1,248
Views
16
CrossRef citations to date
0
Altmetric
Review Articles

Silver, copper and copper oxide nanoparticles in the fight against human viruses: progress and perspectives

, , , ORCID Icon, ORCID Icon, & show all
Pages 431-449 | Received 21 Nov 2020, Accepted 07 May 2021, Published online: 07 Jul 2021

References

  • Allied market research – nanomaterials market [Internet]. Portland, USA. 2020 [cited 2020 Nov 23]. Available from: https://www.alliedmarketresearch.com/nano-materials-market.
  • Pulit-Prociak J, Banach M. Silver nanoparticles – a material of the future? Open Chem. 2016;14(1):76–91.
  • Bajpai VK, Kamle M, Shukla S, et al. Prospects of using nanotechnology for food preservation, safety, and security. J Food Drug Anal. 2018;26:1201–1214.
  • Kowsalya E, Mosa Christas K, Balashanmugam P, et al. Biocompatible silver nanoparticles/poly(vinyl alcohol) electrospun nanofibers for potential antimicrobial food packaging applications. Food Packag Shelf Life. 2019;21:100379.
  • Verma N, Kumar N. Applications of silver nanoparticles in diverse sectors. Int J Nano Dimension. 2019;10:18–36.
  • Muthulakshmi L, Rajalu AV, Kaliaraj GS, et al. Preparation of cellulose/copper nanoparticles bionanocomposite films using a bioflocculant polymer as reducing agent for antibacterial and anticorrosion applications. Compos Part B Eng. 2019;175:107177.
  • Qiao K, Tian W, Bai J, et al. Application of magnetic adsorbents based on iron oxide nanoparticles for oil spill remediation: a review. J Taiwan Inst Chem Eng. 2019;97:227–236.
  • Dadfar SM, Roemhild K, Drude NI, et al. Iron oxide nanoparticles: diagnostic, therapeutic and theragnostic applications. Adv Drug Deliv Rev. 2019;138:302–325.
  • Verma N, Kumar N. Synthesis and biomedical applications of copper oxide nanoparticles: an expanding horizon. ACS Biomater Sci Eng. 2019;5(3):1170–1188.
  • Lee SH, Jun BH. Silver nanoparticles: synthesis and application for nanomedicine. IJMS. 2019;20(4):865.
  • Barot T, Rawtani D, Kulkarni P. Physicochemical and biological assessment of silver nanoparticles immobilized Halloysite nanotubes-based resin composite for dental applications. Heliyon. 2020;6:e0360.
  • Silva LP, Silveira AP, Bonatto CC, et al. Silver nanoparticles as antimicrobial agents. Silver nanoparticles as antimicrobial agents: past, present, and future. In: Nanostructures for antimicrobial therapy. New York (NY): Academic Press; 2017. p. 577–596.
  • Sánchez-Sanhueza G, Fuentes-Rodríguez D, Bello-Toledo H. Copper nanoparticles as potential antimicrobial agent in disinfecting root canals. A systematic Review. Int J Odontostomat. 2016;10(3):547–554.
  • Zhang C, Yan L, Wang X, et al. Progress, challenges, and future of nanomedicine. Nano Today. 2020;35:101008.
  • WHO (World health Organization). Infectious diseases kill over 17 million people a year: WHO warns of global crisis [Internet]. 2020 [cited 2020 Nov 11]. Available from: https://www.who.int/whr/1996/media_centre/press_release/en/.
  • WHO (World health Organization). HIV and hepatitis coinfections [Internet]. 2020 [cited 2020 Nov 11]. Available from: https://www.who.int/hiv/topics/hepatitis/hepatitisinfo/en/.
  • Frank TD, Carter A, Jahagirdar D, et al. Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the global burden of diseases, injuries, and risk factors study 2017. Lancet HIV. 2019;6(12):e831–e859.
  • WHO (World health Organization). Coronavirus disease (COVID-19) Weekly Epidemiological Update and Weekly Operational Update [Internet]. 2020 [cited 2020 Nov 11]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. 2020.
  • Kumar M, Kuroda K, Dhangar K, et al. Potential emergence of antiviral-resistant pandemic viruses via environmental drug exposure of animal reservoirs. Environ Sci Technol. 2020;54:8503–8506.
  • Zhang W, Yang H, Behera S, et al. Prophylaxis of respiratory syncytial virus infection with intranasal siRNA-nanoparticles of the NS1 gene In Vivo. J Allergy Clin Immunol. 2005;115(2):S135.
