avvakumova S, Galbiati E, Pandolfi L, et al. Development of U11-functionalized gold nanoparticles for selective targeting of urokinase plasminogen activator receptor-positive breast cancer cells. Bioconjug Chem. 2014;25(8):1381–1386.
  • Huang XH, Peng XH, Wang YQ, et al. A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands (vol 4, pg 5887, 2010). ACS Nano. 2011;5(8):6765–6765.
  • Hosta-Rigau L, Olmedo I, Arbiol J, et al. Multifunctionalized gold nanoparticles with peptides targeted to gastrin-releasing peptide receptor of a tumor cell line. Bioconjug Chem. 2010;21(6):1070–1078.
  • Huang XH, Peng XH, Wang YQ, et al. A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano. 2010;4(10):5887–5896.
  • Jha S, Ramadori F, Quarta S, et al. Binding and uptake into human hepatocellular carcinoma cells of peptide-functionalized gold nanoparticles. Bioconjug Chem. 2017;28(1):222–229.
  • Poon W, Zhang X, Bekah D, et al. Targeting B16 tumors in vivo with peptide-conjugated gold nanoparticles. Nanotechnology. 2015;26(28):285101.
  • Park H, Tsutsumi H, Mihara H. Cell penetration and cell-selective drug delivery using α-helix peptides conjugated with gold nanoparticles . Biomaterials. 2013;34(20):4872–4879.
  • Park H, Tsutsumi H, Mihara H. Cell-selective intracellular drug delivery using doxorubicin and α-helical peptides conjugated to gold nanoparticles. Biomaterials. 2014;35(10):3480–3487.
  • Chen GC, Xie YS, Peltier R, et al. Peptide-decorated gold nanoparticles as functional nano-capping agent of mesoporous silica container for targeting drug delivery. ACS Appl Mater Interfaces. 2016;8(18):11204–11209.
  • See V, Free P, Cesbron Y, et al. Cathepsin L digestion of nanobioconjugates upon endocytosis. ACS Nano. 2009;3(9):2461–2468.
  • Parween S, Ali A, Chauhan VS. Non-natural amino acids containing peptide-capped gold nanoparticles for drug delivery application. ACS Appl Mater Interfaces. 2013;5(14):6484–6493.
  • Kalimuthu K, Lubin BC, Bazylevich A, et al. Gold nanoparticles stabilize peptide-drug-conjugates for sustained targeted drug delivery to cancer cells. J. Nanobiotechnol. 2018;16:34.
  • Hou Z, Wang Z, Liu R, et al. The effect of phospho-peptide on the stability of gold nanoparticles and drug delivery. J Nanobiotechnology. 2019;17(1):88.
  • Bartczak D, Muskens OL, Sanchez-Elsner T, et al. Manipulation of in vitro angiogenesis using peptide-coated gold nanoparticles. ACS Nano. 2013;7(6):5628–5636.
  • Bartczak D, Muskens OL, Nitti S, et al. Nanoparticles for inhibition of in vitro tumour angiogenesis: synergistic actions of ligand function and laser irradiation. Biomater Sci. 2015;3(5):733–741.
  • Gobin AM, Moon JJ, West JL. EphrinA1-targeted nanoshells for photothermal ablation of prostate cancer cells. Int J Nanomed. 2008;3:351–358.
  • Heidari Z, Salouti M, Sariri R. Breast cancer photothermal therapy based on gold nanorods targeted by covalently-coupled bombesin peptide. Nanotechnology. 2015;26(19):195101.
  • Tan HX, Huang YZ, Xu JH, et al. Spider toxin peptide lycosin-I functionalized gold nanoparticles for in vivo tumor targeting and therapy. Theranostics. 2017;7(12):3168–3178.
  • Patino T, Mahajan U, Palankar R, et al. Multifunctional gold nanorods for selective plasmonic photothermal therapy in pancreatic cancer cells using ultra-short pulse near-infrared laser irradiation. Nanoscale. 2015;7(12):5328–5337.
