442
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Seagrass-based platform strategies for sustainable hydroxymethylfurfural (HMF) production: toward bio-based chemical products

, &
Pages 902-917 | Received 21 Aug 2020, Accepted 12 Dec 2020, Published online: 01 Mar 2021

References

  • Bazzanella A, Friege H, Zeschmar-Lahl B. Identification of priority topics in the field of sustainable chemistry. Environmental Research of the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety. 2017; [cited 2021 Feb 15]. Available from: http://www.umweltbundesamt.de/publikationen.
  • Lozano FJ, Lozano R, Freire P, et al. New perspectives for green and sustainable chemistry and engineering: approaches from sustainable resource and energy use, management, and transformation. J Clean Prod. 2018;172:227–232.
  • Heo JB, Lee Y-S, Chung C-H. Raw plant-based biorefinery: a new paradigm shift towards biotechnological approach to sustainable manufacturing of HMF. Biotechnol Adv. 2019;37(8):107422.
  • Heo JB, Lee Y-S, Chung C-H. Toward sustainable hydroxymethylfurfural production using seaweeds. Trends Biotechnol. 2020;38(5):487–496.
  • Constable DJC. The practice of chemistry still needs to change. Curr Opin Green Sustain Chem. 2017;7:60–62.
  • Motagamwala AH, Won W, Sener C, et al. Toward biomass-derived renewable plastics: production of 2,5-furandicarboxylic acid from fructose. Sci Adv. 2018;4(1):eaap9722.
  • Chen B, Yan G, Chen G, et al. Recent progress in the development of advanced biofuel 5-ethoxymethylfurfural. BMC Energy. 2020;2(1): Article number: 2.
  • Galkin KI, Ananikov VP. When will 5-hydroxymethylfurfural, the “sleeping giant” of sustainable chemistry, awaken? ChemSusChem. 2019;12(13):2976–2982.
  • Chun J-A, Lee J-W, Yi Y-B, et al. Catalytic production of hydroxymethylfurfural from sucrose using 1-methyl-3-octylimidazolium chloride ionic liquid. Korean J Chem Eng. 2010;27(3):930–935.
  • Yi Y-B, Lee J-W, Choi Y-H, et al. Simple process for production of hydroxymethylfurfural from raw biomasses of girasol and potato tubers. Biomass Bioenerg. 2012;39:484–488.
  • Yi Y-B, Lee J-W, Choi Y-H, et al. Direct production of hydroxymethylfurfural from raw grape berry biomass using ionic liquids and metal chlorides. Environ Chem Lett. 2012;10(1):13–19.
  • Lee J-W, Ha M-G, Yi Y-B, et al. Chromium halides mediated production of hydroxymethylfurfural from starch-rich acorn biomass in an acidic ionic liquid. Carbohydr Res. 2011;346(2):177–182.
  • Yi Y-B, Lee J-W, Chung C-H. Sustainable approach to catalytic conversion of starch-based biomaterials into hydroxymethylfurfural using ionic liquids. Curr Org Chem. 2014;18(9):1149–1158.
  • Kuo J, Cambridge ML, Kirkman H. Anatomy and structure of Australian seagrasses. In: Larkum A, Kendrick G, Ralph P. editors. Seagrasses of Australia. Cham: Springer; 2018.
  • Bedulli C, Lavery PS, Harvey M, et al. Contribution of seagrass blue carbon toward carbon neutral policies in a touristic and environmentally-friendly island. Front Mar Sci. 2020;7:1.
  • Rahmawati S, Hernawan UE, McMahon K, et al. Blue carbon in seagrass ecosystem. Indonesia: Gadjah Mada University Press; 2019.
  • Kennedy H, Beggins J, Duarte CM, et al. Seagrass sediments as a global carbon sink: Isotopic constraints. Global Biogeochem Cycles. 2010;24:GB4026.
  • De Rosa S, Zavodnik N, De Stefano S, et al. Seasonal changes of biomass and soluble carbohydrates in the seagrass Zostera noltii Hornem. Bot Mar. 1990;33(5):411–414.
  • Syed F, Zakaria MH, Bujang JS, et al. Physicochemical properties of starches from seed and rhizome of Enhalus acoroides. Phil J Nat Sci. 2019;24:27–33.
  • Burke MK, Dennison WC, Moore KA. Non-structural carbohydrate reserves of eelgrass Zostera marina. Mar Ecol Prog Ser. 1996;137:195–201.