  • Mazumder S, Dewangan AK, Pavurala N. Enhanced dissolution of poorly soluble antiviral drugs from nanoparticles of cellulose acetate based solid dispersion matrices. Asian J Pharm Sci. 2017;12(6):532–541.
  • Abo-Zeid Y, Urbanowicz RA, Thomson BJ, et al. Enhanced nanoparticle uptake into virus infected cells: could nanoparticles be useful in antiviral therapy? Int J Pharm. 2018;547(1–2):572–581.
  • Rao L, Wang W, Meng QF, et al. A biomimetic nanodecoy traps zika virus to prevent viral infection and fetal microcephaly development. Nano Lett. 2019;19:2215–2222.
  • Huo M, Wang L, Chen Y, et al. Nanomaterials/microorganism-integrated microbiotic nanomedicine. Nano Today. 2020;32:100854.
  • Salleh A, Naomi R, Utami ND, et al. The potential of silver nanoparticles for antiviral and antibacterial applications: a mechanism of action. Nanomaterials (Basel). 2020;10(8):1566.
  • Alphandéry E. Iron oxide nanoparticles for therapeutic applications. Drug Discovery Today. 2019;25:141–149.
  • Hang X, Peng H, Song H, et al. Antiviral activity of cuprous oxide nanoparticles against Hepatitis C Virus in vitro. J. Virol. Methods. 2015;222:150–157.
  • Dung TTN, Nam VN, Nhan TT, et al. Silver nanoparticles as potential antiviral agents against African swine fever virus. Mater. Res. Express. 2019;6:1250g9.
  • Tavakoli A, Hashemzadeh MS. Inhibition of herpes simplex virus type 1 by copper oxide nanoparticles. J Virol Methods. 2020;275:113688.
  • Van Regenmortel MHV. Virus Species. In: Genetics and evolution of infectious dissease. Amsterdam (The Netherlands): Elsevier: 2011. p. 3–19.
  • Baltimore D. Expression of animal virus genomes. Bacteriol Rev. 1971;35:235–241.
  • Ruuskanen O, Lahti E, Jennings LC, et al. Viral pneumonia. Lancet. 2011;377(9773):1264–1275.
  • Heikkinen T, Järvinen A. The common cold. Lancet. 2003;361(9351):51–59.
  • Thiberville S-D, Moyen N, Dupuis-Maguiraga L, et al. Chikungunya fever: epidemiology, clinical syndrome, pathogenesis and therapy. Antivir Res. 2013;99(3):345–370.
  • Banerjee A, Kulkarni S, Mukherjee A. Herpes simplex virus: the hostile guest that takes over your home. Front Microbiol. 2020;11:733.
  • Thuener J. Hepatitis A and B infections. Prim Care. 2017;44(4):621–629.
  • Cherry JD, Krogstad P. Enterovirus and parechovirus infections. In Infectious diseases of the fetus and newborn. USA: Elsevier; 2011. p. 756–799.
  • Yoshimura K. Current status of HIV/AIDS in the ART era. J Infect Chemother. 2017;23(1):12–16.
  • Cone MM, Whitlow CB. Sexually transmitted and anorectal infectious diseases. Gastroenterol Clin North Am. 2013;42(4):877–892.
  • Wu D, Wu T, Liu Q, et al. The SARS-CoV-2 outbreak: what we know. Int J Infect Dis. 2020;94:44–48.
  • Lai CC, Shih TP, Ko WC, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105924.
  • Martinez MA. Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrob Agents Chemother. 2020;64(5):e00399–20.
  • Gaudreault NN, Madden DW, Wilson WC, et al. African swine fever virus: an emerging DNA arbovirus. Front Vet Sci. 2020;7.
  • Bergmann M, Ballin A, Schulz B, et al. Therapie des akuten viralen Katzenschnupfens. Tierarztl Prax Ausg K Klientiere Heimtiere. 2019;47(02):98–109.
  • Karst SM, Wobus CE. Viruses in rodent colonies: lessons learned from murine noroviruses. Annu Rev Virol. 2015;2(1):525–548.
  • Absalón AE, Cortés-Espinosa DV, Lucio E, et al. Epidemiology, control, and prevention of Newcastle disease in endemic regions: Latin America. Trop Anim Health Prod. 2019;51:1033–1048.
  • Yarlagadda SG, Perazella MA. Drug-induced crystal nephropathy: an update. Expert Opin Drug Saf. 2008;7(2):147–158.
