1,738
Views
54
CrossRef citations to date
0
Altmetric
Review Articles

Insights into phenolic compounds from microalgae: structural variety and complex beneficial activities from health to nutraceutics

ORCID Icon, , , , , ORCID Icon & show all
Pages 155-171 | Received 07 Jan 2021, Accepted 07 Jan 2021, Published online: 02 Feb 2021

References

  • Naikoo MI, Dar MI, Raghib F, et al. Role and regulation of plants phenolics in abiotic stress tolerance: an overview. In: Khan MIR, Reddy PS, Ferrante A, et al., editors. Plant signaling molecules: role and regulation under stressful environments. Duxford (UK): Woodhead Publishing; 2019.
  • Dakora FD, Phillips DA. Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiol Mol Plant Pathol. 1996;49:1–20.
  • Lattanzio V, Lattanzio VMT, Cardinali A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In: Filippo Imperato, editor. Phytochemistry: advances in research. Trivandrum (India): Research Signpost; 2015.
  • Boudet AM. Evolution and current status of research in phenolic compounds. Phytochemistry. 2007;68:2722–2735.
  • Noel JP, Austin MB, Bomati EK. Structure-function relationships in plant phenylpropanoid biosynthesis. Curr Opin Plant Biol. 2005;8:249–253.
  • Perera D, Soysa P, Wijeratne S. Polyphenols contribute to the antioxidant and antiproliferative activity of Phyllanthus debilis plant in-vitro. BMC Complement Altern Med. 2016;16:339.
  • Xiao J. Stability of dietary polyphenols: it’s never too late to mend? Food Chem Toxicol. 2018;119:3–5.
  • Araújo JR, Gonçalves P, Martel F. Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr Res. 2011;31:77–87.
  • Carrera-Quintanar L, Roa RIL, Quintero-Fabián S, et al. Phytochemicals that influence gut microbiota as prophylactics and for the treatment of obesity and inflammatory diseases. Mediators Inflamm. 2018;2018:9734845.
  • Santangelo R, Silvestrini A, Mancuso C. Ginsenosides, catechins, quercetin and gut microbiota: current evidence of challenging interactions. Food Chem Toxicol. 2019;123:42–49.
  • de la Rosa LA, Moreno-Escamilla JO, Rodrigo-García J, et al. Phenolic compounds. In: Yahia E, Carrillo-Lopez A, editors. Postharvest physiology and biochemistry of fruits and vegetables. Duxford (UK): Woodhead Publishing; 2018.
  • Debelo H, Li M, Ferruzzi MG. Processing influences on food polyphenol profiles and biological activity. Curr Opin Food Sci. 2020;32:90–102.
  • Pérez-Jiménez J, Neveu V, Vos F, et al. Identification of the 100 richest dietary sources of polyphenols: an application of the phenol-explorer database. Eur J Clin Nutr. 2010;64 Suppl 3:S112–S120.
  • Smerilli A, Orefice I, Corato F, et al. Photoprotective and antioxidant responses to light spectrum and intensity variations in the coastal diatom Skeletonema marinoi. Environ Microbiol. 2017;19:611–627.
  • Mekinić IG, Skroza D, Šimat V, et al. Phenolic content of brown algae (Pheophyceae) species: extraction, identification, and quantification. Biomolecules. 2019;9:244.
  • Sabeena Farvin KH, Jacobsen C. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem. 2013;138:1670–1681.
  • Ying-Ying S, Hui W, Gan-Lin G, et al. Green alga Ulva pertusa—a new source of bioactive compounds with antialgal activity. Environ Sci Pollut Res. 2015;22:10351–10359.
  • Klejdus B, Lojková L, Plaza M, et al. Hyphenated technique for the extraction and determination of isoflavones in algae: ultrasound-assisted supercritical fluid extraction followed by fast chromatography with tandem mass spectrometry. J Chromatogr A. 2010;1217:7956–7965.
  • Rico M, López A, Santana-Casiano JM, et al. Variability of the phenolic profile in the diatom Phaeodactylum tricornutum growing under copper and iron stress. Limnol Oceanogr. 2013;58:144–152.
  • Goiris K, Muylaert K, Voorspoels S, et al. Detection of flavonoids in microalgae from different evolutionary lineages. J Phycol. 2014;50:483–492.
