1,101
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Advances in microalgal cell wall polysaccharides: a review focused on structure, production, and biological application

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 562-577 | Received 31 Jul 2020, Accepted 07 May 2021, Published online: 28 Jul 2021

References

  • Jiang J, Ye B, Liu J. Research on the peak of CO2 emissions in the developing world: current progress and future prospect. Appl Energy. 2019;235:186–203.
  • Anson J, Bartl W, Kulczycki A. Roots and fruits of population growth and social structures: demographic and sociological vistas. In: Studies in the sociology of population [Internet]. Cham: Springer International Publishing; 2019. p. 1–24. Available from: http://link.springer.com/10.1007/978-3-319-94869-0_1
  • Enzing C, Ploeg M, Barbosa M, et al. Microalgae-based products for the food and feed sector: an outlook for Europe. Joint Research Centre (JRC) Scientific and Policy Reports. Luxembourg: European Commission; 2014.
  • Barka A, Blecker C. Microalgae as a potential source of single-cell proteins. A review. Biotechnol Agron Soc Environ. 2016;20:427–436.
  • Santana H, Cereijo CR, Teles VC, et al. Microalgae cultivation in sugarcane vinasse: selection, growth and biochemical characterization. Bioresour Technol. 2017;228:133–140.
  • Tan XB, Lam MK, Uemura Y, et al. Cultivation of microalgae for biodiesel production: a review on upstream and downstream processing. Chin J Chem Eng. 2018;26(1):17–30.
  • Zhang W, Wang J, Wang J, et al. Attached cultivation of Haematococcus pluvialis for astaxanthin production. Bioresour Technol. 2014;158:329–335.
  • Patel AK, Joun JM, Hong ME, et al. Effect of light conditions on mixotrophic cultivation of green microalgae. Bioresour Technol. 2019;282:245–253.
  • Rahman DY, Sarian FD, van Wijk A, et al. Thermostable phycocyanin from the red microalga Cyanidioschyzon merolae, a new natural blue food colorant. J Appl Phycol. 2017;29(3):1233–1239.
  • Chew KW, Chia SR, Lee SY, et al. Enhanced microalgal protein extraction and purification using sustainable microwave-assisted multiphase partitioning technique. Chem Eng J. 2019;367:1–8.
  • Karan H, de Boeck R, Roles J, et al. Hydrothermal pre-treatment coupled with urea solubilisation enables efficient protein extraction from microalgae. Green Chem. 2019;21(23):6361–6371.
  • Phong WN, Le CF, Show PL, et al. Extractive disruption process integration using ultrasonication and an aqueous two-phase system for protein recovery from Chlorella sorokiniana. Eng Life Sci. 2017;17(4):357–369.
  • Buchmann L, Brändle I, Haberkorn I, et al. Pulsed electric field based cyclic protein extraction of microalgae towards closed-loop biorefinery concepts. Bioresour Technol. 2019;291:121870.
  • Koyande AK, Chew KW, Lim J-W, et al. Biorefinery of Chlorella sorokiniana using ultra sonication assisted liquid triphasic flotation system. Bioresour Technol. 2020;303:122931.
  • Matamoros V, Uggetti E, García J, et al. Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: a laboratory scale study. J Hazard Mater. 2016;301:197–205.
  • Colusse GA, Santos AO, Rodrigues JM, et al. Rice vinasse treatment by immobilized Synechococcus pevalekii and its effect on Dunaliella salina cultivation. Bioprocess Biosyst Eng. 2021;44(7):1477–1490.
  • Morales M, Collet P, Lardon L, et al. Life-cycle assessment of microalgal-based biofuel. In: Biofuels from algae [Internet]. Elsevier; 2019. p. 507–550. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780444641922000202
  • Milano J, Ong HC, Masjuki HH, et al. Microalgae biofuels as an alternative to fossil fuel for power generation. Renew Sustain Energy Rev. 2016;58:180–197.
