1,457
Views
17
CrossRef citations to date
0
Altmetric
Review Articles

Bacillus subtilis as a robust host for biochemical production utilizing biomass

, ORCID Icon, , , , & show all
Pages 827-848 | Received 17 Sep 2020, Accepted 26 Nov 2020, Published online: 23 Feb 2021

References

  • Park H, Park G, Jeon W, et al. Whole-cell biocatalysis using cytochrome P450 monooxygenases for biotransformation of sustainable bioresources (fatty acids, fatty alkanes, and aromatic amino acids). Biotechnol Adv. 2020;40:107504.
  • Nogueira Felix AK, Martins JJL, Lima Almeida JG, et al. Purification and characterization of a biosurfactant produced by Bacillus subtilis in cashew apple juice and its application in the remediation of oil-contaminated soil. Colloids Surf B Biointerfaces. 2019;175:256–263.
  • You C, Zhang C, Kong F, et al. Comparison of the effects of biocontrol agent Bacillus subtilis and fungicide metalaxyl–mancozeb on bacterial communities in tobacco rhizospheric soil. Ecol Eng. 2016;91:119–125.
  • Zhang X, Al-Dossary A, Hussain M, et al. Applications of Bacillus subtilis spores in biotechnology and advanced materials. Appl Environ Microbiol. 2020;86(17):e01096-20.
  • Zhang K, Su L, Wu J. Recent advances in recombinant protein production by Bacillus subtilis. Annu Rev Food Sci Technol. 2020;11:295–318.
  • Gu Y, Xu X, Wu Y, et al. Advances and prospects of Bacillus subtilis cellular factories: from rational design to industrial applications. Metab Eng. 2018;50:109–121.
  • Choi K-Y, Wernick DG, Tat CA, et al. Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab Eng. 2014;23:53–61.
  • van Tilburg AY, Cao H, van der Meulen SB, et al. Metabolic engineering and synthetic biology employing Lactococcus lactis and Bacillus subtilis cell factories. Curr Opin Biotechnol. 2019;59:1–7.
  • Kimura K, Yokoyama S. Trends in the application of Bacillus in fermented foods. Curr Opin Biotechnol. 2019;56:36–42.
  • Hong KQ, Liu DY, Chen T, et al. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis. World J Microbiol Biotechnol. 2018;34(10):153.
  • Kim SY, Yang YH, Choi KY. Bioconversion of plant hydrolysate biomass into biofuels using an engineered Bacillus subtilis and Escherichia coli mixed-whole cell biotransformation. Biotechnol Bioproc E. 2020;25(3):477–484.
  • Kim EJ, Seo D, Choi KY. Bioalcohol production from spent coffee grounds and okara waste biomass by engineered Bacillus subtilis. Biomass Conv Bioref. 2020;10(1):167–173.
  • Caulier S, Nannan C, Gillis A, et al. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front Microbiol. 2019;10:302.
  • Harwood CR, Mouillon JM, Pohl S, et al. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol Rev. 2018;42(6):721–738.
  • Huo YX, Cho KM, Rivera JG, et al. Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol. 2011;29(4):346–351.
  • Patel AR, Mokashe NU, Chaudhari DS, et al. Production optimisation and characterisation of extracellular protease secreted by newly isolated Bacillus subtilis AU-2 strain obtained from Tribolium castaneum gut. Biocatal Agric Biotechnol. 2019;19:101122.
  • Promchai R, Boonchalearn A, Visessanguan W, et al. Rapid production of extracellular thermostable alkaline halophilic protease originating from an extreme haloarchaeon, Halobacterium salinarum by recombinant Bacillus subtilis. Biocatal Agric Biotechnol. 2018;15:192–198.
  • Sánchez Blanco A, Palacios Durive O, Batista Pérez S, et al. Simultaneous production of amylases and proteases by Bacillus subtilis in brewery wastes. Braz J Microbiol. 2016;47(3):665–674.
  • Gupta R, Noronha SB. Utilization of Bacillus subtilis cells displaying a glucose-tolerant β-glucosidase for whole-cell biocatalysis. Enzyme Microb Technol. 2020;132:109444.
  • Gabra FA, Abd-Alla MH, Danial AW, et al. Production of biofuel from sugarcane molasses by diazotrophic Bacillus and recycle of spent bacterial biomass as biofertilizer inoculants for oil crops. Biocatal Agric Biotechnol. 2019;19:101112.
  • Phulara SC, Chaurasia D, Diwan B, et al. In-situ isopentenol production from Bacillus subtilis through genetic and culture condition modulation. Process Biochem. 2018;72:47–54.