  • Drew EA. Sugars, cyclitols and seagrass phylogeny. Aquatic Bot. 1983;15(4):387–408.
  • Delefosse M, Povidisa K, Poncet D, et al. Variation in size and chemical composition of seeds from the seagrass Zostera marina – Ecological implications. Aquatic Bot. 2016;131:7–14.
  • Pirc H. Seasonal changes in soluble carbohydrates, starch, and energy content in Mediterranean seagrasses. Mar Ecol. 1989;10(2):97–105.
  • Lewkowski J. Synthesis, chemistry, and applications of 5-hydroxymethyl-furfural and its derivatives. Arkivoc. 2001;2001(1):17–54.
  • Körner S, Albert J, Held C. Catalytic low-temperature dehydration of fructose to 5-hydroxymethylfurfural using acidic deep eutectic solvents and polyoxometalate catalysts. Front Chem. 2019;7:661.
  • Tschirner S, Weingart E, Teevs L, et al. Catalytic dehydration of fructose to 5-hydroxymethylfurfural (HMF) in low-boiling solvent hexafluoroisopropanol (HFIP). Molecules. 2018;23(8):1866.
  • Zhang Q, Liu X, Yang T, et al. Catalytic transfer of fructose to 5-hydroxymethylfurfural over bimetal oxide catalysts. Int J Chem Eng. 2019;2019:1–6..
  • Kumar S, Sharma S, Kansal SK, et al. Efficient conversion of glucose into fructose via extraction-assisted isomerization catalyzed by endogenous polyamine spermine in the aqueous phase. ACS Omega. 2020;5(5):2406–2418.
  • Guo W, Heeres HJ, Yue J. Continuous synthesis of 5-hydroxymethylfurfural from glucose using a combination of AlCl3 and HCl as catalyst in a biphasic slug flow capillary microreactor. Chem Eng J. 2020;381(122754):122754.
  • Muranaka Y, Matsubara K, Maki T, et al. 5-Hydroxymethylfurfural synthesis from monosaccharides by a biphasic reaction-extraction system using a microreactor and extractor. ACS Omega. 2020;5(16):9384–9390.
  • Wang J, Xi J, Xia Q, et al. Recent advances in heterogeneous catalytic conversion of glucose to 5-hydroxymethylfurfural via green routes. Sci China Chem. 2017;60(7):870–886.
  • Delidovich I, Palkovits R. Fructose production via extraction-assisted isomerization of glucose catalyzed by phosphates. Green Chem. 2016;18(21):5822–5830.
  • Yi Y-B, Ha M-G, Lee J-W, et al. Direct conversion of citrus peel waste into hydroxymethylfurfural in ionic liquid by mediation of fluorinated metal catalysts. J Ind Eng Chem. 2013;19(2):523–528.
  • Yi Y-B, Ha M-G, Lee J-W, et al. Inulin conversion to hydroxymethylfurfural by Brønsted acid in ionic liquid and its physicochemical characterization. Korean J Chem Eng. 2013;30(7):1429–1435.
  • Ramli NAS, Amin NAS. Catalytic conversion of carbohydrate biomass in ionic liquids to 5-hydroxymethyl furfural and levulinic acid: a review. Bioenerg Res. 2020;13:673–736.
  • Steinbach D, Kruse A, Sauer J, et al. Sucrose is a promising feedstock for the synthesis of the platform chemical hydroxymethylfurfural. Energies. 2018;11(3):645.
  • Tan-Soetedjo JNM, van de Bovenkamp HH, Abdilla RM, et al. Experimental and kinetic modeling studies on the conversion of sucrose to levulinic acid and 5-hydroxymethylfurfural using sulfuric acid in water. Ind Eng Chem Res. 2017;56(45):13228–13239.
  • Yu S-B, Zang HJ, Yang X-L, et al. Highly efficient preparation of 5-hydroxymethylfurfural from sucrose using ionic liquids and heteropolyacid catalysts in dimethylsulfoxide-water mixed solvent. Chinese Chem Lett. 2017;28(7):1479–1484.
  • Motagamwala AH, Huang K, Maravelias CT, et al. Solvent system for effective near-term production of hydroxymethylfurfural (HMF) with potential for long-term process improvement. Energy Environ Sci. 2019;12(7):2212–2222.
  • van Putten R-J, van der Waal JC, de Jong E, et al. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev. 2013;113(3):1499–1597.
  • Shapla UM, Solayman M, Alam N, et al. 5-hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health. Chem Central J. 2018;12:35.