  • Yang R, Wei T, Goldberg H, et al. Getting drugs across biological barriers. Adv Mater. 2017;29(37):1606596.
  • Wallet C, De Rovere M, Van Assche J, et al. Microglial cells: the main HIV-1 reservoir in the brain. Front Cell Infect Microbiol. 2019;9:362.
  • Cojocaru FD, Botezat D, Gardikiotis I, et al. Nanomaterials designed for antiviral drug delivery transport across biological barriers. Pharmaceutics. 2020;12(2):171.
  • Chamundeeswari M, Jeslin J, Verma ML. Nanocarriers for drug delivery applications. Environ Chem Lett. 2019;17(2):849–865.
  • Sun T, Zhang YS, Pang B, et al. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed. 2014;53:12320–12364.
  • Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20:101–124.
  • Ivanova N, Gugleva V, Dobreva M, et al. Silver nanoparticles as multi-functional drug delivery systems. Nanomedicines. 2018.
  • Prasher P, Sharma M, Mudila H, et al. Emerging trends in clinical implications of bio-conjugated silver nanoparticles in drug delivery. Colloids Interface Sci Commun. 2020;35:100244.
  • Jelinkova P, Mazumdar A, Pratap V, et al. Nanoparticle-drug conjugates treating bacterial infections. J Control Release. 2019;307:166–185.
  • Rozalen M, Sánchez-Polo M, Fernández-Perales M, et al. Synthesis of controlled-size silver nanoparticles for the administration of methotrexate drug and its activity in colon and lung cancer cells. RSC Adv. 2020;10(18):10646–10660.
  • Yu N, Wang X, Qiu L, et al. Bacteria-triggered hyaluronan/AgNPs/gentamicin nanocarrier for synergistic bacteria disinfection and wound healing application. Chem Eng J. 2020;380:122582.
  • Li Y, Lin Z, Xu T, et al. Delivery of VP1 siRNA to inhibit the EV71 virus using functionalized silver nanoparticles through ROS-mediated signaling pathways. RSC Adv. 2017;7(3):1453–1463.
  • Lin Z, Li Y, Guo M, et al. The inhibition of H1N1 influenza virus-induced apoptosis by silver nanoparticles functionalized with zanamivir. RSC Adv. 2017;7(2):742–750.
  • Jana I, Kumbhakar P, Banerjee S, et al. Copper nanoparticle–graphene composite-based transparent surface coating with antiviral activity against influenza virus. ACS Appl Nano Mater. 2021;4(1):352–362.
  • Miyauchi M, Sunada K, Hashimoto K. Antiviral effect of visible light-sensitive CuxO/TiO2 photocatalyst. Catalysts. 2020;10(9):1093.
  • Maduray K, Parboosing R. Metal nanoparticles: a promising treatment for viral and arboviral infections. Biol Trace Elem Res. 2020;7:1–18.
  • Chen L, Liang J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater Sci Eng C. 2020;112:110924.
  • Elechiguerra JL, Burt JL, Morones JR, et al. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology. 2005;3:6.
  • Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, et al. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol. 2010;8:1.
  • Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, et al. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol. 2011;9:30.
  • Rai M, Deshmukh SD, Ingle AP, et al. Metal nanoparticles: the protective nanoshield against virus infection. Crit Rev Microbiol. 2016;42(1):46–56.
  • Aderibigbe BA. Metal-based nanoparticles for the treatment of infectious diseases. Molecules. 2017;22(8):1370.
  • Baram-Pinto D, Shukla S, Perkas N, et al. Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug Chem. 2009;20(8):1497–1502.
  • Sun RW, Chen R, Chung NP, et al. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem Commun. 2005;40:5059–5061.
  • Lu L, Sun RW, Chen R, et al. Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther. 2008;13(2):253–262.
  • Mastro MA, Hardy AW, Boasso A, et al. Non-toxic inhibition of HIV-1 replication with silver–copper nanoparticles. Med Chem Res. 2010;19(9):1074–1081.
  • Yesilot S, Aydin C. Silver nanoparticles; a new hope in cancer therapy? East J Med. 2019;24:111–116.
  • Batchelor-McAuley C, Tschulik K, Neumann CCM, et al. Why are silver nanoparticles more toxic than bulk silver? Towards understanding the dissolution and toxicity of silver nanoparticles. Int J Electrochem Sci. 2014;9:1132–1138.