  • Goiris K, Van Colen W, Wilches I, et al. Impact of nutrient stress on antioxidant production in three species of microalgae. Algal Res. 2015;7:51–57.
  • Smerilli A, Balzano S, Maselli M, et al. Antioxidant and photoprotection networking in the coastal diatom Skeletonema marinoi. Antioxidants. 2019;8:154.
  • López A, Rico M, Santana-Casiano JM, et al. Phenolic profile of Dunaliella tertiolecta growing under high levels of copper and iron. Environ Sci Pollut Res Int. 2015;22:14820–14828.
  • Al-Mola HF. Antibacterial activity of crude extracts and phlorotannin isolated from the diatom Cymbella Spp. J Pharm Res. 2009;2:304.
  • Duval B, Shetty K, Thomas WH. Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. J Appl Phycol. 1999;11:559.
  • Amsler CD, Fairhead VA. Defensive and sensory chemical ecology of brown algae. Adv Bot Res. 2005;43:1–91.
  • Gastineau R, Davidovich NA, Bardeau JFÇ, et al. Haslea karadagensis (Bacillariophyta): a second blue diatom, recorded from the black sea and producing a novel blue pigment. Eur J Phycol. 2012;47:469–479.
  • Gastineau R, Turcotte F, Pouvreau JB, et al. Marennine, promising blue pigments from a widespread Haslea diatom species complex. Mar Drugs. 2014;12:3161–3189.
  • Kim JD, Lee CG. Systemic optimization of microalgae for bioactive compound production. Biotechnol Bioprocess Eng. 2005;10:418–424.
  • Bull AT, Ward AC, Goodfellow M. Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev. 2000;64:573–606.
  • Del Mondo A, Smerilli A, Sané E, et al. Challenging microalgal vitamins for human health. Microb Cell Fact. 2020;19:201.
  • Singh DP, Prabha R, Meena KK, et al. Induced accumulation of polyphenolics and flavonoids in Cyanobacteria under salt stress protects organisms through enhanced antioxidant activity. AJPS. 2014;05:726–735.
  • Li HB, Cheng KW, Wong CC, et al. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem. 2007;102:771–776.
  • Machu L, Misurcova L, Ambrozova JV, et al. Phenolic content and antioxidant capacity in algal food products. Molecules. 2015;20:1118–1133.
  • Abd El-Baky HH, El Baz FK, El-Baroty GS. Production of phenolic compounds from spirulina maxima microalgae and its protective effects. African J Biotechnol. 2009.
  • Ijaz S, Hasnain S. Antioxidant potential of indigenous cyanobacterial strains in relation with their phenolic and flavonoid contents. Nat Prod Res. 2016;30(11):1297–300.
  • Hajimahmoodi M, Faramarzi MA, Mohammadi N, et al. Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol. 2010;22:43–50.
  • Custódio L, Soares F, Pereira H, et al. Botryococcus braunii and Nannochloropsis oculata extracts inhibit cholinesterases and protect human dopaminergic SH-SY5Y cells from H2O2-induced cytotoxicity. J Appl Phycol. 2015;27:839–848.
  • Banskota AH, Sperker S, Stefanova R, et al. Antioxidant properties and lipid composition of selected microalgae. J Appl Phycol. 2019;31(1):309–318.
  • Safafar H, Wagenen JV, Møller P, et al. Phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Mar Drugs. 2015;13(12):7339–7356.
  • Shetty V, Sibi G. Relationship between total phenolics content and antioxidant activities of microalgae under autotrophic, heterotrophic and mixotrophic growth. J Food Resource Sci. 2014;(1)4:1–9.
  • Choochote W, Suklampoo L, Ochaikul D. Evaluation of antioxidant capacities of green microalgae. J Appl Phycol. 2014.
  • Maadane A, Merghoub N, Ainane T, et al. Antioxidant activity of some Moroccan marine microalgae: pufa profiles, carotenoids and phenolic content. J Biotechnol. 2015;215:13–19.
  • Monteiro M, Santos RA, Iglesias P, et al. Effect of extraction method and solvent system on the phenolic content and antioxidant activity of selected macro- and microalgae extracts. J Appl Phycol. 2020;32;(1):349–362.
  • Lee S-H, Lee J-B, Lee K-W, et al. Antioxidant properties of tidal pool microalgae, Halochlorococcum porphyrae and Oltamannsiellopsis unicellularis from Jeju Island, Korea. Algae. 2010;25:45–56.