  • Sajid M, Zhao X, Liu D. Production of 2,5-furanicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes. Green Chem. 2018;20(24):5427–5453.
  • Pal PP, Saravanamurugan S. Recent advances in the development of 5-hydroxymethylfurfural oxidation with base (nonprecious)-metal-containing catalysts. ChemSusChem. 2019;12(1):145–163.
  • Xia H, Xu S, Hu H, et al. Efficient conversion of 5-hydroxymethylfurfural to high value chemicals by chemo- and bio-catalysis. RSC Adv. 2018;8(54):30875–30886.
  • Zhang D, Dumont M-J. Advances in polymer precursors and bio-based polymers synthesized from 5-hydroxymethylfurfural. J Polym Sci Part A: Polym Chem. 2017;55(9):1478–1492.
  • Chen R, Xin J, Yan D, et al. Highly efficient oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid with heteropoly acids and ionic liquids. ChemSusChem. 2019;12(12):2715–2724.
  • Kubota SR, Choi K-S. Electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid (FDCA) in acidic media enabling spontaneous FDCA separation. ChemSusChem. 2018;11(13):2138–2145.
  • Weidner J, Barwe S, Sliozberg K, et al. Cobalt-metalloid alloys for electrochemical oxidation of 5-hydroxymethylfurfural as an alternative anode reaction in lieu of oxygen evolution during water splitting. Beilstein J Org Chem. 2018;14:1436–1445.
  • Biorefineries of FDCA. 2017; [cited 2021 Feb 19]. Available from: https://biorrefineria.blogspot.com/2017/06/biorrefinerias-de-fdca-acido-2-5-furanodicarboxilico-PEF.html.
  • Eldeeb MA, Akih-Kumgeh B. Recent trends in the production, combustion and modeling of furan-based fuels. Energies. 2018;11(3):512.
  • Zhong S, Daniel R, Xu H, et al. Combustion and emission of 2,5-dimethylfuran in a direct-injection spark-ignition engine. Energy Fuels. 2010;24(5):2891–2899.
  • Dutta S, De S, Saha B. A brief summary of the synthesis of polyester building-block chemicals and biofuels from 5-hydroxymethylfurfural. ChemPlusChem. 2012;77(4):259–272.
  • James OO, Maity S, Usman LA, et al. Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural. Energy Environ Sci. 2010;3(12):1833–1850.
  • Zhu C, Liu Q, Li D, et al. Selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5- dimethylfuran over Ni supported on zirconium phosphate catalysts. ACS Omega. 2018;3(7):7407–7417.
  • Román-Leshkov Y, Barrett CJ, Liu ZY, et al. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature. 2007;447(7147):982–986.
  • Zhang Z, Wang C, Gou X, et al. Catalytic in-situ hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Cu-based catalysts with methanol as a hydrogen donor. Appl Catal A, General. 2019;570:245–250.
  • Solanki BS, Rode CV. Selective hydrogenolysis of 5-(hydroxymethyl)-furfural over Pd/C catalyst to 2,5-dimethylfuran. J Saidi Chem Soc. 2019;23(4):439–451.
  • Wang X, Liu Y, Liang X. Hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over supported Pt-Co bimetallic catalysts under mild conditions. Green Chem. 2018;20(12):2894–2902.
  • Zhang F, Liu Y, Yuan F, et al. Efficient production of the liquid fuel 2,5-dimethylfuran from 5-hydroxymethylfurfural in the absence of acid additive over bimetallic PdAu supported on graphitized carbon. Energy Fuels. 2017;31(6):6364–6373.
  • Braun M, Antonietti M. A continuous flow process for the production of 2,5-dimethylfuran from fructose using (non-noble metal based) heterogeneous catalysis. Green Chem. 2017;19(16):3813–3819.
  • Upare PP, Hwang DW, Hwang YK, et al. An integrated process for the production of 2,5-dimethylfuran from fructose. Green Chem. 2015;17(6):3310–3313.
  • Liu X, Wang R. Upgrading of carbohydrates to the biofuel candidate 5-ethoxymethylfurfural (EMF). Int J Chem Eng. 2018;2018:1–10.
  • Wang Z, Chen Q. Conversion of 5-hydroxymethylfurfural into 5-ethoxymethylfurfural and ethyl levulinate catalyzed by MOF-based heteropolyacid materials. Green Chem. 2016;18(21):5884–5889.
  • Wang Z, Chen Q. Variations of major product derived from conversion of 5-hydroxymethylfurfural over a modified MOFs-derived carbon material in response to reaction conditions. Nanomaterials. 2018;8(7):492.
