14,090
Views
38
CrossRef citations to date
0
Altmetric
Review Articles

Microalgae culture quality indicators: a review

, &
Pages 457-473 | Received 10 Jun 2020, Accepted 26 Oct 2020, Published online: 02 Mar 2021

Refrences

  • Guiry MD. How many species of algae are there? J Phycol. 2012;48(4):1057–1063.
  • Moreno-Garrido I. Microalgae immobilization: current techniques and uses. Bioresour Technol. 2008;99(10):3949–3964.
  • Tredici MR. Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels. 2010;1(1):143–162.
  • Fleischman D. Photosynthesis. In Sperelakis, N. editor. Cell physiology source book. Cambridge: Academis Press Inc.; 1995. pp. 682–696.
  • Masojídek J, Kiblízek M, Torzillo G. Photosynthesis in microalgae. In A. Richmond, editor, Handbook of microalgal culture. Oxford, UK: Blackwell Science; 2004. pp. 21–39.
  • Richmond A. Handbook of microalgal culture: biotechnology and applied phycology. Oxford (OX, UK); Ames (Iowa, USA): Blackwell Science; 2004.
  • Volk RB, Furkert FH. Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res. 2006;161(2):180–186.
  • Rodríguez-Meizoso I, Jaime L, Santoyo S, et al. Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. J Pharm Biomed Anal. 2010;51(2):456–463.
  • Herrero M, Castro-Puyana M, Mendiola JA, et al. Compressed fluids for the extraction of bioactive compounds. Trends in Analytical Chemistry. 2013;43:67–83.
  • Singh A, Nigam PS, Murphy JD. Renewable fuels from algae: an answer to debatable land-based fuels. Bioresour Technol. 2011;102(1):10–16.
  • Brennan L, Owende P. Biofuels from microalgae: towards meeting advanced fuel standards. In Advanced biofuels and bioproducts, J.W. Lee, editor. NewYork (NY): Springer; 2013. pp. 553–599.
  • Ibáñez E, Cifuentes A. Benefits of using algae as natural sources of functional ingredients. J Sci Food Agric. 2013;93(4):703–709.
  • Priyadarshani I, Rath B. Commercial and industrial applications of microalgae—a review. J Algal Biomass Util. 2012;3(4):89–100.
  • Pérez-López P, González-García S, Ulloa RG, et al. Life cycle assessment of the production of bioactive compounds from Tetraselmis suecica at pilot scale. J Cleaner Prod. 2014;64:323–331.
  • Subhadra B. Algal biorefinery-based industry: an approach to address fuel and food insecurity for a carbon-smart world. J Sci Food Agric. 2011;91(1):2–13.
  • Markou G, Nerantzis E. Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv. 2013;31(8):1532–1542.
  • Belasco W. Algae burgers for a hungry world? The rise and fall of Chlorella cuisine. Technol Cult. 1997;38(3):608–634.
  • Grobbelaar JU. Microalgal biomass production: challenges and realities. Photosynth Res. 2010;106(1–2):135–144.
  • Jerney J, Spilling K. Large scale cultivation of microalgae: open and closed systems. Methods Mol Biol. 2018;1980:1–8.
  • Gifuni I, Pollio A, Safi C, et al. Current bottlenecks and challenges of the microalgal biorefinery. Trends Biotechnol. 2019;37(3):242–252.
  • Filali R, Taidi B, Pareau D. Optimization of a raceway pond system for wastewater treatment: a review. Crit Rev Biotechnol. 2019;39(3):422–435.
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.
  • Jorquera O, Kiperstok A, Sales EA, et al. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol. 2010;101(4):1406–1413.
  • Pérez-López P, de Vree JH, Feijoo G, et al. Comparative life cycle assessment of real pilot reactors for microalgae cultivation in different seasons. Appl Energy. 2017;205:1151–1164.
  • da Silva TL, Reis A. Scale-up problems for the large cale production of algae. In Algal biorefinery: An integrated approach. Cham: Springer International Publishing; 2015. p. 125–149.