  • Strejckova A, Dvorak M, Klejdus B, et al. The strong reaction of simple phenolic acids during oxidative stress caused by nickel, cadmium and copper in the microalga Scenedesmus quadricauda. N Biotechnol. 2019.
  • Bulut O, Akın D, Sönmez Ç, et al. Phenolic compounds, carotenoids, and antioxidant capacities of a thermo-tolerant Scenedesmus Sp. (Chlorophyta) extracted with different solvents. J Appl Phycol. 2019;31:1675–1683.
  • Ulloa G, Otero A, Sánchez M, et al. Effect of Mg, Si, and Sr on growth and antioxidant activity of the marine microalga Tetraselmis suecica. J Appl Phycol. 2012.
  • Chaudhuri D, Ghate NB, Deb S, et al. Assessment of the phytochemical constituents and antioxidant activity of a bloom forming microalgae euglena tuba. Biol Res. 2014;47:24.
  • Cardoso C, Pereira H, Franca J, et al. Lipid composition and some bioactivities of 3 newly isolated microalgae (Tetraselmis Sp. IMP3, Tetraselmis Sp. CTP4, and Skeletonema Sp.). Aquacult Int. 2020; 28:711–727.
  • Freile-Pelegrín Y, Robledo D. Bioactive phenolic compounds from algae. In: Hernández-Ledesma B, Herrero M, editors. Bioactive compounds from marine foods: plant and animal sources. Chichester (UK): Wiley; 2013.
  • Jayanthy A, Kumar PU, Remashree AB. Seasonal and geographical variations in cellular characters and chemical contents in Desmodium gangeticum (L.) DC. – an ayurvedic medicinal plant. Int J Herb Med. 2013;1:34–37.
  • Leyton A, Pezoa-Conte R, Barriga A, et al. Identification and efficient extraction method of phlorotannins from the brown seaweed Macrocystis pyrifera using an orthogonal experimental design. Algal Res. 2016;16:201–208.
  • Hemmi A, Jormalainen V. Nutrient enhancement increases performance of a marine herbivore via quality of its food alga. Ecology. 2002;83:1052–1064.2.0.CO;2]
  • Fairhead VA, Amsler CD, McClintock JB, et al. Lack of defense or phlorotannin induction by UV radiation or mesograzers in Desmarestia anceps and D. menziesii (Phaeophyceae). J Phycol. 2006.
  • Connan S, Delisle F, Deslandes E, et al. Intra-thallus phlorotannin content and antioxidant activity in Phaeophyceae of temperate waters. Bot Mar. 2006;49(1):39–46.
  • Svensson CJ, Pavia H, Toth GB. Do plant density, nutrient availability, and herbivore grazing interact to affect phlorotannin plasticity in the brown seaweed Ascophyllum nodosum. Mar Biol. 2007;151:2177–2181.
  • Peckol P, Krane JM, Yates JL. Interactive effects of inducible defense and resource availability on phlorotannins in the North Atlantic brown alga fucus vesiculosus. Mar Ecol Prog Ser. 1996;138:209–217.
  • Cronin G, Hay ME. Effects of light and nutrient availability on the growth, secondary chemistry, and resistance to herbivory of two brown seaweeds. Oikos. 1996;77:93.
  • Gómez I, Huovinen P. Induction of phlorotannins during UV exposure mitigates inhibition of photosynthesis and DNA damage in the kelp Lessonia nigrescens. Photochem Photobiol. 2010.
  • Swanson AK, Druehl LD. Induction, exudation and the UV protective role of kelp phlorotannins. Aquat Bot. 2002.;73(3):241–253
  • Dillon JG, Tatsumi CM, Tandingan PG, et al. Effect of environmental factors on the synthesis of scytonemin, a UV-screening pigment, in a Cyanobacterium (Chroococcidiopsis Sp.). Arch Microbiol. 2002;177:322–331.
  • Kováčik J, Klejdus B, Bačkor M. Physiological responses of Scenedesmus quadricauda (Chlorophyceae) to UV-A and UV-C light. Photochem Photobiol. 2010;86(3):612–616.
  • Jin P, Wang T, Liu N, et al. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels. Nat Commun. 2015;6:8714.