  • Maneechakr P, Karnjanakom S. Selective conversion of fructose into 5-ethoxymethylfurfural over green catalyst. Res Chem Intermed. 2019;45(2):743–756.
  • Zuo M, Le K, Feng Y, et al. An effective pathway for converting carbohydrates to biofuel 5-ethoxymethylfurfural via 5-hydroxymethylfurfural with deep eutectic solvents (DESs). Ind Crops Prod. 2018;112:18–23.
  • Flannelly T, Dooley S, Leahy JJ. Reaction pathway analysis of ethyl levulinate and 5-ethoxymethylfurfural from d-fructose acid hydrolysis in ethanol. Energy Fuels. 2015;29(11):7554–7565.
  • Liu A, Liu B, Wang Y, et al. Efficient one-pot synthesis of 5-ethoxymethylfurfural from fructose catalyzed by heteropolyacid supported on K-10 clay. Fuel. 2014;117:68–73.
  • Pereira JG, Sousa SCA, Fernandes AC. Direct conversion of carbohydrates into 5-ethoxymethylfurfural (EMF) and 5-hydroxymethylfurfural (HMF) catalyzed by oxomolybdenum complexes. ChemistrySelect. 2017;2(16):4516–4521.
  • Yu X, Gao X, Tao R, et al. Insights into the metal salt catalyzed 5-ethoxymethylfurfural synthesis from carbohydrates. Catal. 2017;7:182.
  • Yuan Z, Zhang Z, Zheng J, et al. Efficient synthesis of promising liquid fuels 5-ethoxymethylfurfural from carbohydrates. Fuel. 2015;150:236–242.
  • Bai Y, Wei L, Yang M, et al. Three-step cascade over a single catalyst: synthesis of 5-(ethoxymethyl)furfural from glucose over a hierarchical lamellar multi-functional zeolite catalyst. J Mater Chem A. 2018;6(17):7693–7705.
  • Yu X, Gao X, Peng L, et al. Intensified 5-ethoxymethylfurfural production from biomass components over aluminum-based mixed-acid catalyst in co-solvent medium. ChemistrySelect. 2018;3(47):13391–13399.
  • Xin H, Zhang T, Li W, et al. Dehydration of glucose to 5-hydroxymethylfurfural and 5-ethoxymethylfurfural by combining Lewis and Brønsted acid. RSC Adv. 2017;7(66):41546–41556.
  • Guo H, Duereh A, Hiraga Y, et al. Mechanism of glucose conversion into 5-ethoxymethylfurfural in ethanol with hydrogen sulfate ionic liquid additives and a Lewis acid catalyst. Energy Fuels. 2018;32(8):8411–8419.
  • Cukalovic A, Stevens CV. Production of biobased HMF derivatives by reductive amination. Green Chem. 2010;12(7):1201–1206.
  • Chang C-C, Cho HJ, Yu J, et al. Lewis acid zeolites for tandem Diels–Alder cycloaddition and dehydration of biomass-derived dimethylfuran and ethylene to renewable ρ-xylene. Green Chem. 2016;18(5):1368–1376.
  • Pacheco JJ, Davis ME. Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural. Proc Natl Acad Sci USA. 2014;111(23):8363–8367.
  • Wijaya YP, Kristianto I, Lee H, et al. Production of renewable toluene from biomass-derived furans via Diels-Alder and dehydration reactions: a comparative study of Lewis acid catalysts. Fuel. 2016;182:588–596.
  • Patet RE, Nikbin N, Williams CL, et al. Kinetic regime change in the tandem dehydrative aromatization of furan Diels − Alder products. ACS Catal. 2015;5(4):2367–2375.
  • Teixeira IF, Lo BTW, Kostetskyy P, et al. From biomass-derived furans to aromatics with ethanol over zeolite. Angew Chem Int Ed Engl. 2016;55(42):13061–13066.
  • Kumalaputri AJ, Randolph C, Otten E, et al. Lewis acid catalyzed conversion of 5-hydroxymethylfurfural to 1,2,4-benzenetriol, an overlooked biobased compound. ACS Sustain Chem Eng. 2018;6(3):3419–3425.
  • Ni L, Xin J, Jiang K, et al. One-step conversion of biomass-derived furanics into aromatics by brønsted acid ionic liquids at room temperature. ACS Sustainable Chem Eng. 2018;6(2):2541–2551.