  • Li X, Xing LX, Hu Y, et al. An RGD-modified hollow silica@Au core/shell nanoplatform for tumor combination therapy. Acta Biomater. 2017; 62:273–283.
  • Ali MRK, Wu Y, Tang Y, et al. Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins. Proc Natl Acad Sci U S A. 2017;114(28):E5655–E5663.
  • Qiu WX, Liu LH, Li SY, et al. ACPI conjugated gold nanorods as nanoplatform for dual image guided activatable photodynamic and photothermal combined therapy in vivo. Small. 2017;13(18):1603956.
  • Meyers JD, Cheng Y, Broome AM, et al. Peptide-targeted gold nanoparticles for photodynamic therapy of brain cancer. Part Part Syst Charact. 2015;32(4):448–457.
  • Wu L, Xu F, Reinhard BM. Nanoconjugation prolongs endosomal signaling of the epidermal growth factor receptor and enhances apoptosis. Nanoscale. 2016;8(28):13755–13768.
  • Wang NN, Zhao ZL, Lv YF, et al. Gold nanorod-photosensitizer conjugate with extracellular pH-driven tumor targeting ability for photothermal/photodynamic therapy. Nano Res. 2014;7(9):1291–1301.
  • Oh MH, Yu JH, Kim I, et al. Genetically programmed clusters of gold nanoparticles for cancer cell-targeted photothermal therapy. ACS Appl Mater Interfaces. 2015;7(40):22578–22586.
  • Pedrosa P, Heuer-Jungemann A, Kanaras AG, et al. Potentiating angiogenesis arrest in vivo via laser irradiation of peptide functionalised gold nanoparticles. J. Nanobiotechnol. 2017;15:85.
  • Roma-Rodrigues C, Heuer-Jungemann A, Fernandes AR, et al. Peptide-coated gold nanoparticles for modulation of angiogenesis in vivo. Int. J. Nanomed. 2016;11:2633–2639.
  • Gormley AJ, Malugin A, Ray A, et al. Biological evaluation of RGDfK-gold nanorod conjugates for prostate cancer treatment. J Drug Target. 2011;19(10):915–924.
  • Silva F, Zambre A, Campello MPC, et al. Interrogating the role of receptor-mediated mechanisms: biological fate of peptide-functionalized radiolabeled gold nanoparticles in tumor mice. Bioconjug Chem. 2016;27(4):1153–1164.
  • Yang Y, Zhang L, Cai JL, et al. Tumor angiogenesis targeted radiosensitization therapy using gold nanoprobes guided by MRI/SPECT imaging. ACS Appl Mater Interfaces. 2016;8(3):1718–1732.
  • Guerrero S, Araya E, Fiedler JL, et al. Improving the brain delivery of gold nanoparticles by conjugation with an amphipathic peptide. Nanomedicine (Lond). 2010;5(6):897–913.
  • Guerrero S, Herance JR, Rojas S, et al. Synthesis and in vivo evaluation of the biodistribution of a F-18-labeled conjugate gold-nanoparticle-peptide with potential biomedical application. Bioconjugate Chem. 2012;23(3):399–408.
  • Prades R, Guerrero S, Araya E, et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials. 2012;33(29):7194–7205.
  • Oller-Salvia B, Sanchez-Navarro M, Ciudad S, et al. MiniAp-4: a venom-inspired peptidomimetic for brain delivery. Angew Chem Int Ed Engl. 2016;55(2):572–575.
  • Lee JH, Engler JA, Collawn JF, et al. Receptor mediated uptake of peptides that bind the human transferrin receptor. Eur J Biochem. 2001;268(7):2004–2012.
  • Praca C, Rai A, Santos T, et al. A nanoformulation for the preferential accumulation in adult neurogenic niches. J Control Release. 2018;284:57–72.
  • Ruff J, Hüwel S, Kogan MJ, et al. The effects of gold nanoparticles functionalized with ß-amyloid specific peptides on an in vitro model of blood-brain barrier. Nanomedicine. 2017;13(5):1645–1652.