  • Mukherjee P, Gorain PC, Paul I, et al. Investigation on the effects of nitrate and salinity stress on the antioxidant properties of green algae with special reference to the use of processed biomass as potent fish feed ingredient. Aquac Int. 2020;28(1):211–234.
  • Hamed SM, Selim S, Klöck G, et al. Sensitivity of two green microalgae to copper stress: growth, oxidative and antioxidants analyses. Ecotoxicol Environ Saf. 2017;144:19–25.
  • Belghith T, Athmouni K, Bellassoued K, et al. Physiological and biochemical response of Dunaliella salina to cadmium pollution. J Appl Phycol. 2016;28(2):991–999.
  • Hemmi A, Mäkinen A, Jormalainen V, et al. Responses of growth and phlorotannins in fucus vesiculosus to nutrient enrichment and herbivory. Aquat Ecol. 2005;39(2):201–211.
  • Koivikko R, Loponen J, Honkanen T, et al. Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga fucus vesiculosus, with implications on their ecological functions. J Chem Ecol. 2005;31(1):195–212.
  • Potin P, Bouarab K, Salaün JP, et al. Biotic interactions of marine algae. Curr Opin Plant Biol. 2002;5:308–317.
  • Potin P. Oxidative Burst and Related Responses in Biotic Interactions of Algae. In Algal Chemical Ecology. 2008.
  • Cheynier V, Comte G, Davies KM, et al. Plant phenolics: recent advances on their biosynthesis, genetics, andecophysiology. Plant Physiol Biochem. 2013;72:1–20.
  • Chouhan S, Sharma K, Zha J, et al. Recent advances in the recombinant biosynthesis of polyphenols. Front Microbiol. 2017;8:2259.
  • Marchiosi R, dos Santos WD, Constantin RP, et al. Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochem Rev. 2020;19:865–906.
  • De Vries J, De Vries S, Slamovits CH, et al. How embryophytic is the biosynthesis of phenylpropanoids and their derivatives in streptophyte algae? Plant Cell Physiol. 2017.
  • Davies KM, Jibran R, Zhou Y, et al. The evolution of flavonoid biosynthesis: a bryophyte perspective. Front Plant Sci. 2020;11:7.
  • Lima SAC, Castro PML, Morais R. Biodegradation of P-nitrophenol by microalgae. J Appl Phycol. 2003;15:137–142.
  • Klekner V, Kosaric N. Degradation of phenols by algae. Environ Technol. 2008:493–501.
  • Palanisami S, Saha SK, Lakshmanan U. Laccase and polyphenol oxidase activities of marine cyanobacteria: a study with poly R-478 decolourization. World J Microbiol Biotechnol. 2010;26(1):63–69.
  • Afreen S, Shamsi TN, Baig MA, et al. A novel multicopper oxidase (laccase) from cyanobacteria: purification, characterization with potential in the decolorization of anthraquinonic dye. PLoS One. 2017;12:e0175144.
  • Asadgol Z, Forootanfar H, Rezaei S, et al. Removal of phenol and bisphenol-a catalyzed by laccase in aqueous solution. J Environ Heal Sci Eng. 2014;12:93.
  • Otto B, Schlosser D. First laccase in green algae: purification and characterization of an extracellular phenol oxidase from Tetracystis aeria. Planta. 2014;240:1225–1236.
  • Gribble GW. The diversity of naturally produced organohalogens. Chemosphere. 2003;52:289–297.
  • Laus G. Biological activities of natural halogen compounds. Stud Nat Prod Chem. 2001;25(Part F):757–809.
  • Hughes C, Sun S. Light and brominating activity in two species of marine diatom. Mar Chem. 2016;181:1–9.
  • Roeder V, Collén J, Rousvoal S, et al. Identification of stress gene transcripts in Laminaria digitata (Phaeophyceae) protoplast cultures by expressed sequence tag analysis. J Phycol. 2005;41(6):1227–1235.
  • Dembitsky VM, Tolstikov GA. Natural halogenated furanones, higher terpenes and steroids. Chem Sustain Dev. 2003;11:697–703.
  • Bidleman TF, Andersson A, Jantunen LM, et al. A review of halogenated natural products in arctic, subarctic and nordic ecosystems. Emerg Contam. 2019;5:89–115.
  • Yoo HD, Ketchum SO, France D, et al. A novel phenolic metabolite from the tropical red alga Vidalia Sp. J Nat Prod. 2002;65:51–53.