  • Rad AH, Kasaie Z. A comparative study on different methods for the evaluation of baker’s yeast bioactivity. Int J Food Prop. 2017;20(1):100–106.
  • Brindley Alías C, García-Malea López MC, Acién Fernández FG, et al. Influence of power supply in the feasibility of Phaeodactylum tricornutum cultures. Biotechnol Bioeng. 2004;87(6):723–733.
  • Häder DP, Kumar HD, Smith RC, et al. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci. 2007;6(3):267–285.
  • Béchet Q, Shilton A, Fringer OB, et al. Mechanistic modelling of broth temperature in outdoor photobioreactors. Environ Sci Technol. 2010;44(6):2197–2203.
  • Tolnai S. A method for viable cell count. Methods Cell Science. 1972;1:37–38.
  • Bonora A, Mares D. A simple colorimetric method for detecting cell viability in cultures of eukaryotic microorganisms. Curr Microbio. 1982;7(4):217–222.
  • Day JG, McLellan MR. Cryopreservation and freeze-drying protocols. Methods Mol Biol. 1995;38:81–89.
  • Clarke JM, Gillings MR, Altúavilla N, et al. Potential problems with fluorescein diacetate assays of cell viability when testing natural products for antimicrobial activity. J Biol Methods. 2001;46:261–267.
  • Mori F, Erata M, Watanabe MM. Cryopreservation of cyanobacteria and green algae in the NIES collection. Microbio Cult Collec. 2002;17:45–55.
  • Garvey M, Moriceau B, Passow U. Appicability of the FDA assay to determine the viability of marine phytoplankton under different environmental conditions. Mar Ecol Prog Ser. 2007;352:17–26.
  • Franklin NM, Adams MS, Satuber JL, et al. Development of an improved rapid enzyme inhibition bioassay with marine and freshwater microalgae using flow cytometry. Arch Environ Contam Toxicology. 2001;40:469–480.
  • Gonzalez-Barreiro O, Rioboo C, Herrero C, et al. Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms. Environ Pollut. 2006;144(1):266–271.
  • Rioboo C, O’Connor JE, Prado R, et al. Cell proliferation alterations in Chlorella cells under stress conditions. Aquat Toxicol. 2009;94(3):229–237.
  • Adler NE, Schmitt-Jansen M, Altenburger R. Flow cytometry as a tool to study phytotoxic modes of action. Environ Toxicol Chem. 2007;26(2):297–306.
  • Davey H. Life, death and in-between: meanings and methods in microbiology. Appl Environ Microbiol. 2011;77(16):5571–5576.
  • Hyka P, Lickova S, Přibyl P, et al. Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol Adv. 2013;31(1):2–16.
  • Marchão L, Lopes da Silva T, Gouveia L, et al. Microalgae-mediated brewery wastewater treatment: effect of dilution rate on nutrient removal rates, biomass biochemical composition, and cell physiology. J Appl Phycol. 2018;30(3):1583–1595.
  • Lopes da Silva T, Passarinho PC, Galriça R, et al. Evaluation of the ethanol tolerance for wild and mutant Synechocystis strains by flow cytometry. Biotechnol Rep. 2018;17:137–147.
  • Sato M, Murata Y, Mizusauma M, et al. A simple and rapid dual fluorescence viability assay for microalgae. Microbiol. Cult. Coll. 2004;20(2):53–59.
  • Capasso JM, Cossío BR, Berl T, et al. A colorimetric assay for determination of cell viability in algal cultures. Biomol Eng. 2003;20(4–6):133–138.
  • Berridge MV, Tan AS. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys. 1993;303(2):474–482.
  • McCrady MH. The numerical interpretation of fermentation-tube results. J Infect Dis. 1915;17(1):183–212.
  • Allen E. A contribution to the quantitative study of plankton. J Mar Biol Ass. 1919;12(1):1–8.
  • Throndsen J. The dilution-culture method. In: Sournia A., editor. Phytoplankton manual. Paris: UNESCO; 1978. pp. 218–224.
  • Othman R, Wollum AG. Evaluation of some methods for enumeration of nitrogen-fixing blue-green algae in soil. J Elisha Mitchell Sci Soc. 1987;103(3):94–100.