  • Albertini B, Mathieu V, Iraci N, et al. Tumor targeting by peptide-decorated gold nanoparticles. Mol Pharm. 2019;16(6):2430–2444.
  • Xu XY, Liu K, Wang Y, et al. A multifunctional low-generation dendrimer-based nanoprobe for the targeted dual mode MR/CT imaging of orthotopic brain gliomas. J Mater Chem B. 2019;7(23):3639–3643.
  • Frigell J, Garcia I, Gomez-Vallejo V, et al. Ga-68-labeled gold glyconanoparticles for exploring blood-brain barrier permeability: preparation, biodistribution studies, and improved brain uptake via neuropeptide conjugation. J Am Chem Soc. 2014;136(1):449–457.
  • Cheng Y, Meyers JD, Agnes RS, et al. Addressing brain tumors with targeted gold nanoparticles: a new gold standard for hydrophobic drug delivery? Small. 2011;7(16):2301–2306.
  • Dixit S, Novak T, Miller K, et al. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale. 2015;7(5):1782–1790.
  • Cheng Y, Dai Q, Morshed RA, et al. Blood-brain barrier permeable gold nanoparticles: an efficient delivery platform for enhanced malignant glioma therapy and imaging. Small. 2014;10(24):5137–5150.
  • Morshed RA, Muroski ME, Dai Q, et al. Cell-penetrating peptide-modified gold nanoparticles for the delivery of doxorubicin to brain metastatic breast cancer. Mol Pharm. 2016;13(6):1843–1854.
  • Lu W, Melancon MP, Xiong CY, et al. Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res. 2011;71(19):6116–6121.
  • Kogan MJ, Bastus NG, Amigo R, et al. Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett. 2006;6(1):110–115.
  • Araya E, Olmedo I, Bastus NG, et al. Gold nanoparticles and microwave irradiation inhibit beta-amyloid amyloidogenesis. Nanoscale Res Lett. 2008;3(11):435–443.
  • Olmedo I, Araya E, Sanz F, et al. How changes in the sequence of the peptide CLPFFD-NH2 can modify the conjugation and stability of gold nanoparticles and their affinity for beta-amyloid fibrils. Bioconjugate Chem. 2008;19(6):1154–1163.
  • Xiong N, Zhao YJ, Dong XY, et al. Design of a molecular hybrid of dual peptide inhibitors coupled on aunps for enhanced inhibition of amyloid beta-protein aggregation and cytotoxicity. Small. 2017;13(13):1601666.
  • Yin TT, Xie WJ, Sun J, et al. Penetratin peptide-functionalized gold nanostars: enhanced BBB Permeability and NIR photothermal treatment of Alzheimer's disease using ultralow irradiance. ACS Appl Mater Interfaces. 2016;8(30):19291–19302.
  • Ruff J, Hassan N, Morales-Zavala F, et al. CLPFFD-PEG functionalized NIR-absorbing hollow gold nanospheres and gold nanorods inhibit β-amyloid aggregation . J Mater Chem B. 2018;6(16):2432–2443.
  • Li M, Guan Y, Zhao A, et al. Using multifunctional peptide conjugated Au nanorods for monitoring β-amyloid aggregation and chemo-photothermal treatment of Alzheimer's disease. Theranostics. 2017;7(12):2996–3006.
  • Yang H, Fung SY, Xu S, et al. Amino acid-dependent attenuation of toll-like receptor signaling by peptide-gold nanoparticle hybrids. ACS Nano. 2015;9(7):6774–6784.
  • Yang H, Zhou YZ, Fung SY, et al. Amino acid structure determines the immune responses generated by peptide-gold nanoparticle hybrids. Part Part Syst Charact. 2013;30(12):1039–1043.
  • Yang H, Kozicky L, Saferali A, et al. Endosomal pH modulation by peptide-gold nanoparticle hybrids enables potent anti-inflammatory activity in phagocytic immune cells. Biomaterials. 2016;111:90–102.
  • Cruz LJ, Rueda F, Cordobilla B, et al. Targeting nanosystems to human DCs via Fc receptor as an effective strategy to deliver antigen for immunotherapy. Mol Pharm. 2011;8(1):104–116.