  • Tantipaibulvut S, Pinisakul A, Rattanachaisit P, et al. Ethanol production from desizing wastewater using co-culture of Bacillus subtilis and Saccharomyces cerevisiae. Energy Proc. 2015;79:1001–1007.
  • Abd-Alla MH, Elsadek El-Enany A-W. Production of acetone-butanol-ethanol from spoilage date palm (Phoenix dactylifera L.) fruits by mixed culture of Clostridium acetobutylicum and Bacillus subtilis. Biomass Bioenergy. 2012;42:172–178.
  • Tran HTM, Cheirsilp B, Hodgson B, et al. Potential use of Bacillus subtilis in a co-culture with Clostridium butylicum for acetone–butanol–ethanol production from cassava starch. Biochem Eng J. 2010;48(2):260–267.
  • Cui Y, He J, Yang K-L, et al. Aerobic acetone-butanol-isopropanol (ABI) fermentation through a co-culture of Clostridium beijerinckii G117 and recombinant Bacillus subtilis 1A1. Metab Eng Commun. 2020;11:e00137.
  • Oliva-Rodríguez AG, Quintero J, Medina-Morales MA, et al. Clostridium strain selection for co-culture with Bacillus subtilis for butanol production from agave hydrolysates. Bioresour Technol. 2019;275:410–415.
  • Wernick DG, Liao JC. Protein-based biorefining: metabolic engineering for production of chemicals and fuel with regeneration of nitrogen fertilizers. Appl Microbiol Biotechnol. 2013;97(4):1397–1406.
  • Romero-Garcia S, Hernandez-Bustos C, Merino E, et al. Homolactic fermentation from glucose and cellobiose using Bacillus subtilis. Microb Cell Fact. 2009;8:23.
  • Gao T, Wong Y, Ng C, et al. l-lactic acid production by Bacillus subtilis MUR1. Bioresour Technol. 2012;121:105–110.
  • Gao T, Ho K-P. l-Lactic acid production by Bacillus subtilis MUR1 in continuous culture. J Biotechnol. 2013;168(4):646–651.
  • Hossain GS, Li J, Shin H-d, et al. Bioconversion of l-glutamic acid to α-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing l-amino acid deaminase from Proteus mirabilis. J Biotechnol. 2014;169:112–120.
  • Hossain GS, Li J, Shin H-d, et al. Improved production of α-ketoglutaric acid (α-KG) by a Bacillus subtilis whole-cell biocatalyst via engineering of l-amino acid deaminase and deletion of the α-KG utilization pathway. J Biotechnol. 2014;187:71–77.
  • Özçelik İŞ, Çalık P, Çalık G, et al. Metabolic engineering of aromatic group amino acid pathway in Bacillus subtilis for L-phenylalanine production. Chem Eng Sci. 2004;59(22–23):5019–5026.
  • Rahimi S, Modin O, Roshanzamir F, et al. Co-culturing Bacillus subtilis and wastewater microbial community in a bio-electrochemical system enhances denitrification and butyrate formation. Chem Eng J. 2020;397:125437.
  • Zhang C, Lu J, Chen L, et al. Biosynthesis of γ-aminobutyric acid by a recombinant Bacillus subtilis strain expressing the glutamate decarboxylase gene derived from Streptococcus salivarius ssp. thermophilus Y2. Process Biochem. 2014;49(11):1851–1857.
  • Chen T, Liu W-x, Fu J, et al. Engineering Bacillus subtilis for acetoin production from glucose and xylose mixtures. J Biotechnol. 2013;168(4):499–505.
  • Li T, Tang J, Karuppiah V, et al. Co-culture of Trichoderma atroviride SG3403 and Bacillus subtilis 22 improves the production of antifungal secondary metabolites. Biol Control. 2020;140:104122.
  • Larroche C, Besson I, Gros J-B. High pyrazine production by Bacillus subtilis in solid substrate fermentation on ground soybeans. Process Biochem. 1999;34(6–7):667–674.
  • Commichau FM, Alzinger A, Sande R, et al. Overexpression of a non-native deoxyxylulose-dependent vitamin B6 pathway in Bacillus subtilis for the production of pyridoxine. Metab Eng. 2014;25:38–49.
  • Lotfy WA, Mostafa SW, Adel AA, Ghanem KM. Production of di-(2-ethylhexyl) phthalate by Bacillus subtilis AD35: isolation, purification, characterization and biological activities. Microb Pathog. 2018;124:89–100.
  • Mahdinia E, Demirci A, Berenjian A. Utilization of glucose-based medium and optimization of Bacillus subtilis natto growth parameters for vitamin K (menaquinone-7) production in biofilm reactors. Biocatal Agric Biotechnol. 2018;13:219–224.