  • Azharuddin M, Zhu GH, Das D, et al. A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun. 2019;55(49):6964–6996.
  • Urzedo AL, Gonçalves MC, Nascimento MHM, et al. Cytotoxicity and antibacterial activity of alginate hydrogel containing nitric oxide donor and silver nanoparticles for topical applications. ACS Biomater Sci Eng. 2020;6:2117–2134.
  • Urzedo AL, Gonçalves MC, Nascimento MHM, et al. Multifunctional alginate nanoparticles containing nitric oxide donor and silver nanoparticles for biomedical applications. Mat Scie Eng C- Mater. 2020;112:110933.
  • Huy TQ, Hien Thanh NT, Thuy NT, et al. Cytotoxicity and antiviral activity of electrochemical – synthesized silver nanoparticles against poliovirus. J Virol Methods. 2017;241:52–57.
  • Avilala J, Golla N. Antibacterial and antiviral properties of silver nanoparticles synthesized by marine Actinomycetes. Int J Pharm Sci Res. 2019;10:1223–1228.
  • Rodrigues MC, Rolim WR, Viana MM, et al. Biogenic synthesis and antimicrobial activity of silica-coated silver nanoparticles for esthetic dental applications. J Dent. 2020;96:103327.
  • Rolim WR, Pieretti JC, Reno DLS, et al. Antimicrobial activity and cytotoxicity to tumor cells of nitric oxide donor and silver nanoparticles containing PVA/PEG films for topical applications. ACS Appl Mater Interfaces. 2019;11:6589–6604.
  • Iavicoli I, Leso V, Fontana L, et al. Nanoparticle exposure and hormetic dose–responses: an update. IJMS. 2018;19(3):805.
  • Sreekanth TVM, Nagajyothi PC, Muthuraman P, et al. Ultra-sonication-assisted silver nanoparticles using Panax ginseng root extract and their anti-cancer and antiviral activities. J. Photochem Photobiol B Biol. 2018;188:6–11.
  • Mathew D, Hsu WL. Antiviral potential of curcumin. J Funct Foods. 2018;40:692–699.
  • Yang XX, Li CM, Huang CZ. Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale. 2016;8:3040–3048.
  • Morris D, Ansar M, Speshock J, et al. Antiviral and immunomodulatory activity of silver nanoparticles in experimental RSV infection. Viruses-Basel. 2019;11(8):732.
  • Sun L, Singh AK, Vig K, et al. Silver nanoparticles inhibit replication of respiratory sincitial virus. J Biomed Biotechnol. 2008;4:149–158.
  • Li Y, Lin Z, Zhao M, et al. The reversal of H1N1 influenza virus-induced apoptosis by silver nanoparticles functionalized with amantadine. RSC Adv. 2016;6(92):89679–89686.
  • Pellet PE, Roizman B. The Herpesviridae: a brief introduction. In: Fields virology. Philadelphia (PA). 2013. p. 2479–2499.
  • Roizman B, Knipe DM, Whitley RJ. Fields herpes simplex viruses. In: Fields virology. Philadelphia (PA). 2013. p. 2502–2601.
  • Galdiero S, Falanga A, Vitiello M, et al. Silver nanoparticles as potential antiviral agents. Molecules. 2011;16:8894–8918.
  • Dhanasezhian A, Srivani S, Govindaraju K, et al. Anti-Herpes Simplex Virus (HSV-1 and HSV-2) activity of biogenic gold and silver nanoparticles using seaweed Sargassum wightii. J Mar Sci. 2019;48:1252–1257.
  • Orłowski P, Kowalczyk A, Tomaszewska E, et al. Antiviral activity of tannic acid modified silver nanoparticles: potential to activate immune response in herpes genitalis. Viruses. 2018;10(10):524.
  • Galdiero S, Rai M, Gade A, et al. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomedicine. 2013;8:4303–4314.
  • Elechiguerra JL, Burt JL, Morones JR, et al. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol. 2005;29:3–6.
  • Tsai C-H, Whiteley CG, Lee D-J. Interactions between HIV-1 protease, silver nanoparticles, and specific peptides. J Taiwan Inst Chem Eng. 2019;103:20–32.
  • Kumar SD, Singaravelu G, Ajithkumar S, et al. Mangrove-mediated green synthesis of silver nanoparticles with high HIV-1 reverse transcriptase inhibitory potential. J Clust Sci. 2017;28(1):359–367.