  • Acién Fernández FG, Fernández Sevilla JM, Molina Grima E. Costs analysis of microalgae production. In: Biofuels from algae [Internet]. Elsevier; 2019. p. 551–566. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780444641922000214
  • Bernaerts TMM, Gheysen L, Kyomugasho C, et al. Comparison of microalgal biomasses as functional food ingredients: focus on the composition of cell wall related polysaccharides. Algal Res. 2018;32:150–161.
  • Rashidi B, Dechesne A, Rydahl MG, et al. Neochloris oleoabundans cell walls have an altered composition when cultivated under different growing conditions. Algal Res. 2019;40:101482.
  • Pancha I, Chokshi K, George B, et al. Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol. 2014;156:146–154.
  • He Q, Yang H, Wu L, et al. Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresour Technol. 2015;191:219–228.
  • Wang X, Feng X, Zhuang Y, et al. Effects of ocean acidification and solar ultraviolet radiation on physiology and toxicity of dinoflagellate Karenia mikimotoi. Harmful Algae. 2019;81:1–9.
  • George B, Pancha I, Desai C, et al. Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus – a potential strain for bio-fuel production. Bioresour Technol. 2014;171:367–374.
  • Fazeli Danesh A, Ebrahimi S, Salehi A, et al. Impact of nutrient starvation on intracellular biochemicals and calorific value of mixed microalgae. Biochem Eng J. 2017;125:56–64.
  • Ishika T, Bahri PA, Laird DW, et al. The effect of gradual increase in salinity on the biomass productivity and biochemical composition of several marine, halotolerant, and halophilic microalgae. J Appl Phycol. 2018;30(3):1453–1464.
  • Harun R, Danquah MK. Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chem Eng J. 2011;168:1079–1084.
  • Cheng D, Li D, Yuan Y, et al. Improving carbohydrate and starch accumulation in Chlorella sp. AE10 by a novel two-stage process with cell dilution. Biotechnol Biofuels. 2017;10(1):75.
  • Markou G, Chatzipavlidis I, Georgakakis D. Carbohydrates production and bio-flocculation characteristics in cultures of Arthrospira (Spirulina) platensis: improvements through phosphorus limitation process. BioEnergy Res. 2012;5:915–925.
  • Colusse GA, Duarte MER, de Carvalho JC, et al. Media effects on laboratory scale production costs of Haematococcus pluvialis biomass. Bioresour Technol Reports. 2019;7:100236.
  • Colusse GA, Borges Mendes CR, Rabello Duarte ME, et al. Effects of different culture media on physiological features and laboratory scale production cost of Dunaliella salina. Biotechnol Rep. 2020;27:e00508.
  • Hanifzadeh M, Garcia EC, Viamajala S. Production of lipid and carbohydrate from microalgae without compromising biomass productivities: role of Ca and Mg. Renew Energy. 2018;127:989–997.
  • Baudelet P-H, Ricochon G, Linder M, et al. A new insight into cell walls of Chlorophyta. Algal Res. 2017;25:333–371.
  • Arad SM, Levy-Ontman O. Red microalgal cell-wall polysaccharides: biotechnological aspects. Curr Opin Biotechnol. 2010;21(3):358–364.
  • Chanda M, Merghoub N, El Arroussi H. Microalgae polysaccharides: the new sustainable bioactive products for the development of plant bio-stimulants? World J Microbiol Biotechnol. 2019;35(11):177.
  • Piro G, Lenucci M, Dalessandro G, et al. Ultrastructure, chemical composition and biosynthesis of the cell wall in Koliella antarctica (Klebsormidiales, Chlorophyta). Eur J Phycol. 2000;35(4):331–337.
  • Le Costaouëc T, Unamunzaga C, Mantecon L, et al. New structural insights into the cell-wall polysaccharide of the diatom Phaeodactylum tricornutum. Algal Res. 2017;26:172–179.
  • Suárez ER, Bugden SM, Kai FB, et al. First isolation and structural determination of cyclic beta-(1->2)-glucans from an alga, Chlorella pyrenoidosa. Carbohydr Res. 2008;343(15):2623–2633.