  • Nakano S, Nagao M, Yamasaki T, et al. Evaluation of a surface plasmon resonance imaging-based multiplex O-antigen serogrouping for Escherichia coli using eleven major serotypes of Shiga -toxin-producing E. coli. J Infect Chemother. 2018;24(6):443–448.
  • Culviner PH, Laub MT. Global analysis of the E. coli toxin MazF reveals widespread cleavage of mRNA and the inhibition of rRNA maturation and ribosome biogenesis. Mol Cell. 2018;70(5):868–880.e10.
  • Sospedra I, De Simone C, Soriano JM, et al. Liquid chromatography-ultraviolet detection and quantification of heat-labile toxin produced by enterotoxigenic E. coli cultured under different conditions. Toxicon. 2018;141:73–78.
  • Eş I, Mousavi Khaneghah A, Barba FJ, et al. Recent advancements in lactic acid production - a review. Food Res Int. 2018;107:763–770.
  • Peng K, Koubaa M, Bals O, et al. Recent insights in the impact of emerging technologies on lactic acid bacteria: a review. Food Res Int. 2020;137:109544.
  • Yu Z, Du G, Zhou J, et al. Enhanced α-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by an improved integrated fed-batch strategy. Bioresour Technol. 2012;114:597–602.
  • Chen X, Chen S, Sun M, et al. High yield of poly-gamma-glutamic acid from Bacillus subtilis by solid-state fermentation using swine manure as the basis of a solid substrate . Bioresour Technol. 2005;96(17):1872–1879.
  • Park C, Choi J-C, Choi Y-H, et al. Synthesis of super-high-molecular-weight poly-γ-glutamic acid by Bacillus subtilis subsp. chungkookjang. J Mol Catal B: Enzym. 2005;35(4–6):128–133.
  • Richard A, Margaritis A. Kinetics of molecular weight reduction of poly(glutamic acid) by in situ depolymerization in cell-free broth of Bacillus subtilis. Biochem Eng J. 2006;30(3):303–307.
  • Wu Q, Xu H, Xu L, et al. Biosynthesis of poly(γ-glutamic acid) in Bacillus subtilis NX-2: regulation of stereochemical composition of poly(γ-glutamic acid). Process Biochem. 2006;41(7):1650–1655.
  • de Cesaro A, da Silva SB, da Silva VZ, et al. Physico-chemical and rheological characterization of poly-gamma-glutamic acid produced by a new strain of Bacillus subtilis. Eur Polym J. 2014;57:91–98.
  • Lee N-R, Go T-H, Lee S-M, et al. In vitro evaluation of new functional properties of poly-γ-glutamic acid produced by Bacillus subtilis D7. Saudi J Biol Sci. 2014;21(2):153–158.
  • Tang B, Lei P, Xu Z, et al. Highly efficient rice straw utilization for poly-(γ-glutamic acid) production by Bacillus subtilis NX-2. Bioresour Technol. 2015;193:370–376.
  • Lee JM, Kim J-H, Kim KW, et al. Physicochemical properties, production, and biological functionality of poly-γ-d-glutamic acid with constant molecular weight from halotolerant Bacillus sp. SJ-10. Int J Biol Macromol. 2018;108:598–607.
  • Hong LTT, Hachiya T, Hase S, et al. Poly-γ-glutamic acid production of Bacillus subtilis (natto) in the absence of DegQ: a gain-of-function mutation in yabJ gene. J Biosci Bioeng. 2019;128(6):690–696.
  • Halmschlag B, Putri SP, Fukusaki E, et al. Poly-γ-glutamic acid production by Bacillus subtilis 168 using glucose as the sole carbon source: a metabolomic analysis. J Biosci Bioeng. 2020;130(3):272–282.
  • Sathiyanarayanan G, Saibaba G, Seghal Kiran G, et al. A statistical approach for optimization of polyhydroxybutyrate production by marine Bacillus subtilis MSBN17. Int J Biol Macromol. 2013;59:170–177.
  • Law KH, Cheng YC, Leung YC, et al. Construction of recombinant Bacillus subtilis strains for polyhydroxyalkanoates synthesis. Biochem Eng J. 2003;16(2):203–208.
  • Lin Y-Y, Chen PT. Development of polyhydroxybutyrate biosynthesis in Bacillus subtilis with combination of PHB-associated genes derived from Ralstonia eutropha and Bacillus megaterium. J Taiwan Inst Chem Eng. 2017;79:110–115.
