1,366
Views
28
CrossRef citations to date
0
Altmetric
Review Articles

Degradation of organic pollutants by intimately coupling photocatalytic materials with microbes: a review

, , , , , & show all
Pages 273-299 | Received 17 May 2020, Accepted 29 Sep 2020, Published online: 01 Feb 2021

References

  • Meftaul IM, Venkateswarlu K, Dharmarajan R, et al. Pesticides in the urban environment: a potential threat that knocks at the door. Sci Total Environ. 2020;711:134612–134626.
  • Bielen A, Simatovic A, Kosic-Vuksic J, et al. Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. Water Res. 2017;126:79–87.
  • Megharaj M, Ramakrishnan B, Venkateswarlu K, et al. Bioremediation approaches for organic pollutants: a critical perspective. Environ Int. 2011;37(8):1362–1375.
  • Bellino A, Baldantoni D, Picariello E, et al. Role of different microorganisms in remediating PAH-contaminated soils treated with compost or fungi. J Environ Manage. 2019;252:109675.
  • Onesios KM, Yu JT, Bouwer EJ. Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review. Biodegradation. 2009;20(4):441–466.
  • Do MT, Stuckey DC. Fate and removal of ciprofloxacin in an anaerobic membrane bioreactor (AnMBR). Bioresource Technol. 2019;289:121683.
  • Yin X, Li X, Hua Z, et al. The growth process of the cake layer and membrane fouling alleviation mechanism in a MBR assisted with the self-generated electric field. Water Res. 2020;171:115452–115462.
  • Sharma M, Nandy A, Taylor N, et al. Bioelectrochemical remediation of phenanthrene in a microbial fuel cell using an anaerobic consortium enriched from a hydrocarbon-contaminated site. J Hazard Mater. 2020;389:121845.
  • Yan S, Shi Y, Tao Y, et al. Enhanced persulfate-mediated photocatalytic oxidation of bisphenol A using bioelectricity and a g-C3N4/Fe2O3 heterojunction. Chem Eng J. 2019;359:933–943.
  • Moghiseh Z, Rezaee A, Dehghani S, et al. Microbial electrochemical system for the phenol degradation using alternating current: metabolic pathway study. Bioelectrochemistry. 2019;130:107230.
  • Wang C, Li Y, Tan H, et al. A novel microbe consortium, nano-visible light photocatalyst and microcapsule system to degrade PAHs. Chem Eng J. 2019;359:1065–1074.
  • Sathya U, Keerthi Nithya M, et al. Evaluation of advanced oxidation processes (AOPs) integrated membrane bioreactor (MBR) for the real textile wastewater treatment. J Environ Manage. 2019;246:768–775.
  • Babu DS, Srivastava V, Nidheesh PV, et al. Detoxification of water and wastewater by advanced oxidation processes. Sci Total Environ. 2019;696:133961.
  • Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238(5358):37–38.
  • Marsolek MD, Kirisits MJ, Gray KA, et al. Coupled photocatalytic-biodegradation of 2,4,5-trichlorophenol: effects of photolytic and photocatalytic effluent composition on bioreactor process performance, community diversity, and resistance and resilience to perturbation. Water Res. 2014;50:59–69.
  • Chen B, Song J, Yang L, et al. Coupling UV-H2O2 to accelerate dimethyl phthalate (DMP) biodegradation and oxidation. Biodegradation. 2015;26(6):431–441.
  • Liu XL, Ma R, Zhuang L, et al. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit Rev Env Sci Tec. 2020. DOI:10.1080/10643389.2020.1734433
  • Alharbi NS, Hu B, Hayat T, et al. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials. Front Chem Sci Eng. 2020;14:1124–1135.
  • Hu B, Ai Y, Jin J, et al. Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials. Biochar. 2020;2(1):47–64.
  • Lan YL, Li ZS, Li DH, et al. Visible-light responsive Z-scheme Bi@β-Bi2O3/g-C3N4 heterojunction for efficient photocatalytic degradation of 2,3-dihydroxynaphthalene. Chem Eng J. 2020;392:123686.