  • An KH, Lassus P, Maggi P, et al. Dinoflagellate cyst changes and winter environmental conditions in Vilaine Bay, southern Brittany (France). Botanica Marina. 1992;35(1):61–67.
  • Itakura S, Imai I, Itoh K. Seed bank” of coastal planktonic diatoms in bottom sediments of Hiroshima Bay, Seto Inland Sea, Japan. Mar Biol. 1997;128(3):497–508.
  • Harris AS, Jones KJ, Lewis J. An assessment of the accuracy and reproducibility of the most probable number (MPN) technique in estimating numbers of nutrient stressed diatoms in sediment samples. J Exp Mar Biol Ecol. 1998;231(1):21–30.
  • McQuoid MR. Pelagic and benthic environmental controls on the spatial distribution of a viable diatom propagule bank on the Swedish west coast. J Phycol. 2002;38(5):881–893.
  • Furuya K, Marumo R. The structure of the phytoplankton community in the subsurface chlorophyll maxima in the western North Pacific Ocean. J Plankton Res. 1983;5(3):393–406.
  • Jochem FJ. On the seasonal occurrence of autotrophic naked nanoflagellates in Kiel Bight, western Baltic. Estuarine Coastal Shelf Sci. 1990;31(2):189–202.
  • Throndsen J, Kristiansen S. Micromonas pusilla (Prasinophyceae) as part of picoplankton and nanoplankton communities of the Barents Sea. Polar Res. 1991;10(1):201–207.
  • Backe-Hansen P, Throndsen J. Occurrence of pico- and smaller nanoplanktonic flagellates in the inner Oslofjord, eastern Norway, during the breeding season of the blue mussel (Mytilus edulis L.). Sarsia. 2002;87(1):65–74.
  • Andersen P, Throndsen J. Estimating cell numbers. In: Hallegraeff, G.M., Anderson, D.M., Cembella, A.D. editors. Manual on harmful marine microalgae. Paris: UNESCO; 2003. pp. 99–129.
  • Cullen JJ, MacIntyre HL. On the use of the serial dilution culture method to enumerate viable phytoplankton in natural communities of plankton subjected to ballast water treatment. J Appl Phycol. 2016;28(1):279–298.
  • Chaudhari VR, Vyawahare A, Bhattacharjee SK, et al. Enhanced excision repair and lack of PSII activity contribute to higher UV survival of Chlamydomonas reinhardtii cells in dark. Plant Physiol Biochem. 2015;88:60–69.
  • Casas-Monroy O, Chan P-S, Linley RD, et al. Comparison of three techniques to evaluate the number of viable phytoplankton cells in ballast water after ultraviolet irradiation treatment. J Appl Phycol. 2016;28(5):2821–2830.
  • Berges JA, Falkowski PG. Physiological stress and cell death in marine phytoplankton: induction of proteases in response to nitrogen or light limitation. Limnol Oceanogr. 1998;43(1):129–135.
  • Peperzak L, Duin RNM, Colijn F, et al. Growth and mortality of flagellates and non-flagellate cells of Phaeocystis globosa (Prymnesiophyceae). J Plankton Res. 2000;22(1):107–119.
  • Brussaard CPD. Viral control of phytoplankton populations – a review. J Eukaryot Microbiol. 2004;51(2):125–138.
  • Franklin DJ, Brussaard CD, Berges JA. What is the role and nature of programmed cell death in phytoplankton ecology? Eur J Phycol. 2006;20:160–170.
  • Veldhuis MJW, Kraay GW, Timmermans KR. Cell death in phytoplankton: correlation between changes in membrane permeability, photosynthetic activity, pigmentation and growth. Eur J Phycol. 2001;36(2):167–177.
  • Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–257.
  • Sydney T, Marshall-Thompson JA, Kapoore RV, et al. The effect of high-intensity ultraviolet light to elicit microalgal cell lysis and enhance lipid extraction. Metabolites. 2018;8(4):65.
  • Bramucci AR, Case RJ. Phaeobacter inhibens induces apoptosis-like programmed cell death in calcifying Emiliania Huxleyi. Sci Rep. 2019;9(1):5215.