  • Li K, Li XM, Ji NY, et al. Bromophenols from the marine red alga Polysiphonia urceolata with DPPH radical scavenging activity. J Nat Prod. 2008;71:28–30.
  • Flodin C, Whitfield FB. 4-Hydroxybenzoic acid: a likely precursor of 2,4,6-tribromophenol in Ulva lactuca. Phytochemistry. 1999;51:249–255.
  • Salgado LT, Cinelli LP, Viana NB, et al. A vanadium bromoperoxidase catalyzes the formation of high-molecular-weight complexes between brown algal phenolic substances and alginates. J Phycol. 2009;45(1):193–202.
  • Bertoni G. A key step in phlorotannin biosynthesis revealed. Plant Cell. 2013;25:2770–2770.
  • Agarwal V, Miles ZD, Winter JM, et al. Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chem Rev. 2017;117:5619–5674.
  • Stemmler I, Hense I, Quack B. Marine sources of bromoform in the global open ocean – global patterns and emissions. Biogeosciences. 2015;12:1967–1981.
  • Watson SB. Cyanobacterial and eukaryotic algal odour compounds: signals or by-products? A review of their biological activity. Phycologia. 2003;42:332–350.
  • Küpper FC, Schweigert N, Ar Gall E, et al. Iodine uptake in laminariales involves extracellular, haloperoxidase-mediated oxidation of iodide. Planta. 1998;207:163–171.
  • Syrpas M, Ruysbergh E, Blommaert L, et al. Haloperoxidase mediated quorum quenching by Nitzschia cf pellucida: study of the metabolization of N-acyl homoserine lactones by a benthic diatom. Mar Drugs. 2014;12:352–367.
  • Boo YC. Can plant phenolic compounds protect the skin from airborne particulate matter? Antioxidants. 2019;8:379.
  • Francenia Santos-Sánchez N, Salas-Coronado R, Villanueva-Cañongo C, et al. Antioxidant compounds and their antioxidant mechanism. In: Shalaby E, editor. Antioxidants. IntechOpen; 2019.
  • Leopoldini M, Russo N, Toscano M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011;125:288–306.
  • Hermund DB. Antioxidant properties of seaweed-derived substances. In: Qin Y, editor. Bioactive seaweeds for food applications: natural ingredients for healthy diets. London (UK): Academic Press; 2018.
  • Choi BW, Lee HS, Shin HC, et al. Multifunctional activity of polyphenolic compounds associated with a potential for Alzheimer’s disease therapy from Ecklonia cava. Phyther Res. 2015;29(4):549–553.
  • Choi JS, Haulader S, Karki S, et al. Acetyl- and butyryl-cholinesterase inhibitory activities of the edible brown alga Eisenia bicyclis. Arch Pharm Res. 2015;38:1477–1487.
  • Sugiura Y, Tanaka R, Katsuzaki H, et al. The anti-inflammatory effects of phlorotannins from Eisenia arborea on mouse ear edema by inflammatory inducers. J Funct Foods. 2013;5(4):2019–2023.
  • Sugiura Y, Usui M, Katsuzaki H, et al. Anti-inflammatory effects of 6,6′-bieckol and 6,8′-bieckol from Eisenia arborea on mouse ear swelling. FSTR. 2017;23(3):475–480.
  • Le QT, Li Y, Qian ZJ, et al. Inhibitory effects of polyphenols isolated from marine alga Ecklonia cava on histamine release. Process Biochem. 2009;44:168–176.
  • Mancini-Filho J, Novoa AV, González AEB, et al. Free phenolic acids from the seaweed Halimeda monile with antioxidant effect protecting against liver injury. Z Naturforsch C J Biosci. 2009;64(9-10):657–663.
  • Kim SM, Kang K, Jeon JS, et al. Isolation of phlorotannins from Eisenia bicyclis and their hepatoprotective effect against oxidative stress induced by tert-butyl hyperoxide. Appl Biochem Biotechnol. 2011;165(5-6):1296–1307.
  • Eom SH, Lee MS, Lee EW, et al. Pancreatic lipase inhibitory activity of phlorotannins isolated from Eisenia bicyclis. Phyther Res. 2013;27(1):148–151.