  • Suárez ER, Kralovec JA, Noseda MD, et al. Isolation, characterization and structural determination of a unique type of arabinogalactan from an immunostimulatory extract of Chlorella pyrenoidosa. Carbohydr Res. 2005;340(8):1489–1498.
  • de Carvalho JC, Magalhães AI, de Melo Pereira GV, et al. Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed. Bioresour Technol. 2020;300:122719.
  • Suárez ER, Syvitski R, Kralovec JA, et al. Immunostimulatory polysaccharides from Chlorella pyrenoidosa. A new galactofuranan. Measurement of molecular weight and molecular weight dispersion by DOSY NMR. Biomacromolecules. 2006;7:2368–2376.
  • Ogawa K, Yamaura M, Ikeda Y, et al. New aldobiuronic acid, 3-O-α-d-glucopyranuronosyl-l-rhamnopyranose, from an acidic polysaccharide of Chlorella vulgaris. Biosci Biotechnol Biochem. 1998;62:2030–2031.
  • Sushytskyi L, Lukáč P, Synytsya A, et al. Immunoactive polysaccharides produced by heterotrophic mutant of green microalga Parachlorella kessleri HY1 (Chlorellaceae). Carbohydr Polym. 2020;246:116588.
  • Abd El B, Hanaa EBK, El-Latife S. Induction of sulfated polysaccharides in Spirulina platensis as response to nitrogen concentration and its biological evaluation. J Aquacult Res Dev. 2013;5:206.
  • Sadovskaya I, Souissi A, Souissi S, et al. Chemical structure and biological activity of a highly branched (1→3,1→6)-β-d-glucan from Isochrysis galbana. Carbohydr Polym. 2014;111:139–148.
  • Machado TWM, Rodrigues JM, Moro TR, et al. Marine microalgae biomolecules and their adhesion capacity to Salmonella enterica sv. Typhimurium. Appl Sci. 2020;10(7):2239.
  • Pandeirada CO, Maricato É, Ferreira SS, et al. Structural analysis and potential immunostimulatory activity of Nannochloropsis oculata polysaccharides. Carbohydr Polym. 2019;222:114962.
  • Geresh S, Arad SM, Levy-Ontman O, et al. Isolation and characterization of poly- and oligosaccharides from the red microalga Porphyridium sp. Carbohydr Res. 2009;344:343–349.
  • Guiry MD, Guiry GM. AlgaeBase [Internet]. World-Wide Electronic Publication; 2021; [cited 2021 Jan 14]. Available from: www.algaebase.org
  • Mirzaie S, Tabarsa M, Safavi M. Effects of extracted polysaccharides from a Chlorella vulgaris biomass on expression of interferon-γ and interleukin-2 in chicken peripheral blood mononuclear cells. J Appl Phycol. 2020;33(1):1–10.
  • Kapaun E, Reisser W. A chitin-like glycan in the cell wall of a Chlorella sp. (Chlorococcales, Chlorophyceae). Planta. 1995;197:577–582.
  • Cheng Y-S, Labavitch JM, VanderGheynst JS. Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella. Lett Appl Microbiol. 2014;60:1–7.
  • Weiss TL, Roth R, Goodson C, et al. Colony organization in the green alga Botryococcus braunii (Race B) is specified by a complex extracellular matrix. Eukaryot Cell. 2012;11(12):1424–1440.
  • Netanel Liberman G, Ochbaum G, Mejubovsky-Mikhelis M, et al. Physico-chemical characteristics of the sulfated polysaccharides of the red microalgae Dixoniella grisea and Porphyridium aerugineum. Int J Biol Macromol. 2020;145:1171–1179.
  • Kadir WNA, Lam MK, Uemura Y, et al. Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: a review. Energy Convers Manag. 2018;171:1416–1429.
  • Chew KW, Yap JY, Show PL, et al. Microalgae biorefinery: high value products perspectives. Bioresour Technol. 2017;229:53–62.
  • Sanchez Rizza L, Sanz Smachetti ME, Do Nascimento M, et al. Bioprospecting for native microalgae as an alternative source of sugars for the production of bioethanol. Algal Res. 2017;22:140–147.