  • Scodeller I, Mansouri S, Morvan D, et al. Synthesis of renewable meta-xylylenediamine from biomass-derived furfural. Angew Chem Int Ed Engl. 2018;57(33):10510–10514.
  • Lan J, Lin J, Chen Z, et al. Transformation of 5-hydroxymethylfurfural (HMF) to maleic anhydride by aerobic oxidation with heteropolyacid catalysts. ACS Catal. 2015;5(4):2035–2041.
  • Li X, Ho B, Zhang Y. Selective aerobic oxidation of furfural to maleic anhydride with heterogeneous Mo–V–O catalysts. Green Chem. 2016;18(10):2976–2980.
  • Xu Z, Yan P, Xu W, et al. Direct reductive amination of 5-hydroxymethylfurfural primary/secondary amines via Ru-complex catalyzed hydrogenation. RSC Adv. 2014;4(103):59083–59087.
  • Chatterjee M, Ishizaka T, Kawanami H. Reductive amination of furfural to furfurylamine using aqueous ammonia solution and molecular hydrogen: an environmentally friendly approach. Green Chem. 2016;18(2):487–496.
  • Mika LT, Cséfalvay E, Németh Á. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem Rev. 2018;118(2):505–613.
  • Chen S, Wojcieszak R, Dumeignil F, et al. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural. Chem Rev. 2018;118(22):11023–11117.
  • Kuo C, Hartog C. Seagrass morphology, anatomy, and ultrastructure. In: Larkum AWD, Robert RJ, Duarte CM, editors. Seagrasses: biology, ecology and conservation. The Netherlands: Springer; 2006. p. 51–87.
  • Reynolds PL. Seagrass and seagrass beds. 2018; [cited 2021 Feb 19]. Available from: https://ocean.si.edulife/plants-algae/seagrass-and-seagrass-beds.
  • Deyanova D, Gullström M, Lyimo LD, et al. Contribution of seagrass plants to CO2 capture in a tropical seagrass meadow under experimental disturbance. PLoS ONE. 2017;12(7):e0181386.
  • Vichkovitten T, Holmer M, Frederiksen MS. Spatial and temporal changes in Non-structural carbohydrate reserves in eelgrass (Zostera marina L.) in Danish coastal waters. Bot Mar. 2007;50:75–87.
  • Yi Y-B, Ha M-G, Lee J-W, et al. New role of chromium fluoride: its catalytic action on the synthesis of hydroxymethylfurfural in ionic liquid using raw plant biomass and characterization of biomass hydrolysis. Chem Eng J. 2012;180:370–375.
  • Yi Y-B, Lee J-W, Chung C-H. Conversion of plant materials into hydroxymethylfurfural using ionic liquids. Environ Chem Lett. 2015;13(2):173–190.
  • Masri MA, Younes S, Haack M, et al. A seagrass-based biorefinery for generation of single-cell oils for biofuel and oleochemical production. Energy Technol. 2017;5:1–14.
  • Martín M, Grossmann IE. Optimal production of furfural and DMF from algae and switchgrass. Ind Eng Chem Res. 2016;55(12):3192–3202.
  • Wang JJ, Tan ZC, Zhu CC, et al. One-pot catalytic conversion of microalgae (Chlorococcum sp.) into 5-hydroxymethylfurfural over the commercial H-ZSM-5 zeolite. Green Chem. 2016;18(2):452–460.
  • Chheda JN, Huber GW, Dumesic JA. Liquid-phase catalytic processing of biomass derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed Engl. 2007;46(38):7164–7183.
  • Dashtban M, Gilbert A, Fatehi P. Recent advancements in the production of hydroxymethylfurfural. RSC Adv. 2014;4(4):2037–2050.
  • Tong X, Xue S, Hu J. Catalytic production of 5-hydroxymethylfurfural from biomass derived sugars. In: Fang Z, Smith Jr RL, Qi X, editors. Production of platform chemicals from sustainable resources. Singapore: Springer; 2017. p. 81–121.
  • Lee JW, Shin JY, Chun YS, et al. Toward understanding the origin of positive effects of ionic liquids on catalysis: formation of more reactive catalysts and stabilization of reactive intermediates and transition states in ionic liquids. Acc Chem Res. 2010;43(7):985–994.
  • Irge DD. Ionic liquids: a review on greener chemistry applications, quality ionic liquid synthesis and economical viability in a chemical processes. Amer J Physic Chem. 2016;5:74–79.
  • Welton T. Ionic liquids: a brief history. Biophys Rev. 2018;10(3):691–706.