  • Yeo AR, Lee J, Tae IH, et al. Anti-hyperlipidemic effect of polyphenol extract (Seapolynol(™)) and dieckol isolated from Ecklonia cava in in vivo and in vitro Models. Prev Nutr Food Sci. 2012;17:1–7.
  • Padmaperuma G, Kapoore RV, Gilmour DJ, et al. Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing. Crit Rev Biotechnol. 2018;38:690–703.
  • Karadeniz F, Ahn BN, Kim JA, et al. Phlorotannins suppress adipogenesis in pre-adipocytes while enhancing osteoblastogenesis in pre-osteoblasts. Arch Pharm Res. 2015;38:2172–2182.
  • Jung HA, Jung HJ, Jeong HY, et al. Phlorotannins isolated from the edible brown alga Ecklonia stolonifera exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBPα and PPARγ. Fitoterapia. 2014;92:260–269.
  • Kwon TH, Wu YX, Kim JS, et al. 6,6′-Bieckol inhibits adipocyte differentiation through downregulation of adipogenesis and lipogenesis in 3T3-L1 cells. J Sci Food Agric. 2015;95:1830–1837.
  • Kang MC, Ding Y, Kim HS, et al. Inhibition of Adipogenesis by Diphlorethohydroxycarmalol (DPHC) through AMPK activation in adipocytes. Mar Drugs. 2019;17(1):44.
  • Murugan AC, Karim MR, Yusoff MBM, et al. New insights into seaweed polyphenols on glucose homeostasis. Pharm Biol. 2015;53:1087–1097.
  • Moon HE, Islam MN, Ahn BR, et al. Protein tyrosine phosphatase 1B and α-glucosidase inhibitory phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis. Biosci Biotechnol Biochem. 2011;75(8):1472–1480.
  • Heo SJ, Hwang JY, Choi JI, et al. Protective effect of diphlorethohydroxycarmalol isolated from Ishige okamurae against high glucose-induced-oxidative stress in human umbilical vein endothelial cells. Food Chem Toxicol. 2010;48(6):1448–1454.
  • Lee SH, Han JS, Heo SJ, et al. Protective effects of dieckol isolated from Ecklonia cava against high glucose-induced oxidative stress in human umbilical vein endothelial cells. Toxicol Vitr. 2010.
  • Yuan YV, Walsh NA. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem Toxicol. 2006.
  • Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem. 2006;99(1):191–203.
  • Hotta H, Nagano S, Ueda M, et al. Higher radical scavenging activities of polyphenolic antioxidants can be ascribed to chemical reactions following their oxidation. Biochim Biophys Acta Gen Subj. 2002.
  • Erşan S, Güçlü Üstündağ Ö, Carle R, et al. Identification of phenolic compounds in red and green pistachio (Pistacia vera l.) Hulls (Exo- and Mesocarp) by HPLC-DAD-ESI-(HR)-MSn. J Agric Food Chem. 2016;64:5334–5344.
  • Dugo L, Russo M, Cacciola F, et al. Determination of the phenol and tocopherol content in italian high-quality extra-virgin olive oils by using LC-MS and multivariate data analysis. Food Anal Methods. 2020;13:1027–1041.
  • Klikarová J, Rotondo A, Cacciola F, et al. The phenolic fraction of Italian extra virgin olive oils: elucidation through combined liquid chromatography and NMR approaches. Food Anal Methods. 2019;12:1759–1770.
  • de Bock M, Thorstensen EB, Derraik JGB, et al. Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract. Mol Nutr Food Res. 2013;57:2079–2085.
  • Klejdus B, Plaza M, Šnóblová M, et al. Development of new efficient method for isolation of phenolics from sea algae prior to their rapid resolution liquid chromatographic–tandem mass spectrometric determination. J Pharm Biomed Anal. 2017.
  • Yoshie-Stark Y, Hsieh Y, Suzuki T. Distribution of flavonoids and related compounds from seaweeds in Japan. J Tokyo Univ Fish. 2003;89:1–6.
  • Zanwar AA, Badole SL, Shende PS, et al. Cardiovascular effects of hesperidin: a flavanone glycoside. In: Watson RR, Preedy VR, Zibadi S, editors. Polyphenols in human health and disease. London (UK): Academic Press; 2013.
  • Luca SV, Macovei I, Bujor A, et al. Bioactivity of dietary polyphenols: the role of metabolites. Crit Rev Food Sci Nutr. 2020;60:626–659.