  • Bhatia SK, Yoon J-J, Kim H-J, et al. Engineering of artificial microbial consortia of Ralstonia eutropha and Bacillus subtilis for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production from sugarcane sugar without precursor feeding. Bioresour Technol. 2018;257:92–101.
  • Peña-Jurado E, Pérez-Vega S, Zavala-Díaz de la Serna FJ, et al. Production of poly (3-hydroxybutyrate) from a dairy industry wastewater using Bacillus subtilis EPAH18: bioprocess development and simulation. Biochem Eng J. 2019;151:107324.
  • Chaisorn W, Prasertsan P, O-Thong S, et al. Production and characterization of biopolymer as bioflocculant from thermotolerant Bacillus subtilis WD161 in palm oil mill effluent. Int J Hydrogen Energy. 2016;41(46):21657–21664.
  • Sini TK, Santhosh S, Mathew PT. Study on the production of chitin and chitosan from shrimp shell by using Bacillus subtilis fermentation. Carbohydr Res. 2007;342(16):2423–2429.
  • Gamal RF, El-Tayeb TS, Raffat EI, et al. Optimization of chitin yield from shrimp shell waste by Bacillus subtilis and impact of gamma irradiation on production of low molecular weight chitosan. Int J Biol Macromol. 2016;91:598–608.
  • Kim HJ, Kwon AR, Lee BJ. A novel chlorination-induced ribonuclease YabJ from Staphylococcus aureus. Biosci Rep. 2018;38(5):BSR20180768.
  • Jung H-R, Choi T-R, Han YH, et al. Production of blue-colored polyhydroxybutyrate (PHB) by one-pot production and coextraction of indigo and PHB from recombinant Escherichia coli. Dyes Pigm. 2020;173:107889.
  • Luo R, Chen J, Zhang L, et al. Polyhydroxyalkanoate copolyesters produced by Ralstonia eutropha PHB − 4 harboring a low-substrate-specificity PHA synthase PhaC2Ps from Pseudomonas stutzeri 1317. Biochem Eng J. 2006;32(3):218–225.
  • Liu Y, Liu L, Shin H-d, et al. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine. Metab Eng. 2013;19:107–115.
  • Liu Y, Zhu Y, Li J, et al. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production. Metab Eng. 2014;23:42–52.
  • Liu Y, Zhu Y, Ma W, et al. Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis. Metab Eng. 2014;24:61–69.
  • Zhu Y, Liu Y, Li J, et al. An optimal glucose feeding strategy integrated with step-wise regulation of the dissolved oxygen level improves N-acetylglucosamine production in recombinant Bacillus subtilis. Bioresour Technol. 2015;177:387–392.
  • Ling M, Liu Y, Li J, et al. Combinatorial promoter engineering of glucokinase and phosphoglucoisomerase for improved N-acetylglucosamine production in Bacillus subtilis. Bioresour Technol. 2017;245(Pt A):1093–1102.
  • Ma W, Liu Y, Shin H-d, et al. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production. Bioresour Technol. 2018;250:642–649.
  • Wu Y, Chen T, Liu Y, et al. CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis. Metab Eng. 2018;49:232–241.
  • Gu Y, Lv X, Liu Y, et al. Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis. Metab Eng. 2019;51:59–69.
  • Lv X, Zhang C, Cui S, et al. Assembly of pathway enzymes by engineering functional membrane microdomain components for improved N-acetylglucosamine synthesis in Bacillus subtilis. Metab Eng. 2020;61:96–105.
  • Reddy SS, Krishnan C. Production of high-pure xylooligosaccharides from sugarcane bagasse using crude β-xylosidase-free xylanase of Bacillus subtilis KCX006 and their bifidogenic function. LWT - Food Sci Technol. 2016;65:237–245.
  • Amorim C, Silvério SC, Silva SP, et al. Single-step production of arabino-xylooligosaccharides by recombinant Bacillus subtilis 3610 cultivated in brewers’ spent grain. Carbohydr Polym. 2018;199:546–554.
  • Amorim C, Silvério SC, Gonçalves RFS, et al. Downscale fermentation for xylooligosaccharides production by recombinant Bacillus subtilis 3610. Carbohydr Polym. 2019;205:176–183.
  • Reque PM, Pinilla CMB, Gautério GV, et al. Xylooligosaccharides production from wheat middlings bioprocessed with Bacillus subtilis. Food Res Int. 2019;126:108673
  • Westbrook AW, Ren X, Moo-Young M, et al. Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Biotechnol Bioeng. 2018;115(1):216–231.
  • Westbrook AW, Ren X, Oh J, et al. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Metab Eng. 2018;47:401–413.