  • Nogueira V, Lopes I, Freitas AC, et al. Biological treatment with fungi of olive mill wastewater pre-treated by photocatalytic oxidation with nanomaterials. Ecotoxicol Environ Saf. 2015;115:234–242.
  • Waghmode TR, Kurade MB, Sapkal RT, et al. Sequential photocatalysis and biological treatment for the enhanced degradation of the persistent azo dye methyl red. J Hazard Mater. 2019;371:115–122.
  • Yang L, Zhang Y, Bai Q, et al. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation. J Hazard Mater. 2015;287:252–258.
  • Chen Z, Zhang S, Liu Y, et al. Synthesis and fabrication of g-C3N4-based materials and their application in elimination of pollutants. Sci Total Environ. 2020;731:139054.
  • Rincón A-G, Pulgarin C. Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time. Appl Catal B Environ. 2004;49(2):99–112.
  • He D, Zhang Z, Xing Y, et al. Black phosphorus/graphitic carbon nitride: a metal-free photocatalyst for “green” photocatalytic bacterial inactivation under visible light. Chem Eng J. 2020;384:123258–123268.
  • Gabriel AA, David MMC, Elpa MSC, et al. Decontamination of dried whole black peppercorns using ultraviolet-c irradiation. Food Microbiol. 2020;88:103401–103408.
  • Marsolek MD, Torres CI, Hausner M, et al. Intimate coupling of photocatalysis and biodegradation in a photocatalytic circulating-bed biofilm reactor. Biotechnol Bioeng. 2008;101(1):83–92.
  • Rittmann BE. Biofilms, active substrata, and me. Water Res. 2018;132:135–145.
  • Ding R, Zhao F. Intimate coupling of photocatalysis and biodegradation to synchronously degrade pollutants. Prog Chem. 2017;29(9):1154–1158.
  • Yu ML, Wang JJ, Tang L, et al. Intimate coupling of photocatalysis and biodegradation for wastewater treatment: mechanisms, recent advances and environmental applications. Water Res. 2020;175:115673.
  • Xiong J, Guo S, Zhao T, et al. Degradation of methylene blue by intimate coupling photocatalysis and biodegradation with bagasse cellulose composite carrier. Cellulose. 2020;27(6):3391–3404.
  • Zhang Y, Wang L, Rittmann BE. Integrated photocatalytic-biological reactor for accelerated phenol mineralization. Appl Microbiol Biotechnol. 2010;86(6):1977–1985.
  • Li GZ, Park S, Kang DW, et al. 2,4,5-Trichlorophenol degradation using a novel TiO2-coated biofilm carrier: roles of adsorption, photocatalysis, and biodegradation. Environ Sci Technol. 2011;45(19):8359–8367.
  • Puts GJ, Crouse P, Ameduri BM. Polytetrafluoroethylene: synthesis and characterization of the original extreme polymer. Chem Rev. 2019;119(3):1763–1805.
  • Dong SS, Dong SS, Tian XD, et al. Role of self-assembly coated Er(3+): YAlO3/TiO2 in intimate coupling of visible-light-responsive photocatalysis and biodegradation reactions. J Hazard Mater. 2016;302:386–394.
  • Su YY, Wang XS, Dong SS, et al. Towards a simultaneous combination of ozonation and biodegradation for enhancing tetracycline decomposition and toxicity elimination. Bioresour Technol. 2020;304:123009.
  • Zhou DD, Dong SS, Shi JL, et al. Intimate coupling of an N-doped TiO2 photocatalyst and anode respiring bacteria for enhancing 4-chlorophenol degradation and current generation. Chem Eng J. 2017;317:882–889.
  • Ma Y, Xiong H, Zhao Z, et al. Model-based evaluation of tetracycline hydrochloride removal and mineralization in an intimately coupled photocatalysis and biodegradation reactor. Chem Eng J. 2018;351:967–975.
  • Yan N, Chang L, Gan L, et al. UV photolysis for accelerated quinoline biodegradation and mineralization. Appl Microbiol Biotechnol. 2013;97(24):10555–10561.