  • Kumar G, Nguyen DD, Sivagurunathan P, et al. Cultivation of microalgal biomass using swine manure for biohydrogen production: impact of dilution ratio and pretreatment. Bioresour Technol. 2018;260:16–22.
  • Solé-Bundó M, Salvadó H, Passos F, et al. Strategies to optimize microalgae conversion to biogas: co-digestion, pretreatment and hydraulic retention time. Molecules. 2018;23(9):2096.
  • Azizi K, Keshavarz Moraveji M, Abedini Najafabadi H. A review on bio-fuel production from microalgal biomass by using pyrolysis method. Renew Sustain Energy Rev. 2018;82:3046–3059.
  • Narala RR, Garg S, Sharma KK, et al. Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system. Front Energy Res. 2016;4:29.
  • Milledge JJ. Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol. 2011;10(1):31–41.
  • Chew KW, Chia SR, Show PL, et al. Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: a review. J Taiwan Inst Chem Eng. 2018;91:332–344.
  • Li J, Zhu D, Niu J, et al. An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol Adv. 2011;29(6):568–574.
  • Silva Benavides AM, Torzillo G, Kopecký J, et al. Productivity and biochemical composition of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown outdoors in tubular photobioreactors and open ponds. Biomass Bioenergy. 2013;54:115–122.
  • Clippinger J, Davis R. Techno-economic analysis for the production of algal biomass via closed photobioreactors: Future cost potential evaluated across a range of cultivation system designs. Golden, CO, USA: National Renewable Energy Laboratory. 2019. NREL/TP-5100-72716. https://www.nrel.gov/docs/fy19osti/72716.pdf
  • Klinthong W, Yang Y-H, Huang C-H, et al. A review: microalgae and their applications in CO2 capture and renewable energy. Aerosol Air Qual Res. 2015;15(2):712–742.
  • Barsanti L, Gualtieri P. Is exploitation of microalgae economically and energetically sustainable? Algal Res. 2018;31:107–115.
  • Bosma R, de Vree JH, Slegers PM, et al. Design and construction of the microalgal pilot facility AlgaePARC. Algal Res. 2014;6:160–169.
  • Halaj M, Matulová M, Šutovská M, et al. Chemico-physical and pharmacodynamic properties of extracellular Dictyosphaerium chlorelloides biopolymer. Carbohydr Polym. 2018;198:215–224.
  • Rachidi F, Benhima R, Sbabou L, et al. Microalgae polysaccharides bio-stimulating effect on tomato plants: growth and metabolic distribution. Biotechnol Rep. 2020;25:e00426.
  • Farid R, Mutale-Joan C, Redouane B, et al. Effect of microalgae polysaccharides on biochemical and metabolomics pathways related to plant defense in Solanum lycopersicum. Appl Biochem Biotechnol. 2019;188(1):225–240.
  • Hafsa MB, Ismail MB, Garrab M, et al. Antimicrobial, antioxidant, cytotoxic and anticholinesterase activities of water-soluble polysaccharides extracted from microalgae Isochrysis galbana and Nannochloropsis oculata. J Serb Chem Soc. 2017;82:509–522.
  • Sun L, Wang L, Li J, et al. Characterization and antioxidant activities of degraded polysaccharides from two marine Chrysophyta. Food Chem. 2014;160:1–7.
  • Sun Y, Wang H, Guo G, et al. The isolation and antioxidant activity of polysaccharides from the marine microalgae Isochrysis galbana. Carbohydr Polym. 2014;113:22–31.
  • Fimbres-Olivarria D, Carvajal-Millan E, Lopez-Elias JA, et al. Chemical characterization and antioxidant activity of sulfated polysaccharides from Navicula sp. Food Hydrocoll. 2018;75:229–236.
  • Burg A, Oshrat LO. Salt effect on the antioxidant activity of red microalgal sulfated polysaccharides in soy-bean formula. Mar Drugs. 2015;13(10):6425–6439.
  • Shen SG, Jia SR, Wu YK, et al. Effect of culture conditions on the physicochemical properties and antioxidant activities of polysaccharides from Nostoc flagelliforme. Carbohydr Polym. 2018;198:426–433.