  • Mocan T, Matea C, Tabaran F, et al. in vitro administration of gold nanoparticles functionalized with MUC-1 protein fragment generates anticancer vaccine response via macrophage activation and polarization mechanism. J Cancer. 2015;6(6):583–592.
  • Cai H, Degliangeli F, Palitzsch B, et al. Glycopeptide-functionalized gold nanoparticles for antibody induction against the tumor associated mucin-1 glycoprotein. Bioorgan Med Chem. 2016;24(5):1132–1135.
  • Almeida JPM, Lin AY, Figueroa ER, et al. In vivo gold nanoparticle delivery of peptide vaccine induces anti-tumor immune response in prophylactic and therapeutic tumor models. Small. 2015;11(12):1453–1459.
  • Lin AY, Lunsford J, Bear AS, et al. High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro. Nanoscale Res Lett. 2013;8(1):72.
  • Cheung WH, Chan VSF, Pang HW, et al. Conjugation of latent membrane protein (LMP)-2 epitope to gold nanoparticles as highly immunogenic multiple antigenic peptides for induction of Epstein-Barr virus-specific cytotoxic T-lymphocyte responses in vitro. Bioconjug Chem. 2009;20(1):24–31.
  • Chen YS, Hung YC, Lin WH, et al. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology. 2010;21(19):195101.
  • Lee CH, Syu SH, Chen YS, et al. Gold nanoparticles regulate the blimp1/pax5 pathway and enhance antibody secretion in B-cells. Nanotechnology. 2014;25(12):125103.
  • Di Gianvincenzo P, Calvo J, Perez S, et al. Negatively charged glyconanoparticles modulate and stabilize the secondary structures of a gp120 V3 loop peptide: toward fully synthetic HIV vaccine candidates. Bioconjugate Chem. 2015;26(4):755–765.
  • Zhou QQ, Zhang YL, Du J, et al. Different-sized gold nanoparticle activator/antigen increases dendritic cells accumulation in liver-draining lymph nodes and CD8+ T cell responses. ACS Nano. 2016;10(2):2678–2692.
  • Safari D, Marradi M, Chiodo F, et al. Gold nanoparticles as carriers for a synthetic Streptococcus pneumoniae type 14 conjugate vaccine. Nanomedicine (Lond). 2012;7(5):651–1112.
  • Dakterzada F, Mobarez AM, Roudkenar MH, et al. Induction of humoral immune response against Pseudomonas aeruginosa flagellin(1-161) using gold nanoparticles as an adjuvant. Vaccine. 2016;34(12):1472–1479.
  • Patel PC, Giljohann DA, Seferos DS, et al. Peptide antisense nanoparticles. Proc Natl Acad Sci U S A. 2008;105(45):17222–17226.
  • Acharya S, Hill RA. High efficacy gold-KDEL peptide-siRNA nanoconstruct-mediated transfection in C2C12 myoblasts and myotubes. Nanomed.-Nanotechnol. 2014;10(2):329–337.
  • Sun TM, Simmons R, Huo D, et al. Targeted delivery of anti-miR-712 by VCAM1-binding Au nanospheres for atherosclerosis therapy. ChemNanoMat. 2016;2(5):400–406.
  • Muroski ME, Morgan TJ, Levenson CW, et al. A gold nanoparticle pentapeptide: gene fusion to induce therapeutic gene expression in mesenchymal stem cells. J Am Chem Soc. 2014;136(42):14763–14771.
  • Peng LH, Huang YF, Zhang CZ, et al. Integration of antimicrobial peptides with gold nanoparticles as unique non-viral vectors for gene delivery to mesenchymal stem cells with antibacterial activity. Biomaterials. 2016; 103:137–149.
  • Peng LH, Niu J, Zhang CZ, et al. TAT conjugated cationic noble metal nanoparticles for gene delivery to epidermal stem cells. Biomaterials. 2014;35(21):5605–5618.,
  • Yi Y, Kim HJ, Mi P, et al. Targeted systemic delivery of siRNA to cervical cancer model using cyclic RGD-installed unimer polyion complex-assembled gold nanoparticles. J. Control. Release. 2016; 244:247–256.