  • Ding R, Yan W, Wu Y, et al. Light-excited photoelectrons coupled with bio-photocatalysis enhanced the degradation efficiency of oxytetracycline. Water Res. 2018;143:589–598.
  • Xiong HF, Zou DL, Zhou DD, et al. Enhancing degradation and mineralization of tetracycline using intimately coupled photocatalysis and biodegradation (ICPB). Chem Eng J. 2017;316:7–14.
  • Wang Y, Chen C, Zhou D, et al. Eliminating partial-transformation products and mitigating residual toxicity of amoxicillin through intimately coupled photocatalysis and biodegradation. Chemosphere. 2019;237:124491–124497.
  • Li G, Park S, Rittmann BE. Degradation of reactive dyes in a photocatalytic circulating-bed biofilm reactor. Biotechnol Bioeng. 2012;109(4):884–893.
  • Zhang X, Wu Y, Xiao G, et al. Simultaneous photocatalytic and microbial degradation of dye-containing wastewater by a novel g-C3N4-P25/photosynthetic bacteria composite. PLoS One. 2017;12(3):e0172747.
  • Li G, Park S, Rittmann BE. Developing an efficient TiO2-coated biofilm carrier for intimate coupling of photocatalysis and biodegradation. Water Res. 2012;46(19):6489–6496.
  • Cai H, Sun L, Wang Y, et al. Unprecedented efficient degradation of phenanthrene in water by intimately coupling novel ternary composite Mn3O4/MnO2-Ag3PO4 and functional bacteria under visible light irradiation. Chem Eng J. 2019;369:1078–1092.
  • Qin Z, Zhao Z, Jiao W, et al. Phenanthrene removal and response of bacterial community in the combined system of photocatalysis and PAH-degrading microbial consortium in laboratory system. Bioresour Technol. 2020;301:122736–122744.
  • Qin Z, Zhao Z, Jiao W, et al. Coupled photocatalytic-bacterial degradation of pyrene: removal enhancement and bacterial community responses. Environ Res. 2020;183:109135–109142.
  • Chang L, Zhang Y, Gan L, et al. Internal loop photo-biodegradation reactor used for accelerated quinoline degradation and mineralization. Biodegradation. 2014;25(4):587–594.
  • Pusztahelyi T, Klement E, Szajli E, et al. Comparison of transcriptional and translational changes caused by long-term menadione exposure in Aspergillus nidulans. Fungal Genet Biol. 2011;48(2):92–103.
  • Zhao MY, Shi JL, Zhao ZQ, et al. Enhancing chlorophenol biodegradation: using a co-substrate strategy to resist photo-H2O2 stress in a photocatalytic-biological reactor. Chem Eng J. 2018;352:255–261.
  • Wen D, Li G, Xing R, et al. 2,4-DNT removal in intimately coupled photobiocatalysis: the roles of adsorption, photolysis, photocatalysis, and biotransformation. Appl Microbiol Biotechnol. 2012;95(1):263–272.
  • Zhang L, Xing Z, Zhang H, et al. High thermostable ordered mesoporous SiO2-TiO2 coated circulating-bed biofilm reactor for unpredictable photocatalytic and biocatalytic performance. Appl Catal B Environ. 2016;180:521–529.
  • Xiong H, Dong S, Zhang J, et al. Roles of an easily biodegradable co-substrate in enhancing tetracycline treatment in an intimately coupled photocatalytic-biological reactor. Water Res. 2018;136:75–83.
  • Chi D, Sun D, Yang Z, et al. Bifunctional nest-like self-floating microreactor for enhanced photothermal catalysis and biocatalysis. Environ Sci Nano. 2019;6(12):3551–3559.
  • Hamza MA, El-Shazly AN, Tolba SA, et al. Novel Bi-based photocatalysts with unprecedented visible light-driven hydrogen production rate: experimental and DFT insights. Chem Eng J. 2020;384:123351.
  • Huang MH, Madasu M. Facet-dependent and interfacial plane-related photocatalytic behaviors of semiconductor nanocrystals and heterostructures. Nano Today. 2019;28:100768.