  • Chen YX, Liu XY, Xiao Z, et al. Antioxidant activities of polysaccharides obtained from Chlorella pyrenoidosa via different ethanol concentrations. Int J Biol Macromol. 2016;91:505–509.
  • Kurd F, Samavati V. Water soluble polysaccharides from Spirulina platensis: extraction and in vitro anti-cancer activity. Int J Biol Macromol. 2015;74:498–506.
  • Sun L, Chu J, Sun Z, et al. Physicochemical properties, immunomodulation and antitumor activities of polysaccharide from Pavlova viridis. Life Sci. 2016;144:156–161.
  • Halaj M, Paulovičová E, Paulovičová L, et al. Extracellular biopolymers produced by Dictyosphaerium family – chemical and immunomodulative properties. Int J Biol Macromol. 2019;121:1254–1263.
  • Qi J, Kim SM. Characterization and immunomodulatory activities of polysaccharides extracted from green alga Chlorella ellipsoidea. Int J Biol Macromol. 2017;95:106–114.
  • Chen Y, Liu X, Wu L, et al. Physicochemical characterization of polysaccharides from Chlorella pyrenoidosa and its anti-ageing effects in Drosophila melanogaster. Carbohydr Polym. 2018;185:120–126.
  • Elarroussi H, Elmernissi N, Benhima R, et al. Microalgae polysaccharides a promising plant growth biostimulant. J Algal Biomass Utln. 2016;7:55–63.
  • Qi J, Kim SM. Effects of the molecular weight and protein and sulfate content of Chlorella ellipsoidea polysaccharides on their immunomodulatory activity. Int J Biol Macromol. 2018;107:70–77.
  • de Jesus Raposo MF, de Morais AMMB, de Morais RMSC. Bioactivity and applications of polysaccharides from marine microalgae. In: Polysaccharides [Internet]. Cham: Springer International Publishing; 2014. p. 1–38. Available from: http://link.springer.com/10.1007/978-3-319-03751-6_47-1
  • Sathasivam R, Radhakrishnan R, Hashem A, et al. Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci. 2019;26(4):709–722.
  • Matos J, Cardoso C, Bandarra NM, et al. Microalgae as healthy ingredients for functional food: a review. Food Funct. 2017;8(8):2672–2685.
  • Hamed I. The evolution and versatility of microalgal biotechnology: a review. Compr Rev Food Sci Food Saf. 2016;15:1104–1123.
  • Mourelle M, Gómez C, Legido J. The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics. 2017;4(4):46.
  • Borowitzka MA. High-value products from microalgae—their development and commercialisation. J Appl Phycol. 2013;25(3):743–756.
  • Coragliotti A, Franklin S, Day AG, et al. Microalgal polysaccharide compositions. 2010. Patent no. WO2010111710 A1.
  • Bernaerts TMM, Gheysen L, Foubert I, et al. The potential of microalgae and their biopolymers as structuring ingredients in food: a review. Biotechnol Adv. 2019;37(8):107419.
  • Arad SM, Rapoport L, Moshkovich A, et al. Superior biolubricant from a species of red microalga. Langmuir. 2006;22(17):7313–7317.
  • de Jesus CS, de Jesus Assis D, Rodriguez MB, et al. Pilot-scale isolation and characterization of extracellular polymeric substances (EPS) from cell-free medium of Spirulina sp. LEB-18 cultures under outdoor conditions. Int J Biol Macromol. 2019;124:1106–1114.
  • Marazzi F, Bellucci M, Rossi S, et al. Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. Algal Res. 2019;39:101430.
  • Li H, Li Z, Xiong S, et al. Pilot-scale isolation of bioactive extracellular polymeric substances from cell-free media of mass microalgal cultures using tangential-flow ultrafiltration. Process Biochem. 2011;46(5):1104–1109.
  • Rani K, Sandal N, Sahoo P. A comprehensive review on chlorella – its composition, health benefits, market and regulatory scenario. Pharma Innov. 2018;7:584–589.