  • Lara HH, Ixtepan-Turrent L, Garza Treviño EN, et al. Use of silver nanoparticles increased inhibition of cell-associated HIV-1 infection by neutralizing antibodies developed against HIV-1 envelope proteins. J Nanobiotechnology. 2011;9:38.
  • Pinkerton SD, Abramson PR. Effectiveness of condoms in preventing HIV transmission. Soc Sci Med. 1997;44(9):1303–1312.
  • Mohammed FA, Ao Z, Girilal M, et al. Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV- and HSV-transmitted infection. Int J Nanomedicine. 2012;7:5007–5018.
  • Zhang J, Wen XY, Gao RP. Hepatitis B virus-related liver cirrhosis complicated with dermatomyositis: a case report. WJCC. 2019;7(10):1206–1212.
  • Kanda T, Nakamoto S, Wu S, et al. Direct-acting antivirals and host-targeting agents against the hepatitis A virus. J Clin Transl Hepatol. 2015;3(3):205–210.
  • Haggag EG, Elshamy AM, Rabeh MA, et al. Antiviral potential of green synthesized silver nanoparticles of lampranthus coccineus and malephora lutea. Int J Nanomedicine. 2019;14:6217–6229.
  • Shady NH, Khattab AR, Ahmed S, et al. Hepatitis C virus NS3 protease and helicase inhibitors from Red Sea sponge (Amphimedon) species in green synthesized silver nanoparticles assisted by in silico modeling and metabolic profiling. Int J Nanomedicine. 2020;15:3377–3389.
  • Dey P, Bergmann T, Cuellar-Camacho JL, et al. Multivalent flexible nanogels exhibit broad-spectrum antiviral activity by blocking virus entry. ACS Nano. 2018;12(7):6429–6442.
  • Nguyen NT-P, Nguyen LV-H, Thanh NT, et al. Stabilization of silver nanoparticles in chitosan and gelatin hydrogel and its applications. Mater Lett. 2019;248:241–245.
  • Diniz FR, Maia RCAP, Rannier L, et al. Silver nanoparticles-composing alginate/gelatine hydrogel improves wound healing in vivo. Nanomaterials (Basel). 2020;10(2):390.
  • Moongraksathum B, Chien MY, Chen YW. Antiviral and antibacterial effects of silver-doped TiO2 prepared by the peroxo sol-gel method. J Nanosci Nanotechnol. 2019;19(11):7356–7362.
  • Szymańska E, Orłowski P, Winnicka K, et al. Multifunctional tannic acid/silver nanoparticle-based mucoadhesive hydrogel for improved local treatment of HSV infection: in vitro and in vivo studies. IJMS. 2018;19(2):387.
  • Sharma V, Kaushik S, Pandit P, et al. Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Appl Microbiol Biotechnol. 2019;103:881–891.
  • Kaushik S, Sharma V, Chhikara S, et al. Anti-chikungunya activity of green synthesized silver nanoparticles using carica papaya leaves in animal cell culture model. Asian J Pharm Clin Res. 2019;12(6):170–174.
  • Sujitha V, Murugan K, Paulpandi M, et al. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res. 2015;114(9):3315–3325.
  • Nalini M, Lena M, Sumathi P, et al. Effect of phyto-synthesized silver nanoparticles on developmental stages of malaria vector, Anopheles stephensi and dengue vector. Aedes aegypti Egypt J Basic Appl Sci. 2017;4(3):212–218.
  • Parthiba E, Manivannan N, Ramanibai R, et al. Green synthesis of silver-nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. Biotechnol Rep. 2019;21:e00297.
  • Parthiban E, Ramachandran M, Jayakumar M, et al. Biocompatible green synthesized silver nanoparticles impact on insecticides resistant developing enzymes of dengue transmitted mosquito vector. SN Appl Sci. 2019;1(10):1282.
  • Murugan K, Sanoopa CP, Madhiyazhagan P, et al. Rapid biosynthesis of silver nanoparticles using Crotalaria verrucosa leaves against the dengue vector Aedes aegypti: what happens around? An analysis of dragonfly predatory behaviour after exposure at ultra-low doses. Nat Prod Res. 2016;30(7):826–833.
  • Yen C-W, de Puig H, Tam JO, et al. Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses. Lab Chip. 2015;15(7):1638–1641.
  • Speshock JL, Murdock RC, Braydich-Stolle LK, et al. Interaction of silver nanoparticles with Tacaribe virus. J Nanobiotechnol. 2010;8(1):19.