  • Sarawutanukul S, Tomon C, Duangdangchote S, et al. Rechargeable photoactive Zn-Air batteries using NiCo2S4 as an efficient bifunctional photocatalyst towards OER/ORR at the cathode. Batteries Supercaps. 2020;3(6):541–547.
  • Kayani ZN, Anjum M, Riaz S, et al. Role of Mn in biological, optical, and magnetic properties ZnO nano-particles. Appl Phys A. 2020;126(3):197.
  • Bracco E, Butler M, Carnelli P, et al. TiO2 and N-TiO2-photocatalytic degradation of salicylic acid in water: characterization of transformation products by mass spectrometry. Environ Sci Pollut Res Int. 2020;27(23):28469–28479.
  • Zhang H, Liu Z, Li Y, et al. Intimately coupled TiO2/g-C3N4 photocatalysts and in-situ cultivated biofilms enhanced nitrate reduction in water. Appl Surf Sci. 2020;503:144092–144100.
  • Li F, Lan X, Wang L, et al. An efficient photocatalyst coating strategy for intimately coupled photocatalysis and biodegradation (ICPB): powder spraying method. Chem Eng J. 2020;383:123092–123099.
  • Hemberger P, van Bokhoven JA, Perez-Ramirez J, et al. New analytical tools for advanced mechanistic studies in catalysis: photoionization and photoelectron photoion coincidence spectroscopy. Catal Sci Technol. 2020;10(7):1975–1990.
  • Park J, Cho J. Advances in understanding mechanisms of perovskites and pyrochlores as electrocatalysts using in-situ X-ray absorption spectroscopy. Angew Chem Int Ed Engl. 2020;59(36):15314–15324.
  • Celeiro M, Facorro R, Dagnac T, et al. Photodegradation behaviour of multiclass ultraviolet filters in the aquatic environment: removal strategies and photoproduct identification by liquid chromatography-high resolution mass spectrometry. J Chromatogr A. 2019;1596:8–19.
  • Wright RJ, Bosch R, Gibson MI, et al. Plasticizer degradation by marine bacterial isolates: a proteogenomic and metabolomic characterization. Environ Sci Technol. 2020;54(4):2244–2256.
  • Pathakoti K, Manubolu M, Hwang HM. Mechanistic insights into TiO2 and ZnO nanoparticle-induced metabolic changes in Escherichia coli under solar simulated light irradiation. Water Air Soil Poll. 2020;231(1):16.
  • Honda Y, Hagiwara H, Ida S, et al. Application to photocatalytic H2 production of a whole-cell reaction by recombinant Escherichia coli cells expressing [FeFe]-hydrogenase and maturases genes. Angew Chem Int Ed Engl. 2016;55(28):8045–8048.
  • Sakimoto KK, Zhang SJ, Yang PD. Cysteine-cystine photoregeneration for oxygenic photosynthesis of acetic acid from CO2 by a tandem inorganic-biological hybrid system. Nano Lett. 2016;16(9):5883–5887.
  • Sakimoto KK, Wong AB, Yang PD. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science. 2016;351(6268):74–77.
  • Zhou D, Dong S, Ki D, et al. Photocatalytic-induced electron transfer via anode-respiring bacteria (ARB) at an anode that intimately couples ARB and a TiO2 photocatalyst. Chem Eng J. 2018;338:745–751.
  • Zhang C, Fu L, Xu Z, et al. Contrasting roles of phenol and pyrocatechol on the degradation of 4-chlorophenol in a photocatalytic-biological reactor. Environ Sci Pollut Res Int. 2017;24(31):24725–24731.
  • Lizardo-Huerta JC, Sirjean B, Verdier L, et al. Kinetic modeling of the thermal destruction of lewisite. J Hazard Mater. 2020;398:123086.
  • Bennett WFD, He S, Bilodeau CL, et al. Predicting small molecule transfer free energies by combining molecular dynamics simulations and deep learning. J Chem Inf Model. 2020;60(11):5375–5381.