  • Chen Q, He W, Yan X, et al. Construction of an enzymatic route using a food-grade recombinant Bacillus subtilis for the production and purification of epilactose from lactose. J Dairy Sci. 2018;101(3):1872–1882.
  • Sathiyanarayanan G, Seghal Kiran G, Selvin J. Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Colloids Surf B Biointerfaces. 2013;102:13–20.
  • Yamagishi Y, Someya A, Nagaoka I. Citrulline cooperatively exerts an anti-inflammatory effect on synovial cells with glucosamine and N-acetylglucosamine. Biomed Rep. 2020;13(1):37–42.
  • Das K, Mukherjee AK. Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: some industrial applications of biosurfactants. Process Biochem. 2007;42(8):1191–1199.
  • Fernandes PL, Rodrigues EM, Paiva FR, et al. Biosurfactant, solvents and polymer production by Bacillus subtilis RI4914 and their application for enhanced oil recovery. Fuel. 2016;180:551–557.
  • Sharma R, Singh J, Verma N. Production, characterization and environmental applications of biosurfactants from Bacillus amyloliquefaciens and Bacillus subtilis. Biocatal Agric Biotechnol. 2018;16:132–139.
  • Sharma S, Pandey LM. Production of biosurfactant by Bacillus subtilis RSL-2 isolated from sludge and biosurfactant mediated degradation of oil. Bioresour Technol. 2020;307:123261
  • Jha SS, Joshi SJ, S J G. Lipopeptide production by Bacillus subtilis R1 and its possible applications. Braz J Microbiol. 2016;47(4):955–964.
  • Alvarez VM, Guimarães CR, Jurelevicius D, et al. Microbial enhanced oil recovery potential of surfactin-producing Bacillus subtilis AB2.0. Fuel. 2020;272:117730.
  • Jadav S, Sakthipriya N, Doble M, et al. Effect of biosurfactants produced by Bacillus subtilis and Pseudomonas aeruginosa on the formation kinetics of methane hydrates. J Nat Gas Sci Eng. 2017;43:156–166.
  • Brück HL, Delvigne F, Dhulster P, et al. Molecular strategies for adapting Bacillus subtilis 168 biosurfactant production to biofilm cultivation mode. Bioresour Technol. 2019;293:122090.
  • Yun J-H, Cho D-H, Lee B, et al. Utilization of the acid hydrolysate of defatted Chlorella biomass as a sole fermentation substrate for the production of biosurfactant from Bacillus subtilis C9. Algal Research. 2020;47:101868.
  • de Faria AF, Teodoro-Martinez DS, de Oliveira Barbosa GN, et al. Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochem. 2011;46(10):1951–1957.
  • Khan AW, Rahman MS, Zohora US, et al. Production of surfactin using pentose carbohydrate by Bacillus subtilis. J Environ Sci. 2011;23:S63–S65.
  • Liu Q, Lin J, Wang W, et al. Production of surfactin isoforms by Bacillus subtilis BS-37 and its applicability to enhanced oil recovery under laboratory conditions. Biochem Eng J. 2015;93:31–37.
  • Wang Q, Yu H, Wang M, et al. Enhanced biosynthesis and characterization of surfactin isoforms with engineered Bacillus subtilis through promoter replacement and Vitreoscilla hemoglobin co-expression. Process Biochem. 2018;70:36–44.
  • Jajor P, Piłakowska-Pietras D, Krasowska A, et al. Surfactin analogues produced by Bacillus subtilis strains grown on rapeseed cake. J Mol Struct. 2016;1126:141–146.
  • Andrade CJd, Andrade LMd, Bution ML, et al. Optimizing alternative substrate for simultaneous production of surfactin and 2,3-butanediol by Bacillus subtilis LB5a. Biocatal Agric Biotechnol. 2016;6:209–218.
  • Zhong J, Zhang X, Ren Y, et al. Optimization of Bacillus subtilis cell growth effecting jiean-peptide production in fed batch fermentation using central composite design. Electron J Biotechnol. 2014;17(3):132–136.
  • Su H-H, Chen J-C, Chen P-T. Production of recombinant human epidermal growth factor in Bacillus subtilis. J Taiwan Inst Chem Eng. 2020;106:86–91.
  • Deleu M, Razafindralambo H, Popineau Y, et al. Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Colloids Surf A. 1999;152(1–2):3–10.
  • Das K, Mukherjee AK. Assessment of mosquito larvicidal potency of cyclic lipopeptides produced by Bacillus subtilis strains. Acta Trop. 2006;97(2):168–173.
  • Vater J, Kablitz B, Wilde C, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol. 2002;68(12):6210–6219.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.