  • Castro-Mayorga JL, Randazzo W, Fabra MJ, et al. Antiviral properties of silver nanoparticles against norovirus surrogates and their efficacy in coated polyhydroxyalkanoates systems. Food Sci. Technol. 2017;79:503–510.
  • Bekele AZ, Gokulan K, Williams KM, et al. Dose and size-dependent antiviral effects of silver nanoparticles on feline calicivirus, a human norovirus surrogate. Foodborne Pathog Dis. 2016;13(5):239–244.
  • Nikaeen G, Abbaszadeh S, Yousefinejad S. Application of nanomaterials in treatment, anti-infection and detection of coronaviruses. Nanomedicine. 2020;15(15):1501–1512.
  • Jeremiah SS, Miyakawa K, Morita T, et al. Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochem Biophys Res Commun. 2020;533:195–200.
  • Zachar O. Formulations for COVID-19 early stage treatment via silver nanoparticles inhalation delivery at home and hospital. Sci Prepr. 2020;14.
  • Sarkar S. Silver Nanoparticles with bronchodilators through nebulisation to treat Covid 19 Patients. J Curr Med Res Opin. 2020;03:449–450.
  • Balagna C, Perero S, Percivalle E, et al. Virucidal effect against Coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceramics. 2020;1:100006.
  • Tremiliosi G, Simoes L, Minozzi D, et al. Ag nanoparticles-based antimicrobial polycotton fabrics to prevent the transmission and spread of SARS-CoV-2. bioRxiv. 2020;06(26):152520.
  • Seabra AB, Manosalva N, de Araujo Lima B, et al. Antibacterial activity of nitric oxide releasing silver nanoparticles. J Phys Conf Ser. 2017;838:012031.
  • Pieretti JC, Rubilar O, Weller RB, et al. Nitric oxide (NO) and nanoparticles – potential small tools for the war against COVID-19 and other human coronavirus infections. Virus Res. 2021;291:198202.
  • Vetchý M. Biological role of copper as an essential trace element in the human organism. Ceska Slov Farm. 2018;67:143–153.
  • Chen H, Wu J, Wu M, et al. Preparation and antibacterial activities of copper nanoparticles encapsulated by carbon. New Carbon Mater. 2019;34(4):382–389.
  • Thiruvengadam M, Chung IM, Gomathi T, et al. Synthesis, characterization and pharmacological potential of green synthesized copper nanoparticles. Bioprocess Biosyst Eng. 2019;42:1769–1777.
  • Baumert T, Berg T, Lim J, et al. Status of direct-acting antiviral therapy for hepatitis C virus infection and remaining challenges. Gastroenterology. 2019;156(2):431–445.
  • Vermehren J, Park JS, Jacobson IM, et al. Challenges and perspectives of direct antivirals for the treatment of hepatitis C virus infection. J Hepatol. 2018;69(5):1178–1187.
  • Herold BC, WuDunn D, Soltys N, et al. Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J Virol. 1991;65(3):1090–1098.
  • Rautemaa R, Helander T, Meri S. Herpes simplex virus 1 infected neuronal and skin cells differ in their susceptibility to complement attack. Immunology. 2002;106(3):404–411.
  • Yugandhar P, Vasavi T, Jayavardhana Rao Y, et al. Cost effective, green synthesis of copper oxide nanoparticles using fruit extract of Syzygium alternifolium (wt.) walp., characterization and evaluation of antiviral activity. J Clust Sci. 2018;29(4):743–755.
  • Fujimori Y, Sato T, Hayata T, et al. Novel antiviral characteristics of nanosized copper(I) iodide particles showing inactivation activity against 2009 pandemic H1N1 influenza virus. Appl Environ Microbiol. 2011;78(4):951–955.
  • Horie M, Ogawa H, Yoshida Y, et al. Inactivation and morphological changes of avian influenza virus by copper ions. Arch Virol. 2008;153(8):1467–1472.
  • Li Y, Hong M, Lin Y, et al. Highly sensitive electrochemical immunoassay for H1N1 influenza virus based on copper-mediated amplification. Chem Commun. 2012;48:6562–6564.
  • Mazurkow JM, Yüzbasi NS, Domagala KW, et al. Nano-sized copper (oxide) on alumina granules for water filtration: effect of copper oxidation state on virus removal performance. Environ Sci Technol. 2020;54:1214–1222.
  • Shionoiri N, Sato T, Fujimori Y, et al. Investigation of the antiviral properties of copper iodide nanoparticles against feline calicivirus. J Biosci Bioeng. 2013;113:580–586.