  • Kim HJ, Takemoto H, Yi Y, et al. Precise engineering of siRNA delivery vehicles to tumors using polyion complexes and gold nanoparticles. ACS Nano. 2014;8(9):8979–8991.
  • Gong NQ, Teng XC, Li JH, et al. Antisense oligonucleotide-conjugated nanostructure-targeting lncRNA MALAT1 inhibits cancer metastasis. ACS Appl Mater Interfaces. 2019;11(1):37–42.
  • Niu J, Chu Y, Huang YF, et al. Transdermal gene delivery by functional peptide-conjugated cationic gold nanoparticle reverses the progression and metastasis of cutaneous melanoma. ACS Appl Mater Interfaces. 2017;9(11):9388–9401.
  • Huschka R, Barhoumi A, Liu Q, et al. Gene Silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA. ACS Nano. 2012;6(9):7681–7691.
  • French GL. Clinical impact and relevance of antibiotic resistance. Adv Drug Deliver Rev. 2005;57(10):1514–1527.
  • Hancock REW, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24(12):1551–1557.
  • Maleki H, Rai A, Pinto S, et al. High Antimicrobial activity and low human cell cytotoxicity of core-shell magnetic nanoparticles functionalized with an antimicrobial peptide. ACS Appl Mater Interfaces. 2016;8(18):11366–11378.
  • Casciaro B, Moros M, Rivera-Fernandez S, et al. Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a(1-21)NH2 as a reliable strategy for antipseudomonal drugs. Acta Biomater. 2017; 47:170–181.
  • Yeom JH, Lee B, Kim D, et al. Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intracellular Salmonella enterica serovar Typhimurium. Biomaterials. 2016; 104:43–51.
  • Chen WY, Chang HY, Lu JK, et al. Self-assembly of antimicrobial peptides on gold nanodots: against multidrug-resistant bacteria and wound-healing application. Adv Funct Mater. 2015;25(46):7189–7199.
  • Fan DX, Yao C, Zhou WY, et al. Ultrashort lipopeptides self-assembled with gold nanoparticles as potent antimicrobial agents. J Nanosci Nanotechnol. 2018;18(12):8124–8132.
  • Rai A, Pinto S, Evangelista MB, et al. High-density antimicrobial peptide coating with broad activity and low cytotoxicity against human cells. Acta Biomater. 2016; 33:64–77.
  • Querido MM, Felgueiras HP, Rai A, et al. Cecropin-melittin functionalized polyurethane surfaces prevent staphylococcus epidermidis adhesion without inducing platelet adhesion and activation. Adv Mater Interfaces. 2018;5(24):1801390.
  • White AD, Nowinski AK, Huang WJ, et al. Decoding nonspecific interactions from nature. Chem Sci. 2012;3(12):3488–3494.
  • Chen SF, Cao ZQ, Jiang SY. Ultra-low fouling peptide surfaces derived from natural amino acids. Biomaterials. 2009;30(29):5892–5896.
  • Nowinski AK, White AD, Keefe AJ, et al. Biologically Inspired Stealth Peptide-Capped Gold Nanoparticles. Langmuir. 2014;30(7):1864–1870.
  • Nowinski AK, Sun F, White AD, et al. Sequence, structure, and function of peptide self-assembled monolayers. J Am Chem Soc. 2012;134(13):6000–6005.
  • Wu JN, Lin Y, Li H, et al. Zwitterionic stealth peptide-capped 5-aminolevulinic acid prodrug nanoparticles for targeted photodynamic therapy. J Colloid Interface Sci. 2017;485:251–259.
  • Wu JN, Han HJ, Jin Q, et al. Design and proof of programmed 5-aminolevulinic acid prodrug nanocarriers for targeted photodynamic cancer therapy. ACS Appl Mater Interfaces. 2017;9(17):14596–14605.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.