  • Gallardo-Rodríguez JJ, López-Rosales L, Sánchez-Mirón A, et al. Rapid method for the assessment of cell lysis in microalgae cultures. J Appl Phycol. 2016;28(1):105–112.
  • Ludovico P, Sansonetty F, Corte-Real M. Assessment of mitochondrial membrane potential in yeast cell populations by flow cytometry. Microbiology. 2001;147(Pt 12):3335–3343.
  • Marchi E, Cavalieri D. Yeast as a model to investigate the mitochondrial role in adaptation to dietary fat and calorie surplus. Genes Nutr. 2008;3(3–4):159–166.
  • Ansehn S, Nilsson L. Direct membrane-damaging effect of ketoconazole and tioconazole on Candida albicans demonstrated by bioluminescent assay of ATP. Antimicrob Agents Chemother. 1984;26(1):22–25.
  • Breeuwer P, Drocourt JL, Bunschoten N, et al. Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product. Appl Environ Microbiol. 1995;61(4):1614–1619.
  • Czekanska EM. Assessment of cell proliferation with resazurin-based fluorescent dye. Methods Mol Biol. 2011;740:27–32.
  • Peperzak L, Brussaard CPD. Flow cytometric applicability of fluorescentvitality probes on phytoplankton. J. Phycol. 2011;47(3):692–702.
  • Brussaard CPD, Marie D, Thyrhaug R, et al. Flow cytometric analysis of phytoplankton viability following viral infection. Aquat Microb Ecol. 2001;26:157–166.
  • Stoecker DK, Stevens K, Gustafson DE. Grazing on Pfiesteria piscicida by microzooplankton. Aquat Microb Ecol. 2000;22:261–270.
  • Petrescu CM, Turcus V, Mihali CV, et al. Development by flow cytometry of bioassays based on Chlorella for environmental monitoring. Studia Universitatis “Vasile Goldiş”, Seria Ştiinţele Vieţii. 2016;26(2):275–286.
  • Machado MD, Soares EV. Development of a short-term assay based on the evaluation of the plasma membrane integrity of the alga Pseudokirchneriella subcapitata. Appl Microbiol Biotechnol. 2012;95(4):1035–1042.
  • Olsen RO, Hess-Erga O, Larsen A, et al. Dual staining with CFDA-AM and SYTOX Blue in flow cytometry analysis of UV-irradiated Tetraselmis suecica to evaluate vitality. Aquat Biol. 2016;25:39–52.
  • Sosik HM, Olson RJ, Armbrust EV. Flow cytometry in phytoplankton research. In: D.J. Suggett. (eds.), Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Develo App Phycol. 2010. 4:171–185.
  • Franklin NM, Stauber JL, Adams SA. Improved methods of conducting microalgal bioassays using flow cytometry. In Ostrander, G.K., editor. Techniques in aquatic toxicology. Boca Raton, Florida: CRC Publishers; 2005. pp. 735–755.
  • Chacόn-Lee TL, Gonzàlez-Mariño GE. Microalgae for “healthy” foods—possibilities and challenges. Compr Rev Food Sci Food Saf. 2010;9(6):655–675.
  • Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004;65(6):635–648.
  • Belay A. Mass culture of Spirulina outdoors – The Earthrise Farms experience. In: Vonshak A. editors, Spirulina platensis (Arthrospira): physiology, cell biotechnology and biotechnology. London (UK): Taylor and Francis; 1998. pp.131–158.
  • Grobbelaar JU. Quality control and assurance: crucial for the sustainability of the applied phycology industry. J Appl Phycol. 2003;15(2/3):209–215.
  • Gulati OP, Ottaway PB. Legislation relating to nutraceuticals in the European Union with a particular focus on botanical-sourced products. Toxicology. 2006;221(1):75–87.
  • Serra AR, Costa L. Process and product control in an industrial scale microalgae production plant. Conference Proceedings, 2015.
  • Renaud SM, Thinh LV, Lambrinidis G, et al. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture. 2002;211(1–4):195–214.