  • Liu M, Sunada K, Hashimoto K, et al. Visible-light sensitive Cu(ii)–TiO2 with sustained anti-viral activity for efficient indoor environmental remediation. J Mater Chem A. 2015;3(33):17312–17319.
  • Raha S, Mallick R, Basak S, et al. Is copper beneficial for COVID-19 patients? Med Hypotheses. 2020;142:109814.
  • Abdel-Mottaleb Y. In search for effective and safe drugs against SARS-CoV-2: part II] The role of selected salts and organometallics of copper, zinc, selenium, and iodine food supplements. ChemRxiv. 2020.
  • Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12(7):908–931.
  • Iravani S, Korbekandi H, Mirmohammadi SV, et al. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014;9:385.
  • Vance ME, Kuiken T, Vejerano EP, et al. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol. 2015;6:1769–1780.
  • Dziendzikowska K, Gromadzka‐Ostrowska J, Lankoff A, et al. Time‐dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J Appl Toxicol. 2012;32:920–928.
  • de Brito J, de Lima V, Ansa D, et al. Acute reproductive toxicology after intratesticular injection of silver nanoparticles (AgNPs) in Wistar rats. Nanotoxicology. 2020;14(7):893–907.
  • Dong L, Lai Y, Zhou H, et al. The biodistribution and transformation of nanoparticulate and ionic silver in rat organs in vivo. NanoImpact. 2020;20:100265.
  • Narciso L, Coppola L, Lori G, et al. Genotoxicity, biodistribution and toxic effects of silver nanoparticles after in vivo acute oral administration. NanoImpact. 2020;18:100221.
  • Huang H, Lai W, Cui M, et al. An evaluation of blood compatibility of silver nanoparticles. Sci Rep. 2016;6:25518.
  • Selvakumar P, Sithara R, Viveka K, et al. Green synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in blood compatibility. J Photochem Photobiol B. 2018;182:52–61.
  • Tang H, Xu M, Zhou X, et al. Acute toxicity and biodistribution of different sized copper nano-particles in rats after oral administration. Mat Sci Eng C. 2018;93:649–663.
  • Dey A, Manna S, Adhikary J, et al. Biodistribution and toxickinetic variances of chemical and green Copper oxide nanoparticles in vitro and in vivo. J Trace Elem Med Biol. 2019;55:154–169.
  • Fahmy H, Ali O, Hassan A, et al. Biodistribution and toxicity assessment of copper nanoparticles in the rat brain. J Trace Elem Med Biol. 2020;61:126505.
  • Darge A, Kahsay AG, Hailekiros H. Bacterial contamination and antimicrobial susceptibility patterns of intensive care units medical equipment and inanimate surfaces at Ayder Comprehensive Specialized Hospital, Mekelle, Northern Ethiopia. BMC Research Notes. 2019;12(1):621.
  • Dorresteijn K, Brouwer MC, Jellema K, et al. Bacterial external ventricular catheter-associated infection. Expert Rev anti Infect Ther. 2020;18:219–229.
  • Ledwoch K, Dancer SJ, Otter JA, et al. Beware Biofilm! Dry biofilms containing bacterial pathogens on multiple healthcare surfaces; a multicenter study. J Hosp Infect. 2018;100(3):e47–e56.
  • Mustapha A, Imir T. Detection of multidrug - resistance gram-negative bacteria from hospital sewage in North East. FEM. 2019;5(1):1–7.
  • Sib E, Lenz-Plet F, Barabasch V, et al. Bacteria isolated from hospital, municipal and slaughterhouse wastewaters show characteristic, different resistance profiles. Sci Tot Environ. 2020;746:140894.
  • Divya M, Kiran GS, Hassan S, et al. Biogenic synthesis and effect of silver nanoparticles (AgNPs) to combat catheter-related urinary tract infections. Biocatal Agric Biotechnol. 2019;18:101037.
  • Mala R, Annie Aglin A, Ruby Celsi AS, et al. Foley catheters functionalised with a synergistic combination of antibiotics and silver nanoparticles resist biofilm formation. IET Nanobiotechnol. 2017;11(5):612–620.
  • Wang BB, Quan YH, Xu ZM, et al. Preparation of highly effective antibacterial coating with polydopamine/chitosan/silver nanoparticles via simple immersion. Prog Org Coat. 2020;149:105967.