  • Ståhlberg T, Fu W, Woodley JM, et al. Synthesis of 5-(hydroxymethyl)furfural in ionic liquids: paving the way to renewable chemicals. ChemSusChem. 2011;4(4):451–458.
  • Yu IKM, Tsang DCW. Conversion of biomass to hydroxymethylfurfural: a review of catalytic systems and underlying mechanisms. Bioresour Technol. 2017;238:716–732.
  • Touchette BW, Burkholder JM. Overview of the physiological ecology of carbon metabolism in seagrasses. J Exp Mar Biol Ecol. 2000;250(1–2):169–205.
  • Dome K, Podgorbunskikh E, Bychkov A, et al. Changes in the crystallinity degree of starch having different types of crystal structure after mechanical pretreatment. Polymers. 2020;12(3):641.
  • Cornejo-Ramírez YI, Martínez-Cruz O, Toro-Sánchez CLD, et al. The structural characteristics of starches and their functional properties. CYTA – J Food. 2018;16(1):1003–1017.
  • Sandhu KS, Lim S-T. Digestibility of legume starches as influenced by their physical and structural properties. Carbohydr Polym. 2008;71(2):245–252.
  • Utrilla-Coello RG, Hernández-Jaimes C, Carrillo-Navas H, et al. Acid hydrolysis of native corn starch: morphology, crystallinity, rheological and thermal properties. Carbohydr Polym. 2014;103:596–602.
  • Bertoft E. Understanding starch structure: recent progress. Agronomy. 2017;7(3):56.
  • Chen Y, Sun X, Zhou X, et al. Highly phosphorylated functionalized rice starch produced by transgenic rice expressing the potato GDW1 gene. Scientific Rep. 2017;7:3339.
  • Sun Y, Jiao G, Liu Z, et al. Generation of high-amylose rice through CRISPR/Cas9-Mediated Targeted Mutagenesis of Starch Branching Enzymes. Front Plant Sci. 2017;8:298.
  • Pancha I, Shima H, Higashitani N, et al. Target of rapamycin-signaling modulates starch accumulation via glycogenin phosphorylation status in the unicellular red alga Cyanidioschyzon merolae. Plant J. 2019;97(3):485–499.
  • Anur RM, Mufithah N, Sawitri WD, et al. Overexpression of sucrose phosphate synthase enhanced sucrose content and biomass production in transgenic sugarcane. Plants. 2020;9(2):200.
  • Lin P-C, Zhang F, Pakrasi HB. Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Sci Rep. 2020;10(1):390.
  • Suresha GS, Mahadevaih C, Appunu C. Biotechnological interventions for improving sucrose accumulation in sugarcane. In: Mohan C, editor. Sugarcane biotechnology: Challenges and prospects. Springer Int Switzerland AG; 2017. p.111–122.
  • Larkum AWD, Pernice M, Schliep M, et al. Photosynthesis and metabolism of seagrasses. In: Larkum, AWD, Kendrick G, Ralph P, editors. Seagrasses of Australia. Australia: Springer C; 2018.
  • Larkum AWD, Davey PA, Kuo J, et al. Carbon-concentrating mechanisms in seagrasses. J Exp Bot. 2017;68(14):3773–3784.
  • Somalinga V, Klemmer H, Arun A, et al. Cloning, over-expression, and purification of carbonic anhydrase from an extremophilic bacterium: an introduction to advanced molecular biology. Amer Biol Teach. 2018;80(1):29–34.
  • Bageshwar UK, Premkumar L, Gokhman I, et al. Natural protein engineering: a uniquely salt-tolerant, but not halophilic, α-type carbonic anhydrase from algae proliferating in low- to hyper-saline environments. Protein Eng Des Sel. 2004;17(2):191–200.
  • Nimmo IC, Barbrook AC, Lassadi I, et al. Genetic transformation of the dinoflagellate chloroplast. eLife. 2019;8:e45292.
  • Uchida M, Miyoshi T, Kaneniwa M, et al. Production of 16.5% v/v ethanol from. J Biosci Bioeng. 2014;118(6):646–650.
  • Chen S, Qiu G. Overexpression of seagrass nucleotide exchange factor gene zjfes1 enhances heat tolerance in transgenic Arabidopsis. Plant Signal Behav. 2020;15(2):e1709719.
  • Davey PA, Pernice M, Sablok G, et al. The emergence of molecular profiling and omics techniques in seagrass biology; furthering our understanding of seagrasses. Funct Integr Genomics. 2016;16(5):465–480.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.