  • CredenceResearch. Algae products market by application (nutraceuticals, food & feed supplements, pharmaceuticals, paints & coatings, pollution control, others) – growth, future prospects & competitive analysis, 2018–2026 [Internet]; 2017; [cited 2019 Jul 23]. Available from: https://www.credenceresearch.com/report/algae-products-market
  • Koyande AK, Chew KW, Rambabu K, et al. Microalgae: a potential alternative to health supplementation for humans. Food Sci Hum Wellness. 2019;8(1):16–24.
  • Banerjee S, Ramaswamy S. Dynamic process model and economic analysis of microalgae cultivation in flat panel photobioreactors. Algal Res. 2019;39:101445.
  • Vigani M, Parisi C, Rodríguez-Cerezo E, et al. Food and feed products from micro-algae: market opportunities and challenges for the EU. Trends Food Sci Technol. 2015;42(1):81–92.
  • Lam MK, Lee KT, Mohamed AR. Current status and challenges on microalgae-based carbon capture. Int J Green Gas Control. 2012;10:456–469.
  • Chen X, Song L, Wang H, et al. Partial characterization, the immune modulation and anticancer activities of sulfated polysaccharides from filamentous microalgae Tribonema sp. Molecules. 2019;24(2):322.
  • Godman B, Bucsics A, Vella Bonanno P, et al. Barriers for access to new medicines: searching for the balance between rising costs and limited budgets. Front Public Health. 2018;6:328.
  • Khakoo AY, Yurgin NR, Eisenberg PR, et al. Overcoming barriers to development of novel therapies for cardiovascular disease. JACC Basic Transl Sci. 2019;4(2):269–274.
  • Ekelhof A, Melkonian M. Enhanced extracellular polysaccharide production and growth by microalga Netrium digitus in a porous substrate bioreactor. Algal Res. 2017;28:184–191.
  • Alhattab M, Kermanshahi-Pour A, Brooks MS-L. Microalgae disruption techniques for product recovery: influence of cell wall composition. J Appl Phycol. 2019;31(1):61–88.
  • Dixon C, Wilken LR. Green microalgae biomolecule separations and recovery. Bioresour Bioprocess. 2018;5:14.
  • Johnson TJ, Katuwal S, Anderson GA, et al. Photobioreactor cultivation strategies for microalgae and cyanobacteria. Biotechnol Progress. 2018;34(4):811–827.
  • Yen H-W, Hu I-C, Chen C-Y, et al. Design of photobioreactors for algal cultivation. In: Biofuels from algae [Internet]. Elsevier; 2019. p. 225–256. Available from: https://linkinghub.elsevier.com/retrieve/pii/B978044464192200010X
  • Deruyck B, Thi Nguyen KH, Decaestecker E, et al. Modeling the impact of rotifer contamination on microalgal production in open pond, photobioreactor and thin layer cultivation systems. Algal Res. 2019;38:101398.
  • Mathiot C, Ponge P, Gallard B, et al. Microalgae starch-based bioplastics: screening of ten strains and plasticization of unfractionated microalgae by extrusion. Carbohydr Polym. 2019;208:142–151.
  • Netanel Liberman G, Ochbaum G, Bitton R, et al. Antimicrobial hydrogels composed of chitosan and sulfated polysaccharides of red microalgae. Polymer (Guildf). 2021;215:123353.
  • Ng I-S, Tan S-I, Kao P-H, et al. Recent developments on genetic engineering of microalgae for biofuels and bio-based chemicals. Biotechnol J. 2017;12(10):1600644.
  • Vargas JVC, Kava V, Balmant W, et al. Modeling microalgae derived hydrogen production enhancement via genetic modification. Int J Hydrogen Energy. 2016;41(19):8101–8110.
  • Faraloni C, Torzillo G. Genetic optimization for increasing hydrogen production in microalgae. In: Encyclopedia of sustainability science and technology [Internet]. New York (NY): Springer New York; 2018. p. 1–18. Available from: http://link.springer.com/10.1007/978-1-4939-2493-6_950-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.