  • Teng H, Chen L. Polyphenols and bioavailability: an update. Crit Rev Food Sci Nutr. 2019;59:2040–2051.
  • Okuda T. Plant polyphenols: vegetable tannins revisited. Edwin Haslam. Q Rev Biol. 1991;19(7):1521–1552.
  • Appel HM. Phenolics in ecological interactions: the importance of oxidation. J Chem Ecol. 1993.
  • Sun L, Miao M. Dietary polyphenols modulate starch digestion and glycaemic level: a review. Crit Rev Food Sci Nutr. 2020;60:541–555.
  • Chait YA, Gunenc A, Bendali F, et al. Simulated gastrointestinal digestion and in vitro colonic fermentation of carob polyphenols: bioaccessibility and bioactivity. LWT. 2020;117:108623.
  • Gianchecchi E, Fierabracci A. Insights on the effects of resveratrol and some of its derivatives in cancer and autoimmunity: a molecule with a dual activity. Antioxidants. 2020;9:91.
  • Stivala LA, Savio M, Carafoli F, et al. Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J Biol Chem. 2001;276:22586–22594.
  • Ende C, Gebhardt R. Inhibition of matrix metalloproteinase-2 and -9 activities by selected flavonoids. Planta Med. 2004;70:1006–1008.
  • Guerrero L, Castillo J, Quiñones M, et al. Inhibition of angiotensin-converting enzyme activity by flavonoids: structure-activity relationship studies. PLoS One. 2012;7:e49493.
  • Spencer JPE, Rice-Evans C, Williams RJ. Modulation of pro-survival Akt/protein kinase B and ERK1/2 signaling cascades by quercetin and its in vivo metabolites underlie their action on neuronal viability. J Biol Chem. 2003;278:34783–34793.
  • Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009;2:270–278.
  • Murota K, Nakamura Y, Uehara M. Flavonoid metabolism: the interaction of metabolites and gut microbiota. Biosci Biotechnol Biochem. 2018.
  • Lambert JD, Sang S, Yang CS. Possible controversy over dietary polyphenols: benefits vs risks. Chem Res Toxicol. 2007;20:583–585.
  • Lacroix S, Klicic Badoux J, Scott-Boyer MP, et al. A computationally driven analysis of the polyphenol-protein interactome. Sci Rep. 2018.
  • Si D, Wang Y, Zhou YH, et al. Mechanism of CYP2C9 inhibition by flavones and flavonols. Drug Metab Dispos. 2009.
  • Yan X, Qi M, Li P, et al. Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell and Bioscience. 2017.
  • Sanderson JT, Hordijk J, Denison MS, et al. Induction and inhibition of aromatase (CYP19) activity by natural and synthetic flavonoid compounds in H295R human adrenocortical carcinoma cells. Toxicol Sci. 2004;82(1):70–79.
  • Van Dross RT, Hong X, Pelling JC. Inhibition of TPA-induced cyclooxygenase-2 (COX-2) expression by apigenin through downregulation of Akt signal transduction in human keratinocytes. Mol Carcinog. 2005;44:83–91.
  • D'Uva G, Baci D, Albini A, et al. Cancer chemoprevention revisited: cytochrome P450 family 1B1 as a target in the tumor and the microenvironment. Cancer Treatment Reviews. 2018;63:1–18.
  • Martinez SE, Davies NM, Reynolds JK. Toxicology and safety of flavonoids. In: Davies NM, Yáñez JA, editors. Flavonoid pharmacokinetics: methods of analysis, preclinical and clinical pharmacokinetics, safety, and toxicology. Hoboken (NJ): John Wiley & Sons; 2012.
  • Nakamura H, Wang Y, Kurita T, et al. Genistein increases epidermal growth factor receptor signaling and promotes tumor progression in advanced human prostate cancer. PLoS One. 2011;6:e20034.
  • Yu X, Zhu J, Mi M, et al. Anti-angiogenic genistein inhibits VEGF-induced endothelial cell activation by decreasing PTK activity and MAPK activation. Med Oncol. 2012;29(1):349–357.
  • Jiang X, Patterson NM, Ling Y, et al. Low concentrations of the soy phytoestrogen genistein induce proteinase inhibitor 9 and block killing of breast cancer cells by immune cells. Endocrinology. 2008;149:5366–5373.