  • Shalom Y, Perelshtein I, Perkas N, et al. Catheters coated with Zn-doped CuO nanoparticles delay the onset of catheter-associated urinary tract infections. Nano Res. 2017;10(2):520–533.
  • Szekeres GP, Németh Z, Schrantz K, et al. Copper-coated cellulose-based water filters for virus retention. ACS Omega. 2018;3(1):446–454.
  • Chiome TJ, Srinivasan A. Use of antiviral nanocoating in personal protective wear. Int J Health Allied Sci. 2020;9:S62–S67.
  • Nam S, Hillyer MB, Condon BD, et al. Silver nanoparticle-infused cotton fiber: durability and aqueous release of silver in laundry water. J Agric Food Chem. 2020;68(46):13241–13240.
  • Kharaghani D, Khan MQ, Shahzad Am Inoue Y, et al. Preparation and in-vitro assessment of hierarchal organized antibacterial breath mask based on polyacrylonitrile/silver (PAN/AgNPs) Nanofiber. Nanomaterials. 2018;8(7):461.
  • Zúñiga J, Cortes A. The role of additive manufacturing and antimicrobial polymers in the COVID-19 pandemic. Expert Rev Med Devices. 2020;17(6):477–481.
  • Ahmed MK, Afifi M, Uskoković V. Protecting healthcare workers during COVID-19 pandemic with nanotechnology: a protocol for a new device from Egypt. J Infect Public Heal. 2020;13(9):1243–1246.
  • Meguid SA, Elzaabalawy A. Potential of combating transmission of COVID-19 using novel self-cleaning superhydrophobic surfaces: part I—protection strategies against fomites. Int J Mech Mater Des. 2020;16(3):423–431.
  • van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564–1567.
  • Poggio C, Colombo M, Arciola CR, et al. Copper-alloy surfaces and cleaning regimens against the spread of SARS-CoV-2 in dentistry and orthopedics. From fomites to anti-infective nanocoatings. Materials. 2020;13(15):3244.
  • Granata G, Yamaoka T, Pagnanelli F, et al. Study of the synthesis of copper nanoparticles: the role of capping and kinetic towards control of particle size and stability. J Nanopart Res. 2016;18(5):133.
  • Cho YM, Mizuta Y, Akagi JI, et al. Size-dependent acute toxicity of silver nanoparticles in mice. J Toxicol Pathol. 2018;31:73–80.
  • Perde-Schrepler M, Florea A, Brie I, et al. Size-dependent cytotoxicity and genotoxicity of silver nanoparticles in cochlear cells in vitro. J Nanomat. 2018;2019:6090259.
  • Tortella GR, Rubilar O, Durán N, et al. Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. J Hazard Mat. 2020;390:121974.
  • Ji JH, Jung JH, Kim SS, et al. Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol. 2007;19(10):857–871.
  • Piao MJ, Kang KA, Lee IK, et al. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett. 2011;201:92–100.
  • Liu Y, Gao Y, Liu Y, et al. Oxidative stress and acute changes in murine brain tissues after nasal instillation of copper particles with different sizes. J Nanosci Nanotechnol. 2014;14(6):4534–4540.
  • Akter M, Sikder MT, Rahman MM, et al. Systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res. 2018;9:1–16.
  • Ameh T, Sayes CM. The potential exposure and hazards of copper nanoparticles: a review. Environ Toxicol Pharmacol. 2019;71:103220.
  • Anreddy RNR. Copper oxide nanoparticles induces oxidative stress and liver toxicity in rats following oral exposure. Toxicol Rep. 2018;5:903–904.
  • Lai X, Zhao H, Zhang Y, et al. Intranasal delivery of copper oxide nanoparticles induces pulmonary toxicity and fibrosis in C57BL/6 mice. Sci Rep. 2018;8(1):4499.
  • Budama-Kilinc Y, Cakir-Koc R, Zorlu T, et al. Assessment of nano-toxicity and safety profiles of silver nanoparticles. In Silver nanoparticles - fabrication, characterization and applications. London, UK: IntechOpen; 2018.
  • Jiang X, Wu Y, Gray P, et al. Influence of gastrointestinal environment on free radical generation of silver nanoparticles and implications for their cytotoxicity. NanoImpact. 2018;10:144–152.
  • Durán N, Fávaro WJ, Seabra AB. What do we really know about nanotoxicology of silver nanopartiles in vivo? New aspects, possible mechanisms and perspectives. Curr Nanosci. 2019;15:1–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.