  • Breuer G, Lamers PP, Martens DE, et al. Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus. Bioresour Technol. 2013;143:1–9.
  • He Q, Yang H, Wu L, et al. Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresour Technol. 2015;191:219–228.
  • Mitra M, Patidar SK, George B, et al. A euryhaline Nannochloropsis gaditana with potential for nutraceutical (EPA) and biodiesel production. Algal Research. 2015a;8:161–167.
  • Van Wagenen J, Miller TW, Hobbs S, et al. Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies. 2012;5(3):731–740.
  • Couso I, Vila M, Vigara J, et al. Synthesis of carotenoids and regulation of the carotenoid biosynthesis pathway in response to high light stress in the unicellular microalga Chlamydomonas reinhardtii. Eur J Phycol. 2012;47(3):223–232.
  • Torzillo G, Vonshak A. Environmental stress physiology with reference to mass cultures. In: Amos Richmond, Qiang Hu, editors. Handbook of microalgal culture. Oxford: John Wiley & Sons, Ltd.; 2013. pp. 90–113.
  • Guckert J, Cooksey K. Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH induced cell cycle inhibition. J Phycol. 1990;26(1):72–79.
  • Sang M, Wang M, Liu J, et al. Effects of temperature, salinity, light intensity, and ph on the eicosapentaenoic acid production of Pinguiococcus pyrenoidosus. J Ocean Univ China. 2012;11(2):181–186.
  • Brányiková I, Maršálková B, Doucha J, et al. Microalgae—novel highly efficient starch producers. Biotechnol Bioeng. 2011;108(4):766–776.
  • Markou G, Chatzipavlidis I, Georgakakis D. Carbohydrates production and bio-flocculation characteristics in cultures of Arthrospira (Spirulina) platensis: improvements through phosphorus limitation process. Bioenerg Res. 2012;5(4):915–925.
  • Pancha I, Chokshi K, George B, et al. Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol. 2014;156:146–154.
  • Jahnke LS. Massive carotenoid accumulation in Dunaliella bardawil induced by ultraviolet-A radiation. J Photochem Photobiol. 1999;48(1):68–74.
  • Hu Q. Environmental effects on cell composition. In: Richmond A, editor. Handbook of microalgal culture: biotechnology and applied phycology. Oxford: Blackwell Publishing Ltd.; 2004. pp. 83–93.
  • Forján E, Navarro F, Cuaresma M, et al. Microalgae: fast-growth sustainable green factories. Crit Rev Environ Sci Technol. 2015;45(16):1705–1755.
  • Fox RD. Spirulina Production & Potential. Edisud, Paris, France, 1996. ISBN 2-84744-883-X.
  • Wu Z, Duangmanee P, Zhao P, et al. The effects of light, temperature, and nutrition on growth and pigment accumulation of three Dunaliella salina strains isolated from saline soil. Jundishapur J Microbiol. 2016;9(1):e26732.
  • Chrismadha T, Borowitzka MA. Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactor. J Appl Phycol. 1994;6(1):67–74.
  • Guedes AC, Meireles LA, Amaro HM, et al. Changes in lipid class and fatty acid composition of cultures of Pavlova lutheri, in response to light intensity. J Am Oil Chem Soc. 2010;87(7):791–801.
  • Sukenik A, Beardall J, Kromkamp JC, et al. Photosynthetic performance of outdoor Nannochloropsis mass cultures under a wide range of environmental conditions. Aquat Microb Ecol. 2009;56:297–308.
  • Touloupakis E, Cicchi B, Silva-Benavides AM, et al. Effect of high pH on growth of Synechocystis sp. PCC 6803 cultures and their contamination by golden algae (Poterioochromonas sp. Appl Microbiol Biotechnol. 2016;100(3):1333–1341.
  • Mingyang M, Danni Y, Yue H, et al. Effective control of Poterioochromonas malhamensis in pilot-scale culture of Chlorella sorokiniana GT-1 by maintaining CO2-mediated low culture pH. Algal Res. 2017;26:436–444.