  • Sarangarajan R, Meera S, Rukkumani R, et al. Antioxidants: friend or foe? Asian Pac J Trop Med. 2017;10:1111–1116.
  • Gullberg RC, Jordan Steel J, Moon SL, et al. Oxidative stress influences positive strand RNA virus genome synthesis and capping. Virology. 2015;475:219–229.
  • De Lange-Jacobs P, Shaikh-Kader A, Thomas B, et al. An overview of the potential use of ethno-medicinal plants targeting the renin-angiotensin system in the treatment of hypertension. Molecules. 2020;25:2114.
  • Kuster GM, Pfister O, Burkard T, et al. SARS-CoV2: should inhibitors of the renin-angiotensin systembe withdrawn in patients with COVID-19? Eur Heart J. 2020;41:1801–1803.
  • Albini A, Di Guardo G, Noonan DMC, et al. The SARS-CoV-2 receptor, ACE-2, is expressed on many different cell types: implications for ACE-inhibitor- and angiotensin II receptor blocker-based cardiovascular therapies. Intern Emerg Med. 2020;15(5):759–766.
  • Galasso C, Gentile A, Orefice I, et al. Microalgal derivatives as potential nutraceutical and food supplements for human health: a focus on cancer prevention and interception. Nutrients. 2019;11:1226.
  • Sansone C, Brunet C, Noonan DM, et al. Marine algal antioxidants as potential vectors for controlling viral diseases. Antioxidants. 2020;9:392.
  • Karadeniz F, Kang KH, Park JW, et al. Anti-HIV-1 activity of phlorotannin derivative 8,4⌄-dieckol from korean brown alga Ecklonia cava. Biosci Biotechnol Biochem. 2014;78(7):1151–1158.
  • Bouayed J, Hoffmann L, Bohn T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: bioaccessibility and potential uptake. Food Chem. 2011;128(1):14–21.
  • Ozdal T, Sela DA, Xiao J, et al. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients. 2016;8:78.
  • Kawabata K, Yoshioka Y, Terao J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules. 2019;24:370.
  • Faria A, Fernandes I, Norberto S, et al. Interplay between anthocyanins and gut microbiota. J Agric Food Chem. 2014;62:6898–6902.
  • Biasutto L, Mattarei A, Sassi N, et al. Improving the efficacy of plant polyphenols. Anticancer Agents Med Chem. 2014;14(10):1332–1342.
  • Bernini R, Crisante F, Ginnasi MC. A convenient and safe O-methylation of flavonoids with dimethyl carbonate (DMC). Molecules. 2011;16:1418–1425.
  • Haoujar I, Cacciola F, Abrini J, et al. The contribution of carotenoids, phenolic compounds, and flavonoids to the antioxidative properties of marine microalgae isolated from Mediterranean Morocco. Molecules. 2019;24:4037.
  • Xue Y, Zhang Y, Cheng D, et al. Genetically engineering Synechocystis Sp. pasteur culture collection 6803 for the sustainable production of the plant secondary metabolite p-coumaric acid. Proc Natl Acad Sci USA. 2014;111(26):9449–9454.
  • Milke L, Aschenbrenner J, Marienhagen J, et al. Production of plant-derived polyphenols in microorganisms: current state and perspectives. Appl Microbiol Biotechnol. 2018;102:1575–1585.
  • Dudnik A, Gaspar P, Neves AR, et al. Engineering of microbial cell factories for the production of plant polyphenols with health-beneficial properties. Curr Pharm Des. 2018;24(19):2208–2225.
  • Sansone C, Brunet C. Promises and challenges of microalgal antioxidant production. Antioxidants. 2019;8:199.
  • Babić O, Kovač D, Rašeta M, et al. Evaluation of antioxidant activity and phenolic profile of filamentous terrestrial cyanobacterial strains isolated from forest ecosystem. J Appl Phycol. 2016;28(4):2333–2342.
  • Singh R, Parihar P, Singh M, et al. Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects. Front Microbiol. 2017;8:515.
  • Onofrejová L, Vašíčková J, Klejdus B, et al. Bioactive phenols in algae: the application of pressurized-liquid and solid-phase extraction techniques. J Pharm Biomed Anal. 2010;51(2):464–470.
  • Klejdus B, Kopecký J, Benešová L, et al. Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species. J Chromatogr A. 2009;1216(5):763–771.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.