  • Xiong J, Liang Y, Cheng H, et al. Preparation and photocatalytic properties of a bagasse cellulose-supported nano-TiO2 photocatalytic-coupled microbial carrier. Materials. 2020;13(7):1645.
  • Akindoyo JO, Beg MDH, Ghazali S, et al. Polyurethane types, synthesis and applications - a review. RSC Adv. 2016;6(115):114453–114482.
  • Nizzetto L, Bussi G, Futter MN, et al. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environ Sci Processes Impacts. 2016;18(8):1050–1059.
  • Wang BB, Ma SQ, Li Q, et al. Facile synthesis of “digestible”, rigid-and-flexible, bio-based building block for high-performance degradable thermosetting plastics. Green Chem. 2020;22(4):1275–1290.
  • Shieh P, Zhang WX, Husted KEL, et al. Publisher correction: cleavable comonomers enable degradable, recyclable thermoset plastics. Nature. 2020;585(7823):E4.
  • Ho CS, Abidin NHZ, Nugraha MW, et al. Electrospun porous polylactic acid fibers containing CdS for degradation of methylene blue. Fibers Polym. 2020;21(6):1212–1221.
  • Kaseem M, Hamad K, Rehman ZU. Review of recent advances in polylactic acid/TiO2 composites. Materials. 2019;12(22):3659.
  • Talukdar K, Jun B-M, Yoon Y, et al. Novel Z-scheme Ag3PO4/Fe3O4-activated biochar photocatalyst with enhanced visible-light catalytic performance toward degradation of bisphenol A. J Hazard Mater. 2020;398:123025–123025.
  • Bravo-Sanabria CA, Solano-Delgado LC, Ospina-Ospina R, et al. Incorporation of a dioxo-molybdenum (VI) complex into a titanium-functionalized Zr(IV)-based metal-organic framework. Micropor Mesopor Mat. 2020;305:110359.
  • Dong H, Zhang X, Lu Y, et al. Regulation of metal ions in smart metal-cluster nodes of metal-organic frameworks with open metal sites for improved photocatalytic CO2 reduction reaction. Appl Catal B Environ. 2020;276:119173.
  • Schneider J, Matsuoka M, Takeuchi M, et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev. 2014;114(19):9919–9986.
  • Pelaez M, Nolan NT, Pillai SC, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ. 2012;125:331–349.
  • Zhou DD, Xu ZX, Dong SS, et al. Intimate coupling of photocatalysis and biodegradation for degrading phenol using different light types: visible light vs UV Light. Environ Sci Technol. 2015;49(13):7776–7783.
  • Cates LE. Comment on “Intimate coupling of photocatalysis and biodegradation for degrading phenol using different light types: visible light vs. UV light”. Environ Sci Technol. 2015;49(21):13075–13076.
  • Conte P, Agretto A, Spaccini R, et al. Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils. Environ Pollut. 2005;135(3):515–522.
  • Du K, Liu X, Li S, et al. Synthesis of Cu2+ chelated cellulose/magnetic hydroxyapatite particles hybrid beads and their potential for high specific adsorption of histidine-rich proteins. ACS Sustain Chem Eng. 2018;6(9):11578–11586.
  • Abd El Maksod IH, Al-Shehri A, Bawaked S, et al. Structural and photocatalytic properties of precious metals modified TiO2-BEA zeolite composites. Mol Catal. 2017;441:140–149.
  • Temerov F, Ankudze B, Saarinen JJ. TiO2 inverse opal structures with facile decoration of precious metal nanoparticles for enhanced photocatalytic activity. Mater Chem Phys. 2020;242:122471.
  • Vignesh S, Suganthi S, Sundar JK, et al. Highly efficient visible light photocatalytic and antibacterial performance of PVP capped Cd:Ag: ZnO photocatalyst nanocomposites. Appl Surf Sci. 2019;479:914–929.
  • Río JA, Margallo-Balbás E, Song B, et al. Microlamp for in-situ tissue spectroscopy for the dosimetry of photodynamic therapy. Procedia Eng. 2010;5:323–326.
  • Yu K, Zhang T. Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS One. 2012;7(5):e38183.