  • Badger MR, Spalding MH. CO2 acquisition concentration and fixation in cyanobacteria and algae. In: Leegood, R.C., Sharkey, T.D., Von Caemmerer, S. editors. Photosynthesis: physiology and metabolism, Chapter 16:. Dordrecht, The Netherland: Kluwer Academic Publishers; 2000. pp. 369–397.
  • Giordano M, Beardall J, Raven JA. CO2-concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol. 2005;56:99–131.
  • Izumo A, Fujiwara S, Oyama Y, et al. Physicochemical properties of starch in Chlorella change depending on the CO2 concentration during growth: comparison of structure and properties of pyrenoid and stroma starch. Plant Sci. 2007;172(6):1138–1147.
  • Fernández-Sevilla JM, Acién-Fernández FG, Molina-Grima E. Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol. 2010;86(1):27–40.
  • Cakmak T, Angun P, Demiray YE, et al. Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol Bioeng. 2012;109(8):1947–1957.
  • Ben Amor-Ben Ayed H, Taidi B, Ayadi H, et al. Magnesium uptake by the green microalga Chlorella vulgaris in batch cultures. J Microbiol Biotechnol. 2016;26(3):503–510.
  • Zhang Y, Chen X, Gueydan C, et al. Plasma membrane changes during programmed cell deaths. Cell Res. 2018;28(1):9–21.
  • Veloso AC, Ferreira EC. Online analysis for industrial bioprocesses: broth analysis. Cur Develo Biotechnol Bioeng. 2017;23:679–704.
  • Crouch SP, Kozlowski R, Slater KJ, et al. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods. 1993;160(1):81–88.
  • Venkateswaran K, Hattori N, La Duc MT, et al. ATP as a biomarker of viable microorganisms in clean-room facilities. J Microbiol Methods. 2003;52(3):367–377.
  • Torres E, Cid A, Herrero C, et al. Effect of cadmium on growth, ATP content, carbon fixation and ultrastructure in the marine diatom. Phaeodactylum Tricornutum Bohlin. Water Air Soil Poll. 2000;117(1/4):1–14.
  • Siragusa GR, Dorsa WJ, Cutter CN, et al. Use of a newly developed rapid microbial ATP bioluminescence assay to detect microbial contamination on poultry caracasses. J Biolumin Chemilumin. 1996;11(6):297–301.
  • Koca N, Karadeniz F, Burdurlu HS. Effect of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chem. 2007;100(2):609–615.
  • Mathur S, Singh P, Mehta P, et al. Effects of high temperature and low pH on photosystem 2 photochemistry in spinach thylakoid membranes. Biologia Plant. 2011;55(4):747–751.
  • Takahashi T. Applicability of automated cell counter with a chlorophyll detector in routine management of microalgae. Sci Rep. 2018;8(1):4967.
  • Masojídek J, Koblížek M, Torzillo G. Photosynthesis in microalgae. In: Richmond A, Hu Q, editor, Handbook of microalgal culture: applied phycology and biotechnology. Oxford: Wiley Blackwell; 2013. p. 20–39.
  • Cooksey KE, Guckert JB, Williams SA, et al. Fluorometric determination of the neutral lipid content of microalgal cells using Nile red. J Microbiol Methods. 1987;6(6):333–345.
  • Cooper MS, Hardin WR, Petersen TW, et al. Visualizing “green oil” in live algal cells. J Biosci Bioeng. 2010;109(2):198–201.
  • Diaz G, Melis M, Batetta B, et al. Hydrophobic characterization of intracellular lipids in situ by nile red red/yellow emission ratio. Micron. 2008;39(7):819–824.
  • Guzmán HM, Valido A, De La J, et al. Analysis of interspecific variation in relative fatty acid composition: use of flow cytometry to estimate unsaturation index and relative polyunsaturated fatty acid content in microalgae. J Appl Phycol. 2011;23:7–15.
  • Guzmán HM, Valido A, De La J, et al. Quick estimation of intraspecific variation of fatty acid composition in Dunaliella salina using flow cytometry and Nile red. J Appl Phycol. 2012;24:1237–1243.