  • Adav SS, Chen MY, Lee DJ, et al. Degradation of phenol by aerobic granules and isolated yeast Candida tropicalis. Biotechnol Bioeng. 2007;96(5):844–852.
  • Itoh K, Tashiro Y, Uobe K, et al. Root nodule Bradyrhizobium spp. harbor tfdAalpha and cadA, homologous with genes encoding 2,4-dichlorophenoxyacetic acid-degrading proteins. Appl Environ Microbiol. 2004;70(4):2110–2118.
  • Steinle P, Stucki G, Stettler R, et al. Aerobic mineralization of 2,6-dichlorophenol by Ralstonia sp. strain RK1. Appl Environ Microbiol. 1998;64(7):2566–2571.
  • Jaiswal S, Shukla P. Alternative strategies for microbial remediation of pollutants via synthetic biology. Front Microbiol. 2020;11:808.
  • Leong S, Li D, Hapgood K, et al. Ni(OH)2 decorated rutile TiO2 for efficient removal of tetracycline from wastewater. Appl Catal B Environ. 2016;198:224–233.
  • Wang XH, Lin AY. Phototransformation of cephalosporin antibiotics in an aqueous environment results in higher toxicity. Environ Sci Technol. 2012;46(22):12417–12426.
  • Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environ Sci Technol. 2011;45(5):1827–1833.
  • Chen SC, Liao CM. Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci Total Environ. 2006;366(1):112–123.
  • Elie MR, Choi J, Nkrumah-Elie YM, et al. Metabolomic analysis to define and compare the effects of PAHs and oxygenated PAHs in developing zebrafish. Environ Res. 2015;140:502–510.
  • Chen M, Xu P, Zeng G, et al. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol Adv. 2015;33(6 Pt 1):745–755.
  • Bergamini RBM, Azevedo EB, Araújo LRRd. Heterogeneous photocatalytic degradation of reactive dyes in aqueous TiO2 suspensions: decolorization kinetics. Chem Eng J. 2009;149(1–3):215–220.
  • Wang H, Zheng XW, Su JQ, et al. Biological decolorization of the reactive dyes reactive black 5 by a novel isolated bacterial strain Enterobacter sp. EC3. J Hazard Mater. 2009;171(1–3):654–659.
  • Won SW, Han MH, Yun YS. Different binding mechanisms in biosorption of reactive dyes according to their reactivity. Water Res. 2008;42(19):4847–4855.
  • Ponnusami V, Madhuram R, Krithika V, et al. Effects of process variables on kinetics of methylene blue sorption onto untreated guava (Psidium guajava) leaf powder: statistical analysis. Chem Eng J. 2008;140(1–3):609–613.
  • Singh K, Arora S. Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit Rev Environ Sci Technol. 2011;41(9):807–878.
  • Lin YH, Wu CL. Sensitivity analysis of phenol degradation with sulfate reduction under anaerobic conditions. Environ Model Assess. 2011;16(2):213–225.
  • Ma D, Zou D, Zhou D, et al. Phenol removal and biofilm response in coupling of visible-light-driven photocatalysis and biodegradation: effect of hydrothermal treatment temperature. Int Biodeter Biodegr. 2015;104:178–185.
  • Henschler D. Toxicity of chlorinated organic compounds: effects of the introduction of chlorine in organic molecules. Angew Chem Int Ed Engl. 1994;33(19):1920–1935.
  • Lopez-Echartea E, Strejcek M, Mateju V, et al. Bioremediation of chlorophenol-contaminated sawmill soil using pilot-scale bioreactors under consecutive anaerobic-aerobic conditions. Chemosphere. 2019;227:670–680.
  • Wei D, Zhao C, Khan A, et al. Sorption mechanism and dynamic behavior of graphene oxide as an effective adsorbent for the removal of chlorophenol based environmental-hormones: a DFT and MD simulation study. Chem Eng J. 2019;375:121964–121974.
  • Wang JC, Li Y, Li H, et al. A novel synthesis of oleophylic Fe2O3/polystyrene fibers by γ-ray irradiation for the enhanced photocatalysis of 4-chlorophenol and 4-nitrophenol degradation. J Hazard Mater. 2019;379:120806–120814.