  • Thompson GA. Lipids and membrane function in green algae. Biochimica et Biophysica Acta (BBA) – Lipids and Lipid Metabolism. 1996;1302(1):17–45.
  • Kangani CO, Kelley DE, DeLany JP. New method for GC/FID and GC–C-IRMS analysis of plasma free fatty acid concentration and isotopic enrichment. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;873(1):95–101.
  • Mandal S, Patnaik R, Singh AK, et al. Comparative assessment of various lipid extraction protocols and optimization of transesterification process for microalgal biodiesel production. Environ Technol. 2013;34(13–16):2009–2018.
  • Al-Rashed SA, Ibrahim MM, El-Gaaly GA, et al. Evaluation of radical scavenging system in two microalgae in response to interactive stresses of UV-B radiation and nitrogen starvation. Saudi J Biol Sci. 2016;23(6):706–712.
  • Pikula KS, Zakharenko AM, Aruoja V, et al. Oxidative stress and its biomarkers in microalgal ecotoxicology. Curr Opin Toxicol. 2019;13:8–15.
  • Treimo J, Vegarud G, Langsrud T, et al. Use of DNA quantification to measure growth and autolysis of Lactococcus and Propionibacterium spp. in mixed populations. Appl Environ Microbiol. 2006;72(9):6174–6182.
  • Darehshouri A, Affenzeller M, Lütz-Meindl U. Cell death upon H2O2 induction in the unicellular green alga Micrasterias. Plant Biology. 2008;10(6):732–745.
  • Yordanova ZP, Woltering EJ, Kapchina-Toteva VM, et al. Mastoparan-induced programmed cell death in the unicellular alga Chlamydomonas reinhardtii. Ann Bot. 2013;111(2):191–205.
  • Segovia M, Haramaty L, Berges JA, et al. Cell death in the unicellular chlorophyte Dunaliella tertiolecta. A hypothesis on the evolution of apoptosis in higher plants. Plant Physiol. 2003;132(1):99–105.
  • Zuppini A, Andreoli C, Baldan B. Heat stress: an inducer of programmed cell death in Chlorella saccharophila. Plant Cell Physiol. 2007;48(7):1000–1009.
  • Choi C. a, nd, Berges JA. New types of metacaspases in phytoplankton reveal diverse origins of cell death proteases. Cell Death Dis. 2013;4(2):e490.
  • Segovia M, Berges JA. Inhibition of caspase-like activities prevents the appearance of reactive oxygen species and dark-induced apoptosis in the unicellular chlorophyte Dunaliella tertiolecta. J Phycol. 2009;45(5):1116–1126.
  • Jiménez C, Capasso JM, Edelstein CL, et al. Different ways to die: cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase. J Exp Bot. 2009;60(3):815–828.
  • Zuppini A, Gerotto C, Baldan B. Programmed cell death and adaptation: two different types of abiotic stress response in a unicellular chlorophyte. Plant Cell Physiol. 2010;51(6):884–895.
  • Trevelyan WE. Induction of autolytic breakdown of RNA in yeast by addition of ethanol and by drying/rehydration. J Sci Food Agric. 1977;28(6):579–588.
  • Zhao J, Fleet GH. Degradation of RNA during the autolysis of Saccharomyces cerevisiae produces predominantly ribonucleotides. J Ind Microbiol Biotechnol. 2005;32(9):415–423.
  • Vayda ME, Yuan ML. The heat shock response of an antarctic alga is evident at 5 °C. Plant Mol Biol. 1994;24(1):229–233.
  • Rolton A, McCullough A, Tuckey NPL, et al. Early biomarker indicators of health in two commercially produced microalgal species important for aquaculture. Aquaculture. 2020;521:735053.
  • Reese KL, Fisher CL, Lane PD, et al. Chemical profiling of volatile organic compounds in the headspace of algal cultures as early biomarkers of algal pond crashes. Sci Rep. 2019;9(1):13866.
  • Seoane M, Esperanza M, Rioboo C, et al. Flow cytometric assay to assess short-term effects of personal care products on the marine microalga Tetraselmis suecica. Chemosphere. 2017;171:339–347.