  • Grant SB, Azizian M, Cook P, et al. Factoring stream turbulence into global assessments of nitrogen pollution. Science. 2018;359(6381):1266–1268.
  • Luna-Sanguino G, Ruiz-Delgado A, Tolosana-Moranchel A, et al. Solar photocatalytic degradation of pesticides over TiO2-rGO nanocomposites at pilot plant scale. Sci Total Environ. 2020;737:140286.
  • Dias LD, Gebler L, Niemeyer JC, et al. Destination of pesticide residues on biobeds: state of the art and future perspectives in Latin America. Chemosphere. 2020;248:126038.
  • Ojemaye CY, Onwordi CT, Pampanin DM, et al. Presence and risk assessment of herbicides in the marine environment of Camps Bay (Cape Town. South Africa). Sci Total Environ. 2020;738:140346.
  • Escudeiro de Oliveira M, Barroso BL, de Almeida J, et al. Photoelectrocatalytic degradation of 17α-ethinylestradiol and estrone under UV and visible light using nanotubular oxide arrays grown on Ti-0.5wt%W. Environ Res. 2020;191:110044.
  • Roccuzzo S, Beckerman AP, Trogl J. New perspectives on the bioremediation of endocrine disrupting compounds from wastewater using algae-, bacteria- and fungi-based technologies. Int J Environ Sci Technol. 2020. DOI:10.1007/s13762-020-02691-3
  • Dhanirama D, Gronow J, Voulvoulis N. Cosmetics as a potential source of environmental contamination in the UK. Environ Technol. 2012;33(13–15):1597–1608.
  • Naumczyk J, Bogacki J, Marcinowski P, et al. Cosmetic wastewater treatment by coagulation and advanced oxidation processes. Environ Technol. 2014;35(5–8):541–548.
  • Guan J, Qi K, Wang J, et al. Microplastics as an emerging anthropogenic vector of trace metals in freshwater: significance of biofilms and comparison with natural substrates. Water Res. 2020;184:116205–116205.
  • Diaz-Basantes MF, Conesa JA, Fullana A. Microplastics in Honey, Beer, Milk and refreshments in Ecuador as emerging contaminants. Sustainability. 2020;12(14):5514.
  • Rasheed T, Bilal M, Nabeel F, et al. Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environ Int. 2019;122:52–66.
  • Hechmi N, Aissa NB, Abdenaceur H, et al. Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium co-contaminated soils. Environ Sci Pollut Res Int. 2014;21(2):1304–1313.
  • Rahman Z. An overview on heavy metal resistant microorganisms for simultaneous treatment of multiple chemical pollutants at co-contaminated sites, and their multipurpose application. J Hazard Mater. 2020;396:122682.
  • Gong M, Xiao S, Yu X, et al. Research progress of photocatalytic sterilization over semiconductors. RSC Adv. 2019;9(34):19278–19284.
  • Su W, Liu X, Tan L, et al. Rapid sterilization by photocatalytic Ag3PO4/α-Fe2O3 composites using visible light. ACS Sustain Chem Eng. 2020;8(6):2577–2585.
  • Lovley DR. Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ Sci. 2011;4(12):4896–4906.
  • Chen M, Zhou XF, Yu YQ, et al. Light-driven nitrous oxide production via autotrophic denitrification by self-photosensitized Thiobacillus denitrificans. Environ Int. 2019;127:353–360.
  • Wang B, Xiao K, Jiang Z, et al. Biohybrid photoheterotrophic metabolism for significant enhancement of biological nitrogen fixation in pure microbial cultures. Energy Environ Sci. 2019;12(7):2185–2191.
  • Guo JL, Suastegui M, Kelsey K, et al. Light-driven fine chemical production in yeast biohybrids. Science. 2018;362(6416):813–816.
  • Zuniga C, Li T, Guarnieri MT, et al. Synthetic microbial communities of heterotrophs and phototrophs facilitate sustainable growth. Nat Commun. 2020;11(1):3803.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.